JPH07104430B2 - Fuel rod ultrasonic flaw detection method and flaw detection device - Google Patents

Fuel rod ultrasonic flaw detection method and flaw detection device

Info

Publication number
JPH07104430B2
JPH07104430B2 JP2100703A JP10070390A JPH07104430B2 JP H07104430 B2 JPH07104430 B2 JP H07104430B2 JP 2100703 A JP2100703 A JP 2100703A JP 10070390 A JP10070390 A JP 10070390A JP H07104430 B2 JPH07104430 B2 JP H07104430B2
Authority
JP
Japan
Prior art keywords
fuel rod
water tank
ultrasonic
test material
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2100703A
Other languages
Japanese (ja)
Other versions
JPH03296694A (en
Inventor
正之 関
一仁 平子
Original Assignee
動力炉・核燃料開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団 filed Critical 動力炉・核燃料開発事業団
Priority to JP2100703A priority Critical patent/JPH07104430B2/en
Publication of JPH03296694A publication Critical patent/JPH03296694A/en
Publication of JPH07104430B2 publication Critical patent/JPH07104430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は融接法及び固相接合法による棒状及び管材等の
溶接部超音波探傷検査に係わり、特にパルス磁気溶接ま
たはティグ溶接により溶接した原子炉用燃料棒の溶接部
欠陥の超音波探傷方法及び探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to ultrasonic flaw detection inspection of welds of rod-shaped and pipe materials by fusion welding and solid-state welding, and particularly welding by pulse magnetic welding or TIG welding. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method and flaw detection apparatus for a weld defect of a fuel rod for a nuclear reactor.

〔従来の技術〕[Conventional technology]

第11図は燃料棒の溶接部を示す図で、同図(a)はパル
ス磁気溶接による試料、同図(b)はティグ溶接による
試料、第12図は従来の棒材又は管材の超音波探傷検査方
法の説明図、第13図は従来の燃料棒溶接部の超音波探傷
検査方法の説明図で、12は被検材、13はA面、14、14′
はB面、15はC面、16は中心軸、17は探傷域、61、62は
端栓、63、64は被覆管、65は探触子、66は付き合わせ接
合部、67は被検材、68は中心軸である。
FIG. 11 is a view showing a welded portion of a fuel rod. FIG. 11 (a) is a sample by pulse magnetic welding, FIG. 11 (b) is a sample by TIG welding, and FIG. 12 is an ultrasonic wave of a conventional rod or pipe. FIG. 13 is an explanatory view of a flaw detection inspection method, and FIG. 13 is an explanatory view of a conventional ultrasonic flaw detection inspection method for a fuel rod welded portion. 12 is a material to be inspected, 13 is an A surface, 14, 14 ′
Is B surface, 15 is C surface, 16 is a central axis, 17 is a flaw detection area, 61 and 62 are end plugs, 63 and 64 are cladding tubes, 65 is a probe, 66 is a butt joint, and 67 is an object to be inspected. Material, 68 is a central axis.

被検材としての燃料棒の溶接部は通常の棒材または管材
と異なり、第11図(a)及び(b)に示すように端栓61
または62と被覆管63または64をパルス磁気溶接またはテ
ィグ溶接していて、溶接部はA面13、B面14または14′
及びC面15の3種の異なった外径を持っている。
The welding portion of the fuel rod as the material to be inspected is different from the ordinary rod material or pipe material, and as shown in FIGS. 11 (a) and 11 (b), the end plug 61
Or 62 and the cladding tube 63 or 64 are pulse magnetic welded or TIG welded, and the welded portion is A surface 13, B surface 14 or 14 '.
And C-face 15 have three different outer diameters.

従来、燃料棒溶接部をX線で検査する場合は、溶接部探
傷域17の一方の側からX線を照射し、探傷域の側に置い
た写真フィルム上にX線撮影し、撮影画像から溶接欠陥
の判定を行っていた。
Conventionally, when inspecting fuel rod welds with X-rays, X-rays are radiated from one side of the weld flaw detection area 17, and X-rays are taken on a photographic film placed on the side of the flaw detection area. Welding defects were determined.

また、棒材又は管材などの超音波探傷検査は、第12図に
示すように超音波探触子65を固定し、中心軸68を軸とし
て被検材67を回転させつつ左右に移動させ、突き合わせ
溶接部66の探傷検査を行っていたが、燃料棒のような外
径の異なる溶接部の探傷検査を実施しようとすると、第
13図に示すように被検材12の探傷域17の最大径のC面15
に水距離を調整するため、A面13及びB面14では水距離
が変化し、また、B面14では探触子63が面と垂直になら
ないため音圧が変化し、均一な検査を行えなかった。
Further, in ultrasonic flaw detection of a rod or tube, the ultrasonic probe 65 is fixed as shown in FIG. 12, and the material 67 is rotated left and right while the central axis 68 is an axis, The butt weld 66 had been inspected, but when trying to inspect a weld with a different outer diameter such as a fuel rod,
As shown in Fig. 13, the C surface 15 of the maximum diameter of the flaw detection area 17 of the test material 12
In order to adjust the water distance, the water distance changes on the A surface 13 and the B surface 14, and the sound pressure changes on the B surface 14 because the probe 63 is not perpendicular to the surface, and uniform inspection can be performed. There wasn't.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、X線検査では拡大撮影は不可能であるため、
現寸大の写真フィルム像で欠陥の有無を確認する。X線
の焦点径はmmオーダとからなり大きく、フィルムにも当
然ながら解像の限界があるため、φ0.2mm程度の欠陥識
別しか行えない。また、φ0.2mm程度の欠陥も判定者の
技量に負う所が大きい。通常の検査はXY2方向の平面で
あるため、多方向の欠陥検査を実施するには写真フィル
ムの撮影、現像等多大な工数を必要とする。さらに、X
線検査には照射室、操作室、フィルム現像暗室及び検査
用暗室等の特異な作業空間が必要であり、また、フィル
ム現像を行うため瞬時検査判定が行えない。
By the way, magnified imaging is not possible with X-ray inspection,
Check the size of the photographic film image for defects. Since the focal diameter of X-rays is large, on the order of mm, and the film naturally has a limit of resolution, so only defects of φ0.2 mm can be identified. In addition, a defect of about φ0.2 mm largely depends on the skill of the judge. Since a normal inspection is a plane in the XY2 direction, a lot of man-hours such as photographing and developing a photographic film are required to perform defect inspection in multiple directions. Furthermore, X
The line inspection requires a unique working space such as an irradiation room, an operation room, a dark film developing room, and a dark room for inspection, and since film development is performed, it is impossible to make an instantaneous inspection judgment.

X線検査は上述の欠点を有しているのみならず、透過法
による撮影であるため、固相接合の場合、接合部と未接
合部の像が重なり、また固相接合の場合に発生する空孔
は50μm以下と小さいため識別が不可能である。
The X-ray inspection has not only the above-mentioned drawbacks but also the transmission method. Therefore, in the case of solid-phase bonding, the images of the bonded part and the unbonded part overlap each other, and also in the case of solid-phase bonding. Since the pores are as small as 50 μm or less, they cannot be identified.

超音波探傷検査において精密探傷を行う場合に用いる焦
点径は通常φ0.5mmであるが、さらに、φ0.1〜0.3mmと
X線検査の場合の1/10〜1/20程度にすることが可能で、
反射波を電気的に受信するため、理論上1μmの欠陥で
も識別することができる。しかし、実際は物質内での減
衰、被検材組織の粒度状態からくるエコーにより10μm
程度となる。ところが、超音波を発振する探触子と被検
材との間隔が一定でないと、被検材内部に伝わる超音波
の強度が変化し、被検材内部の欠陥からのエコーに差が
生じ、一定の評価が行えない欠点を有している。
The focal diameter used for precision flaw detection in ultrasonic flaw detection is usually φ0.5 mm, but it should be 0.1 to 0.3 mm, which is about 1/10 to 1/20 of that used in X-ray inspection. Possible,
Since the reflected wave is received electrically, theoretically even a defect of 1 μm can be identified. However, it is actually 10 μm due to the attenuation in the substance and the echo caused by the grain size of the test material tissue.
It will be about. However, if the distance between the probe that oscillates ultrasonic waves and the test material is not constant, the intensity of the ultrasonic waves transmitted inside the test material changes, and a difference occurs in the echo from the defect inside the test material, It has a drawback that certain evaluation cannot be performed.

本発明は燃料棒の溶接部のように異なった外径と傾斜あ
るいは曲率を持った被検材の検査を行うことのできる燃
料棒超音波探傷方法及び探傷装置を提供することを目的
とする。
An object of the present invention is to provide a fuel rod ultrasonic flaw detection method and flaw detection device capable of inspecting a test material having a different outer diameter and inclination or curvature such as a welded portion of a fuel rod.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、少なくとも一部を水中に浸した燃料棒被検材
を回転させつつ、被検材表面に沿って被検材軸方向に超
音波探触子を移動させて被検材の外形形状を計測する段
階、計測データに基づき超音波探触子と被検材表面との
水距離を一定に維持するとともに、超音波探触子の超音
波照射角度を制御しつつ回転する被検材表面に沿って被
検材軸方向に超音波探触子を移動させ、探傷を行う段階
からなる燃料棒超音波探傷方法、 及び、所定温度範囲内に温度制御された水が注入された
水槽と、水槽内に挿入され、水に浸された燃料棒被検材
を回転駆動する回転駆動手段と、超音波探触子を移動さ
せるとともに、超音波照射角度を変化させる超音波探触
子駆動手段と、回転駆動手段を制御するとともに、被検
材外形形状データに基づき超音波探触子と被検材表面と
の水距離を一定に維持し、被検材表面に対して超音波を
垂直に照射するように超音波駆動手段を制御する信号処
理制御手段と、信号処理制御手段からの探傷データを表
示する表示手段とを備えたことを特徴とする。
The present invention is to rotate the fuel rod test material, at least a part of which is immersed in water, and move the ultrasonic probe along the surface of the test material in the axial direction of the test material to determine the outer shape of the test material. The surface of the test material that rotates while controlling the ultrasonic irradiation angle of the ultrasonic probe while maintaining a constant water distance between the ultrasonic probe and the surface of the test material based on the measurement data A fuel rod ultrasonic flaw detection method including a step of performing flaw detection by moving the ultrasonic probe along the test material in the axial direction of the specimen, and a water tank in which temperature-controlled water is injected within a predetermined temperature range, A rotation driving means which is inserted into the water tank and which rotationally drives the fuel rod test material immersed in water; and an ultrasonic probe driving means which moves the ultrasonic probe and changes the ultrasonic irradiation angle. , Controlling the rotation drive means, and ultrasonic probe based on the external shape data of the material to be inspected. The signal processing control means for controlling the ultrasonic wave driving means so as to irradiate the surface of the material to be inspected with ultrasonic waves vertically while maintaining a constant water distance between the surface of the material to be inspected and the signal processing control means. A display means for displaying flaw detection data is provided.

〔作用〕[Action]

本発明は、先ず、水中において回転させた燃料棒被検材
の軸方向に超音波探触子を移動させて被検材の外形形状
を計測し、次いで外形形状データに基づいて被検材表面
と一定の水距離に維持しつつ、被検材表面に対して超音
波照射角度が垂直になるよう探触子を駆動制御し、被検
材の全周の探傷信号を全探傷域にわたり収集して被検材
溶接部の欠陥検査を行うことができる。
The present invention first measures the outer shape of the test material by moving the ultrasonic probe in the axial direction of the fuel rod test material rotated in water, and then measures the outer shape of the test material based on the outer shape data. While maintaining a constant water distance, the probe is driven and controlled so that the ultrasonic irradiation angle is perpendicular to the surface of the material to be inspected, and flaw detection signals for the entire circumference of the material to be inspected are collected over the entire flaw detection area. It is possible to perform a defect inspection of the welded portion of the test material.

〔実施例〕 以下、図面を参照して、本発明の実施例を説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第4図は本発明による燃料棒溶接部超音波探
傷方法及び探傷装置の一実施例を示す図で、第1図
(a)、(b)及び(c)はそれぞれ超音波探傷装置本
体の概略図の正面図、側面図及び俯瞰図、第2図(a)
及び(b)は駆動部本体概略図の正面図及び側面図、第
3図は水槽部概略図、第4図は超音波探傷システム構成
図、第5図は燃料棒溶接部外径測定方法の説明図、第6
図は燃料棒溶接部探傷時の探触子動作説明図、第7図は
探触子ストローク範囲を示す図で、同図(a)は正面
図、同図(b)は側面図、第8図はAスコープ表示を示
す図、第9図はCスコープ表示を示す図、第10図はBス
コープ表示を示す図で、同図(a)及び(b)はそれぞ
れ縦断面表示及び横断面表示を示す図である。なお第13
図と同一番号は同一内容を示している。また、1は駆動
部本体、2は架台、3は恒温槽、4はフィルタ、5は純
水製造装置、6は水循環ポンプ、7は貯水槽、11は探触
子、21はX軸用サーボモータ、22はY軸ステッピングモ
ータ、23はZ軸用サーボモータ、24はθ角用サーボモー
タ、25は回転駆動用サーボモータ、26はコレクトチャッ
ク、27は内装水槽、28は外装水槽、29は水槽受け皿、30
はキャップ、31はエアーナイフ、32は位置検出ストッ
パ、33、34はオーバフロー口、35はX−Yテーブル、36
は給水口、41は操作盤、42は操作スイッチ、43はシーケ
ンサ、44はパソコン、45〜49はモータドライバ、50はパ
ルス発信器、51はCRT、52は超音波探傷装置、53は超音
波寸法測定装置、54はキーボードである。
1 to 4 are views showing an embodiment of an ultrasonic flaw detection method and a flaw detection apparatus for a fuel rod welded portion according to the present invention. FIGS. 1 (a), (b) and (c) are ultrasonic flaw detections, respectively. Front view, side view and bird's-eye view of a schematic view of the device body, FIG. 2 (a)
And (b) are a front view and a side view of a drive unit main body schematic view, FIG. 3 is a schematic view of a water tank unit, FIG. 4 is an ultrasonic flaw detection system configuration diagram, and FIG. 5 is a fuel rod welded portion outer diameter measuring method. Explanatory drawing, No. 6
FIG. 7 is a diagram for explaining a probe operation at the time of flaw detection of a fuel rod weld, FIG. 7 is a diagram showing a probe stroke range, FIG. 7A is a front view, FIG. 7B is a side view, and FIG. The figure shows the A-scope display, FIG. 9 shows the C-scope display, and FIG. 10 shows the B-scope display. The figures (a) and (b) are longitudinal section display and transverse section display, respectively. FIG. The thirteenth
The same numbers as in the figure indicate the same contents. Further, 1 is a drive unit main body, 2 is a pedestal, 3 is a constant temperature tank, 4 is a filter, 5 is a pure water producing device, 6 is a water circulation pump, 7 is a water storage tank, 11 is a probe, 21 is an X-axis servo. Motor, 22 is a Y-axis stepping motor, 23 is a Z-axis servo motor, 24 is a θ-angle servo motor, 25 is a rotation drive servo motor, 26 is a collect chuck, 27 is an internal water tank, 28 is an external water tank, and 29 is Aquarium saucer, 30
Is a cap, 31 is an air knife, 32 is a position detection stopper, 33 and 34 are overflow ports, 35 is an XY table, 36
Is a water inlet, 41 is an operation panel, 42 is an operation switch, 43 is a sequencer, 44 is a personal computer, 45 to 49 are motor drivers, 50 is a pulse transmitter, 51 is a CRT, 52 is an ultrasonic flaw detector, and 53 is an ultrasonic wave. The dimension measuring device 54 is a keyboard.

第1図において、本燃料棒溶接部超音波探傷装置本体は
探触子駆動系と水循環系とからなり、駆動系は架台2に
設けられた超音波探触子11を動作させる駆動部本体1を
有し、水循環系は恒温槽3、フィルタ4、純水製造装置
5、水循環ポンプ6及び貯水槽7等から構成されてい
る。
In FIG. 1, the main body of the present ultrasonic welding equipment for fuel rod welding comprises a probe drive system and a water circulation system, and the drive system operates a drive body 1 for operating an ultrasonic probe 11 provided on a gantry 2. The water circulation system includes a constant temperature bath 3, a filter 4, a pure water producing apparatus 5, a water circulation pump 6, a water storage tank 7, and the like.

次に、探触子駆動系と水循環系の概略を第2図、第3図
により説明する。
Next, an outline of the probe drive system and the water circulation system will be described with reference to FIGS. 2 and 3.

駆動系は、第2図に示すように、探触子駆動用のX軸用
サーボモータ21、Z軸用サーボモータ23、角度変更用サ
ーボモータ24及びY軸用ステッピングモータ22を有する
とともに、被検材12を把持するコレクトチャック26を介
して被検材を回転駆動するサーボモータ25を有し、詳細
は後述するように被検材12を回転駆動しながら探触子を
3次元的に駆動し、かつ探触子からの超音波照射角度を
変えて探傷できるようになっている。
As shown in FIG. 2, the drive system includes an X-axis servo motor 21, a Z-axis servo motor 23, an angle changing servo motor 24, and a Y-axis stepping motor 22 for driving the probe, and It has a servomotor 25 that rotationally drives the material to be inspected via a collect chuck 26 that holds the material to be inspected 12, and the probe is three-dimensionally driven while rotationally driving the material to be inspected 12 as described later in detail. In addition, it is possible to detect flaws by changing the ultrasonic irradiation angle from the probe.

水循環系は、内外槽27、28を水槽受け皿29に載せる構造
となっており、水槽は燃料棒の水に対する放射線等の影
響を考え、燃料棒の先端の被検材部のみが水浸するよう
水槽容積を小さくした局部水浸式となっている。
The water circulation system has a structure in which the inner and outer tanks 27 and 28 are placed on the water tank tray 29. Considering the effect of radiation on the water of the fuel rods, the water tank is designed so that only the material to be inspected at the tip of the fuel rods is submerged. It is a local immersion type with a small tank volume.

第3図に示すように水槽は円筒型の内装水槽27とそれを
覆う外装水槽28の2重構造となっており、外装水槽28は
被検材12の回転により内装水槽27内の水が飛散するのを
防止するとともに後述のエアーナイフ31を取りつけるた
めに設けてあり、さらに、外装水槽28の下に水槽受け皿
29を設けてある。
As shown in FIG. 3, the water tank has a double structure of a cylindrical inner water tank 27 and an outer water tank 28 that covers the inner water tank 28. The water in the inner water tank 27 is scattered by the rotation of the test material 12 in the outer water tank 28. It is provided to prevent it from attaching and to attach an air knife 31 to be described later.
29 is provided.

内装水槽27の右端に被検材12を通す穴を有するキャップ
30がねじ込まれ、これは被検材12が異なる外径ごとに交
換され、キャップ30の穴径は被検材12の外径より約0.1m
m太くして被検材12が回転により損傷しないようにして
ある。そのため、このギャップから被検材12を伝わって
水が流れたり、被検材12を水槽から抜くとき多量の水が
流出したりするので、外装水槽28の右内側にエアーナイ
フ31を取り付け、空気圧力3〜6kg/cm2の圧縮エアーを
吹きつけて被検材を伝わってくる水を外装水槽28内に飛
散させ、コレクトチャック26側への水の流出を防いでい
る。また、内装水槽27及び外装水槽28の上部には探触子
11が動く範囲のみオーバフロー口33及び34が設けられて
いて、空気との接触面を可能な限り小さくし、ホコリ等
により水が汚れるのを防止するようにしている。
A cap having a hole for passing the test material 12 at the right end of the internal water tank 27
30 is screwed in, this is replaced for each different outer diameter of the test material 12, and the hole diameter of the cap 30 is about 0.1 m from the outer diameter of the test material 12.
The material 12 to be inspected is thickened so as not to be damaged by rotation. Therefore, water flows through the material 12 to be inspected through this gap, or a large amount of water flows out when the material 12 to be inspected is removed from the water tank. Compressed air with a pressure of 3 to 6 kg / cm 2 is blown to scatter the water transmitted through the material to be tested into the exterior water tank 28 to prevent the water from flowing out to the collect chuck 26 side. In addition, a probe is provided above the inner water tank 27 and the outer water tank 28.
The overflow ports 33 and 34 are provided only in the range where the 11 moves, so that the contact surface with the air is made as small as possible to prevent the water from becoming dirty due to dust or the like.

これら循環系で使用される水は、第1図で示す貯水槽7
から順次水循環ポンプ6、純水製造装置5、フィルタ
4、恒温槽3を経て、給水口36から内装水槽28、さらに
外装水槽29へと循環して貯水槽7に戻る。循環水はフィ
ルタ4及び純水製造装置5で一定水準の水に浄化され、
ヒータ及びクーラ付の恒温槽3により設定温度20〜40℃
に対し±0.5℃で管理して超音波の伝播速度が一定にな
るようにし、また空の内装水槽27に注水したとき水温が
10〜15℃程度であると気泡が多数発生して内装水槽27の
内面に付着するので、これを防止するために脱気するよ
うにしている。
The water used in these circulation systems is the water tank 7 shown in FIG.
Then, the water circulation pump 6, the pure water producing device 5, the filter 4, and the constant temperature tank 3 are sequentially passed through, and then the water is circulated from the water supply port 36 to the inner water tank 28 and further to the outer water tank 29 to return to the water storage tank 7. The circulating water is purified to a certain level of water by the filter 4 and the pure water producing device 5,
Set temperature 20 ~ 40 ℃ by constant temperature bath 3 with heater and cooler
Against ± 0.5 ° C to keep the ultrasonic wave propagation velocity constant, and when the water temperature is poured into the empty interior water tank 27,
At about 10 to 15 ° C., a large number of bubbles are generated and adhere to the inner surface of the internal water tank 27, so deaeration is performed to prevent this.

次に、第4図〜第7図により本発明による超音波探傷に
ついて説明する。
Next, ultrasonic flaw detection according to the present invention will be described with reference to FIGS.

第4図において、キーボード54及び操作盤41の操作スイ
ッチを操作することにより、シーケンサ43及びパソコン
44のプログラムにしたがって、モータドライバ45〜48を
制御し、各サーボモータ21,23,24及び25が駆動されて超
音波探傷装置52の探触子が駆動制御されるとともに、被
検材が回転駆動される。また、シーケンサから直接パル
ス発振器50、モータドライバ49を介してステッピングモ
ータ25を駆動し、必要な場合に手動操作でY軸方向に駆
動する。こうして、スピード、送りピッチ及び基点から
の位置等の制御が行われる。
In FIG. 4, the sequencer 43 and the personal computer are operated by operating the keyboard 54 and the operation switches of the operation panel 41.
According to the program of 44, the motor drivers 45 to 48 are controlled, the servo motors 21, 23, 24 and 25 are driven to drive and control the probe of the ultrasonic flaw detector 52, and the test material is rotated. Driven. Further, the stepping motor 25 is directly driven from the sequencer via the pulse oscillator 50 and the motor driver 49, and is manually operated in the Y-axis direction when necessary. In this way, control of speed, feed pitch, position from the base point, etc. is performed.

第7図において、探触子11は被検材12の中心軸16の左右
方向(X軸)、中心軸に垂直な前後方向(Y軸)及び上
下方向(Z軸)の3方向の移動とXZ面内での角度(θ)
の変化が可能で、X軸、Z軸方向の移動及びθの変化は
それぞれサーボモータ21、23及び24で手動または自動制
御で行われ、Y軸の移動はステッピングモータ22(第2
図及び第4図)で手動操作で行われる。また各モータの
駆動性能は次の通りである。
In FIG. 7, the probe 11 is moved in three directions, that is, the horizontal direction (X axis) of the central axis 16 of the test material 12, the front-back direction (Y axis) and the vertical direction (Z axis) perpendicular to the central axis. Angle in XZ plane (θ)
The servo motors 21, 23 and 24 are used to manually or automatically control the movement in the X-axis and Z-axis directions and the change in θ, respectively.
(Fig. 4). The drive performance of each motor is as follows.

X軸方向……ストローク 0〜100mm 最小ピッチ 0.01mm スピード Max50mm/s Y軸方向……ストローク 0〜16mm 最小ピッチ 0.01mm スピード − Z軸方向……ストローク 0〜50mm 最小ピッチ 0.01mm スピード Max50mm/s θ……………ストローク ±30゜ 最小ピッチ 0.01度 スピード Max25度/s また、被検材12の回転駆動は被検材12を固定するエアー
開閉式のコレクトチャック26とサーボモータ25で構成さ
れ、被検材12は先端を位置検出ストッパ32に当ててコレ
クトチャック26に固定する。被検材12は1゜ピッチ送り
から最大500rpmまで手動または自動制御でサーボモータ
25で回転駆動される。
X-axis direction …… Stroke 0 to 100mm Minimum pitch 0.01mm Speed Max50mm / s Y-axis direction… Stroke 0 to 16mm Minimum pitch 0.01mm Speed-Z axis direction …… Stroke 0 to 50mm Minimum pitch 0.01mm Speed Max50mm / s θ …………… Stroke ± 30 ° Minimum pitch 0.01 ° Speed Max25 ° / s The rotational drive of the material 12 to be inspected is composed of an air open / close type collect chuck 26 and a servomotor 25 that fix the material to be inspected 12, The test material 12 is fixed to the collect chuck 26 by applying the tip to the position detection stopper 32. The material to be inspected 12 is a servo motor that can be manually or automatically controlled from 1 ° pitch feed to a maximum of 500 rpm.
It is driven to rotate at 25.

以上のようなモータ駆動により被検材を回転させつつ探
触子を駆動することにより、先ず、超音波寸法測定装置
により被検材と探触子との距離が測定されて被検材の外
形形状データが記憶される。次に、外形形状データに基
づいて超音波探傷装置により被検材からのエコーが検出
され、そのデータに基づく分析結果がCRT51に表示され
る。なお、超音波探傷装置52と超音波寸法測定装置53と
は、実際には同じ探触子とからなるものである。なお、
本装置においては、周波数35〜100MHzの超音波を使用
し、焦点径φ0.1mm〜0.3mmの超音波ビームを用いる。
By driving the probe while rotating the test material by driving the motor as described above, first, the distance between the test material and the probe is measured by the ultrasonic dimension measuring device to determine the outer shape of the test material. Shape data is stored. Next, an echo from the test material is detected by the ultrasonic flaw detector based on the outer shape data, and the analysis result based on the data is displayed on the CRT 51. Note that the ultrasonic flaw detector 52 and the ultrasonic dimension measuring device 53 are actually the same probe. In addition,
In this device, ultrasonic waves with a frequency of 35 to 100 MHz are used, and an ultrasonic beam with a focal diameter of φ0.1 mm to 0.3 mm is used.

次に、第5図、第6図により被検材の外形形状測定と探
傷方法についてさらに説明する。
Next, the outer shape measurement and flaw detection method of the test material will be further described with reference to FIGS. 5 and 6.

第5図において、燃料棒溶接部の被検材には前述のよう
にA面13、B面14及びC面15の3種の異なった面を持っ
ている。そこで、水槽内の水中において探触子11の下方
に設置した被検材12を中心軸16を中心にして回転させ、
探触子11を中心軸16方向に沿って移動させながら、超音
波を照射して被検材12との水距離を測定し、被検材12の
外径及び勾配角度を測定する。
In FIG. 5, the material to be inspected at the fuel rod welded portion has three different surfaces, that is, the A surface 13, the B surface 14 and the C surface 15 as described above. Therefore, the test material 12 installed below the probe 11 in the water in the water tank is rotated about the central axis 16,
While moving the probe 11 along the direction of the central axis 16, ultrasonic waves are radiated to measure the water distance from the test material 12, and the outer diameter and the gradient angle of the test material 12 are measured.

次に、測定した被検材12の外形状データに基づき、第6
図に示すように、回転中の被検材12の面に対して一定の
水距離を保ち、かつ超音波照射角度が垂直になるように
中心軸16を含む同一面内で探触子の位置と向きを制御し
つつ、中心軸16方向に沿ってA面13、B面14及びC面15
について探傷を行う。
Next, based on the measured outer shape data of the test material 12, the sixth
As shown in the figure, the position of the probe in the same plane including the central axis 16 so that a constant water distance is maintained with respect to the surface of the rotating test material 12 and the ultrasonic irradiation angle becomes vertical. While controlling the direction, the A surface 13, B surface 14 and C surface 15 along the direction of the central axis 16
About flaw detection.

溶接部探傷結果は、通常の超音波検査で実施されている
波形出力及びチャート出力とは異なり画像データとして
次のように確認する。
The welding flaw detection result is confirmed as image data as follows, unlike the waveform output and chart output that are performed in the normal ultrasonic inspection.

(a)データの収集 X軸方向の移動用サーボモータ21と被検材回転用サーボ
モータ25から出力されるパルス信号による位置情報によ
り垂直座標を作成し、それと同時に探傷信号を重ねてデ
ータをマトリックス化する。
(A) Data collection Vertical coordinates are created from position information based on pulse signals output from the servo motor 21 for moving in the X-axis direction and the servo motor 25 for rotating the test material, and at the same time, the flaw detection signal is overlapped to form the data matrix. Turn into.

例えば、被検材のX軸基点0位置において被検材12を回
転角0度から359度まで回転させ、その時の探傷信号を
収集し、さらにこれをX軸探傷域x mmまでの間を繰り返
し、データを収集する。この時のX軸方向及び円周方向
の分割能はそれぞれ0.01mm及び1度の最小値から任意に
変えることができる。
For example, at the X-axis base point 0 position of the test material, the test material 12 is rotated from a rotation angle of 0 to 359 degrees, the flaw detection signal at that time is collected, and this is repeated up to the X-axis flaw detection area x mm. , Collect data. At this time, the dividing powers in the X-axis direction and the circumferential direction can be arbitrarily changed from the minimum values of 0.01 mm and 1 degree, respectively.

この収集データはX軸位置、中心軸の回転角度、欠陥信
号の有無、欠陥信号の高さ及び欠陥信号の表面からの位
置等で、被検材の外径値等を用いて欠陥解析に使用され
る。
This collected data includes the X-axis position, the rotation angle of the central axis, the presence / absence of a defect signal, the height of the defect signal, the position of the defect signal from the surface, etc., and is used for defect analysis by using the outer diameter value of the test material. To be done.

(b)データの表示 収集されたデータは以下に示す種々の方法で画像化さ
れ、目視により観察することができる。
(B) Display of data The collected data can be imaged by various methods shown below and visually observed.

Aスコープ表示(欠陥波形表示) 第8図に示すように波形と位置の表示を行う。A scope display (defect waveform display) The waveform and position are displayed as shown in FIG.

表示は縦軸にX軸方向の寸法を、横軸に被検材の円周方
向展開位置を取り、波形の立ち上がりはその波形のエコ
ー高さとなる。
In the display, the vertical axis represents the dimension in the X-axis direction and the horizontal axis represents the circumferentially expanded position of the test material, and the rising edge of the waveform is the echo height of the waveform.

Cスコープ表示(欠陥識別表示) Aスコープ表示のデータをカラーディスプレイ上で任意
のしきい値で最大8階調に表示し、欠陥の範囲、分布及
びエコーの強弱を第9図に示すように出力する。
C scope display (defect identification display) The data of A scope display is displayed on the color display at a maximum of 8 gradations with arbitrary thresholds, and the range, distribution and echo intensity of the defect are output as shown in FIG. To do.

ディスプレイ上の画像は限界があるため、微小部分及び
欠陥の表示に限界があり、そのため、本システムではそ
れらをディスプレイ上で位置、欠陥の程度を文字で出力
させることが可能であり、分割度数の間隔を拡大し、拡
大画像表示させ、ドット数から面積を演算することもで
きる。
Since there is a limit to the image on the display, there is a limit to the display of minute parts and defects. Therefore, in this system, it is possible to output them on the display and the degree of the defect in characters, and the division frequency It is also possible to enlarge the interval, display an enlarged image, and calculate the area from the number of dots.

Bスコープ表示(被検材形状欠陥表示) Cスコープ表示のデータと被検材の外径測定データから
第10図(a)及び(b)に示すように縦断面及び横断面
における欠陥の位置及び接合状態の確認を行うことがで
きる。
B scope display (inspection material shape defect display) From the data of the C scope display and the outer diameter measurement data of the inspection material, as shown in FIGS. 10 (a) and (b), the position of the defect in the longitudinal section and the transverse section and The joining state can be confirmed.

これら断面表示は縦断面では切断位置の角度、横断面で
は軸方向位置を任意に指定することにより行われ、表示
画像上での欠陥位置最大接合の長さ、未接合の長さを読
み取ることが可能である。
These cross-sections are displayed by arbitrarily specifying the angle of the cutting position on the vertical cross section and the axial position on the horizontal cross section.It is possible to read the maximum bond length of the defect position and the unbonded length on the displayed image. It is possible.

例えば、第10図(a)縦断面表示で縦切断角度位置θを
任意に指定すると、表示画面は指定したθの切断面が上
方に、θに対向するθ±180゜の切断面が下方に表示さ
れる。θの指定は0〜359゜の任意位置可能であるが、
画面の表示方向は常に一定のため、0〜180゜が上方、1
81〜359゜が下方に表示される。その時の接合している
長さ或いは接合していない長さのどちらかを選択して表
示し、0〜180゜方向(図上方の指定位置)の接合の長
さXmm、181〜359゜方向の接合の長さYmmが表示される。
第10図(b)横断面表示においても切断位置x mmにおけ
る接合または未接合の長さの選択表示が可能である。
For example, if the vertical cutting angle position θ is arbitrarily specified in the vertical cross-sectional display of FIG. 10 (a), the display screen has a specified cutting surface of θ upward and a cutting surface of θ ± 180 ° facing θ downward. Is displayed. Although θ can be specified at any position from 0 to 359 °,
Since the display direction of the screen is always constant, 0-180 ° is upward, 1
81 to 359 ° is displayed below. Select either the joined length or the unjoined length at that time and display it. The joining length Xmm in the 0 to 180 ° direction (specified position in the upper part of the figure) and the 181 to 359 ° direction The joint length Ymm is displayed.
Also in the cross-sectional display of FIG. 10 (b), it is possible to selectively display the length of the joint or the non-joint at the cutting position x mm.

この他に、画像のプリンタ出力、最大接合長さと最大未
接合長さとその位置及び被検材外径の最大最小の寸法測
定データ値の画像表示とプリンタ出力、合否判定の検査
結果の表示及びこれらのデータのフロップディスクによ
る保管等が可能である。また、これらデータはそれらを
シリアルNoを付することにより呼び出すことが可能であ
り、任意のしきい値の変更及びデータの編集を行うこと
ができる。
In addition to this, image printer output, maximum joint length and maximum unjoint length and position, image display of maximum and minimum dimension measurement data value of outer diameter of test material and printer output, display of inspection result of pass / fail judgment and these It is possible to store the data of the above with a flop disk. In addition, these data can be called by attaching them to serial numbers, and arbitrary threshold values can be changed and data can be edited.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、X線検査の平面的な写真
フィルムの検査と異なり、全周全面の立体的な検査が可
能で、超音波の利用により欠陥分解能はX線検査の約0.
2mmから10μmに向上するのみならず、溶接部欠陥を画
像によって目視することにより検査員の技量に無関係
に、また、瞬時に検査を行うことが可能で、作業空間の
分離も不必要となり、検査工程上の簡素化、省力化を向
上することができる。
As described above, according to the present invention, unlike the flat photographic film inspection of the X-ray inspection, a three-dimensional inspection of the entire circumference can be performed, and the defect resolution is about 0 of that of the X-ray inspection by using ultrasonic waves. .
Not only does it improve from 2 mm to 10 μm, but by visually observing weld defects with images, it is possible to perform inspections irrespective of the skill of the inspector and it is not necessary to separate the work space. It is possible to improve process simplification and labor saving.

さらに、検査中の各種データはフロッピディスク等に記
憶収納することにより随時読み出して解析することが可
能である。
Further, various data under inspection can be read out and analyzed at any time by storing and storing it in a floppy disk or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第4図は本発明による燃料棒溶接部超音波探
傷方法及び探傷検査装置の一実施例を示す図で、第1図
(a)、(b)及び(c)はそれぞれ超音波検査装置本
体の概略図の正面図、側面図及び俯瞰図、第2図(a)
及び(b)は駆動部本体概略図の正面図及び側面図、第
3図は水槽部概略図、第4図は超音波検査装置システム
構成図、第5図は燃料棒溶接部外径測定の動作説明図、
第6図は燃料棒溶接部探傷時の探触子動作説明図、第7
図は探触子ストローク範囲を示す図で同図(a)は正面
図、同図(b)は側面図、第8図はAスコープ表示を示
す図、第9図はCスコープ表示を示す図、第10図はBス
コープ表示を示す図で、同図(a)及び(b)はそれぞ
れ縦断面表示及び横断面表示を示す図、第11図は燃料棒
の溶接部を示す図で同図(a)はパルス磁気溶接による
試料、同図(b)はティグ溶接による試料、第12図は従
来の棒材又は管材の超音波探傷検査方法の説明図、第13
図は従来の燃料棒溶接部の超音波探傷検査方法の説明図
である。 1……駆動部本体、2……架台、3……恒温槽、4……
フィルタ、5……純水製造装置、6……水循環ポンプ、
7……貯水槽、11……探触子、12……被検材、17……探
傷域、21……X軸用サーボモータ、22……Y軸用ステッ
ピングモータ、23……Z軸用サーボモータ、24……θ角
用サーボモータ、25……回転用サーボモータ、26……コ
レクトチャック、27……内装水槽、28……外装水槽、30
……キャップ、31……エアーナイフ、36……給水口、41
……操作盤、42……操作スイッチ、43……シーケンサ、
44……パソコン、51……CRT、52……超音波探傷装置、5
3……超音波寸法測定装置、54……キーボード。
1 to 4 are views showing an embodiment of an ultrasonic flaw detection method and a flaw detection inspection apparatus for a fuel rod welded portion according to the present invention, and FIGS. 1 (a), (b) and (c) are ultrasonic waves, respectively. Front view, side view and bird's-eye view of the schematic view of the inspection apparatus body, FIG. 2 (a)
And (b) are a front view and a side view of a drive unit main body schematic view, FIG. 3 is a schematic view of a water tank unit, FIG. 4 is an ultrasonic inspection apparatus system configuration diagram, and FIG. 5 is a fuel rod welded portion outer diameter measurement. Operation explanation diagram,
FIG. 6 is an explanatory view of a probe operation at the time of flaw detection of a fuel rod weld,
The figure shows the probe stroke range. In the figure, (a) is a front view, (b) is a side view, FIG. 8 is a view showing A scope display, and FIG. 9 is a view showing C scope display. FIG. 10 is a view showing a B scope display, FIGS. 10A and 10B are views showing a vertical cross section display and a horizontal cross section display, respectively, and FIG. 11 is a view showing a welded portion of a fuel rod. (A) is a sample by pulse magnetic welding, (b) is a sample by TIG welding, FIG. 12 is an explanatory view of a conventional ultrasonic flaw detection method for a bar or pipe, and FIG.
The figure is an explanatory view of a conventional ultrasonic flaw detection method for a fuel rod weld. 1 ... Driving unit main body, 2 ... Stand, 3 ... Constant temperature bath, 4 ...
Filter, 5 ... Pure water production device, 6 ... Water circulation pump,
7 ... water tank, 11 ... probe, 12 ... test material, 17 ... flaw detection area, 21 ... X-axis servo motor, 22 ... Y-axis stepping motor, 23 ... Z-axis Servo motor, 24 …… θ-angle servo motor, 25 …… Rotating servo motor, 26 …… Correct chuck, 27 …… Internal water tank, 28 …… External water tank, 30
...... Cap, 31 …… Air knife, 36 …… Water inlet, 41
…… Control panel, 42 …… Operation switch, 43 …… Sequencer,
44 …… PC, 51 …… CRT, 52 …… Ultrasonic flaw detector, 5
3 ... Ultrasonic dimension measuring device, 54 ... Keyboard.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一部を水中に浸した燃料棒被検
材を回転させつつ、被検材表面に沿って被検材軸方向に
超音波探触子を移動させて被検材の外形形状を計測する
段階、計測データに基づき超音波探触子と被検材表面と
の水距離を一定に維持するとともに、超音波探触子の超
音波照射角度を制御しつつ回転する被検材表面に沿って
被検材軸方向に超音波探触子を移動させ、探傷を行う段
階からなることを特徴とする燃料棒超音波探傷方法。
1. An outer shape of a material to be inspected by moving an ultrasonic probe in the axial direction of the material to be inspected along the surface of the material to be inspected while rotating the material to be inspected at least partially immersed in water. At the stage of measuring the shape, while maintaining a constant water distance between the ultrasonic probe and the surface of the test material based on the measurement data, the test material that rotates while controlling the ultrasonic irradiation angle of the ultrasonic probe A fuel rod ultrasonic flaw detection method comprising a step of performing flaw detection by moving an ultrasonic probe along the surface in the axial direction of a test material.
【請求項2】所定温度範囲内に温度制御された水が注入
された水槽と、水槽内に挿入され、水に浸された燃料棒
被検材を回転駆動する回転駆動手段と、超音波探触子を
移動させるとともに、超音波照射角度を変化させる超音
波探触子駆動手段と、回転駆動手段を制御するととも
に、被検材外形形状データに基づき超音波探触子と被検
材表面との水距離を一定に維持し、被検材表面に対して
超音波を垂直に照射するように超音波駆動手段を制御す
る信号処理制御手段と、信号処理制御手段からの探傷デ
ータを表示する表示手段とを備えたことを特徴とする燃
料棒超音波探傷装置。
2. A water tank in which temperature-controlled water is injected within a predetermined temperature range, a rotation driving means for rotating and driving a fuel rod test material which is inserted into the water tank and immersed in water, and an ultrasonic probe. While moving the probe, while controlling the ultrasonic probe drive means for changing the ultrasonic irradiation angle, and the rotation drive means, the ultrasonic probe and the surface of the test material based on the outer shape data of the test material. The signal processing control means for controlling the ultrasonic wave driving means so as to irradiate the surface of the material to be inspected with ultrasonic waves vertically, and a display for displaying flaw detection data from the signal processing control means. And a fuel rod ultrasonic flaw detector.
【請求項3】前記水槽は燃料棒水浸用の内装水槽と内装
水槽を収納して水の飛散を防止する外装水槽からなるこ
とを特徴とする請求項2記載の燃料棒超音波探傷装置。
3. The fuel rod ultrasonic flaw detector according to claim 2, wherein the water tank comprises an internal water tank for immersing the fuel rod and an external water tank for accommodating the internal water tank to prevent water from splashing.
【請求項4】前記内装水槽及び外装水槽は、その一方の
面を貫通してストッパが挿入されるとともに、対向する
他方の面を通して燃料棒被検材がストッパに当接するま
で挿入され、内装水槽及び外装水槽の上面には探触子移
動用のオーバーフロー口が設けられていることを特徴と
する請求項3記載の燃料棒超音波探傷装置。
4. The internal water tank and the external water tank are inserted with a stopper penetrating one surface of the internal water tank and the external water tank until the fuel rod test material comes into contact with the stopper through the other surface facing the internal water tank. The fuel rod ultrasonic flaw detector according to claim 3, wherein an overflow port for moving the probe is provided on the upper surface of the outer water tank.
【請求項5】燃料棒被検材が貫通する内装水槽の面は、
被検材貫通穴を有する交換可能なキャップからなる請求
項4記載の燃料棒超音波探傷装置。
5. The surface of the internal water tank through which the fuel rod test material penetrates is
The fuel rod ultrasonic flaw detector according to claim 4, wherein the fuel rod ultrasonic flaw detector comprises a replaceable cap having a through hole for a test material.
【請求項6】燃料棒被検材が貫通する外装水槽の内面に
燃料棒に対して圧縮空気を吹きつけるエアーナイフが設
けられていることを特徴とする請求項4記載の燃料棒超
音波探傷装置。
6. The fuel rod ultrasonic flaw detection according to claim 4, wherein an air knife for blowing compressed air to the fuel rod is provided on the inner surface of the exterior water tank through which the fuel rod test material penetrates. apparatus.
【請求項7】前記表示手段はCRTからなり、燃料棒溶接
部の接合長さ、または未接合長さの選択表示が可能であ
る請求項2記載の燃料棒超音波探傷装置。
7. The fuel rod ultrasonic flaw detector according to claim 2, wherein the display means is a CRT and is capable of selectively displaying a joint length or a non-joint length of a fuel rod weld portion.
JP2100703A 1990-04-17 1990-04-17 Fuel rod ultrasonic flaw detection method and flaw detection device Expired - Lifetime JPH07104430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2100703A JPH07104430B2 (en) 1990-04-17 1990-04-17 Fuel rod ultrasonic flaw detection method and flaw detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2100703A JPH07104430B2 (en) 1990-04-17 1990-04-17 Fuel rod ultrasonic flaw detection method and flaw detection device

Publications (2)

Publication Number Publication Date
JPH03296694A JPH03296694A (en) 1991-12-27
JPH07104430B2 true JPH07104430B2 (en) 1995-11-13

Family

ID=14281062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2100703A Expired - Lifetime JPH07104430B2 (en) 1990-04-17 1990-04-17 Fuel rod ultrasonic flaw detection method and flaw detection device

Country Status (1)

Country Link
JP (1) JPH07104430B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010662A (en) * 2004-06-22 2006-01-12 Creative Technology:Kk Inspection method for electrostatic chuck
JP2008058314A (en) * 2006-08-30 2008-03-13 Wacker Chemie Ag Nondefective polysilicon molding and method for testing polysilicon molding without contamination nor destruction
CN104020222A (en) * 2014-06-18 2014-09-03 长春光华微电子设备工程中心有限公司 Welding quality detecting system of full-automatic ultrasonic aluminium wire press welder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6110735B2 (en) * 2013-06-14 2017-04-05 株式会社日立製作所 UT inspection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026706A (en) * 1988-06-25 1990-01-10 Nuclear Fuel Ind Ltd System and device for measuring channel box shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010662A (en) * 2004-06-22 2006-01-12 Creative Technology:Kk Inspection method for electrostatic chuck
JP2008058314A (en) * 2006-08-30 2008-03-13 Wacker Chemie Ag Nondefective polysilicon molding and method for testing polysilicon molding without contamination nor destruction
JP2011095268A (en) * 2006-08-30 2011-05-12 Wacker Chemie Ag Method for testing shaped polysilicon body without contamination nor destruction, and nondefective shaped polysilicon body
CN104020222A (en) * 2014-06-18 2014-09-03 长春光华微电子设备工程中心有限公司 Welding quality detecting system of full-automatic ultrasonic aluminium wire press welder

Also Published As

Publication number Publication date
JPH03296694A (en) 1991-12-27

Similar Documents

Publication Publication Date Title
US4361044A (en) Scanning ultrasonic probe
US3981184A (en) Ultrasonic diagnostic inspection systems
JP4839333B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
US4869109A (en) Automatic process for identification of defects by ultrasound and corresponding system
CN101672829B (en) Method for measuring parameter of omega welding seam defect
CN105021142B (en) The measuring method and equipment therefor of a kind of laser lap weld width
CN104730145B (en) Method for accurately positioning defects of material during ultrasonic detection
US5145637A (en) Incore housing examination system
CN106841392A (en) A kind of phased array ultrasonic detecting method for nuclear power station BOSS weld seams
US5591912A (en) Method and apparatus for inspecting conduits
US20180277266A1 (en) Device For Controlling And Measuring Welding Defects On A Cylindrical Wall And Method Implementing Same
JP2511583B2 (en) Reactor maintenance method
JPH07104430B2 (en) Fuel rod ultrasonic flaw detection method and flaw detection device
JP2008215877A (en) Ultrasonic flaw detection device and inspection device
US5063779A (en) Non-destructive dimensional and flaw inspection of thin wall tube weldments
JPH05333000A (en) Ultrasonic flaw detector
JP2002148385A (en) In-reactor line inspection apparatus
JP2747825B2 (en) Ultrasonic tomography detection method and apparatus
JP2020159884A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
KR101658122B1 (en) Method and apparatus for displaying on a screen the state of welded sections measured using ultrasonic waves
JPH1082766A (en) Ultrasonic flaw detector and unit for assisting discrimination of defect
Chicote et al. Defect detection in L-PBF Metal Additive Manufacturing using on-line and off-line inspection processes
JPH0232249A (en) Ultrasonic flaw detection probe
JPH11108904A (en) Ultrasonic flaw detector of coated pipe for nuclear fuel
INSTRUMENTATION SII, A IEASI., T