JPH07104302B2 - Method for measuring heat of dissolution of cement and cement constituent minerals - Google Patents

Method for measuring heat of dissolution of cement and cement constituent minerals

Info

Publication number
JPH07104302B2
JPH07104302B2 JP13977792A JP13977792A JPH07104302B2 JP H07104302 B2 JPH07104302 B2 JP H07104302B2 JP 13977792 A JP13977792 A JP 13977792A JP 13977792 A JP13977792 A JP 13977792A JP H07104302 B2 JPH07104302 B2 JP H07104302B2
Authority
JP
Japan
Prior art keywords
cement
heat
dissolution
sample
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13977792A
Other languages
Japanese (ja)
Other versions
JPH05312744A (en
Inventor
忠 西野
Original Assignee
忠 西野
岩本 征義
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 忠 西野, 岩本 征義 filed Critical 忠 西野
Priority to JP13977792A priority Critical patent/JPH07104302B2/en
Publication of JPH05312744A publication Critical patent/JPH05312744A/en
Publication of JPH07104302B2 publication Critical patent/JPH07104302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素型強酸性イオン交
換樹脂を溶解剤とするセメントおよびセメント構成鉱物
の新規な溶解熱の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for measuring the heat of dissolution of cement and cement constituent minerals using a hydrogen-type strongly acidic ion exchange resin as a dissolving agent.

【0002】[0002]

【従来の技術】セメントは建築構造物の主要原料粉末
で、主要構成鉱物の3カルシウムシリケイト(Ca3
iO5 、C3 Sと略す。)、ベーター2カルシウムシリ
ケイト(β−Ca2 SiO4 、β−C2 Sと略す。)、
3カルシウムアルミネイト(Ca3 Al2 6 、C3
と略す。)、4カルシウム鉄酸アルミネイト(Ca4
2 Al2 10、C4 AFと略す。)からなり、これに
セッコウ(CaSO4 ・2H2 O)が添加されている。
そして、これら構成鉱物の量的割合や粉末度は施工の目
的、用途などにより適宜に変えられ、作業性の改善のた
め別途に種々の化学物質が添加されて目的とするコンク
リート構造体の建築用に供される。得られる構造体の機
械的強度発現は長年月にわたる複雑な水和反応による凝
結、硬化に基づくが、製品の品質評価として数時間また
は数ヵ月における水和率の測定がある。その評価には供
試体の圧縮強度測定など物理的方法の他、フッ酸−硝酸
を溶解剤に用いた溶解熱の測定がなされ品質管理が行わ
れる。後者における水和率測定は未水和試料および部分
水和供試体について得られた溶解熱量(前者>後者)の
差から水和熱を換算し、水和率が求められ、セメントの
メーカー、ユーザーの研究所、試験所または現場などで
広く行われている。
2. Description of the Related Art Cement is a main raw material powder for building structures and is composed of tricalcium silicate (Ca 3 S) which is a main constituent mineral.
Abbreviated as iO 5 and C 3 S. ), Beta-2 calcium silicate (abbreviated as β-Ca 2 SiO 4 , β-C 2 S),
Tricalcium aluminate (Ca 3 Al 2 O 6 , C 3 A
Abbreviated. ), 4 calcium ferric aluminate (Ca 4 F
abbreviated as e 2 Al 2 O 10 and C 4 AF. ), To which gypsum (CaSO 4 .2H 2 O) has been added.
The quantitative ratio and fineness of these constituent minerals can be appropriately changed according to the purpose and application of construction, and various chemical substances are added separately to improve workability for the purpose of building a concrete structure. Be used for. The development of mechanical strength of the obtained structure is based on condensation and hardening due to complicated hydration reaction over many years, and there is measurement of hydration rate in hours or months as product quality evaluation. For the evaluation, in addition to physical methods such as measuring the compressive strength of the specimen, the heat of solution is measured using hydrofluoric acid-nitric acid as a solubilizer, and quality control is performed. For the hydration rate measurement in the latter, the hydration rate is calculated by converting the heat of hydration from the difference in the heats of dissolution (former> latter) obtained for unhydrated samples and partially hydrated specimens, and the cement manufacturer, user Widely used in laboratories, test laboratories or on-site.

【0003】[0003]

【発明が解決しようとする課題】上記のセメントの溶解
熱の測定方法としては、”セメントの水和熱測定方法
(溶解熱方法)”として記載されているJIS R52
03が現在、規格化された標準的方法である。ここで用
いられる熱量計はデューワ瓶、ベックマン温度計、撹拌
装置からなり酸化亜鉛(ZnO)を用いた熱当量の決定
後、未水和セメントならびに水和セメントについての溶
解熱測定が行われ、その溶解にはフッ酸−硝酸の混酸の
化学的溶解剤が用いられる。この苛酷な溶解剤の使用に
よりフッ酸に対して腐食し易いガラス質部分にはピセイ
ンなどの塗布処理が必要となり、結果的に温度計の応答
や感度の低下をもたらす要因となる(測定精度の向上の
ため試料量が約3グラムと多い)。また上記混酸の使用
は危険を伴うので取り扱いに十分な注意を要し、かつ環
境汚染防止のため廃酸処理の課題が残されている。そこ
で本発明は、上記課題を解決するために、操作上、取り
扱いには全く危険性を伴わず、腐食性がない溶解剤を用
いることにより測定機器の材質選択には無関係で、かつ
少量の試料を用いて高い精度で溶解熱を測定することが
できる新規なセメントおよびセメント構成鉱物の溶解熱
測定方法を提供することを目的とする。
As a method for measuring the heat of dissolution of cement, JIS R52 described in "Method for measuring heat of hydration of cement (method of heat of solution)" is used.
03 is currently the standardized standard method. The calorimeter used here consists of a Dewar bottle, a Beckman thermometer, and a stirrer, and after determining the heat equivalent using zinc oxide (ZnO), the heat of solution of unhydrated cement and hydrated cement was measured. For the dissolution, a chemical dissolving agent of a mixed acid of hydrofluoric acid-nitric acid is used. Due to the use of this harsh dissolving agent, the vitreous portion that is easily corroded by hydrofluoric acid requires a coating treatment such as picein, which results in a decrease in the response and sensitivity of the thermometer (measurement accuracy The sample amount is as large as about 3 grams for improvement). Further, the use of the above-mentioned mixed acid is dangerous and requires careful handling, and the problem of waste acid treatment remains to prevent environmental pollution. Therefore, the present invention, in order to solve the above problems, in operation, there is no danger in handling at all, by using a non-corrosive dissolving agent, irrelevant to the material selection of the measuring instrument, and a small amount of sample An object of the present invention is to provide a novel cement and a method for measuring the heat of solution of a cement-constituting mineral, which can measure the heat of solution with high accuracy.

【0004】[0004]

【課題を解決するための手段】本発明は、水素型強酸性
イオン交換樹脂を溶解剤として測定試料を該溶解剤と混
合し、試料の溶解過程で発生する溶解熱を、断熱型もし
くは伝導型熱量測定装置で測定することを特徴とするセ
メントおよびセメント構成鉱物の溶解熱測定方法を提供
する。本発明はまた、水素型強酸性イオン交換樹脂を溶
解剤として測定試料を該溶解剤と混合し、試料の溶解過
程で発生する熱量のサーモグラムの面積を、基準熱量の
サーモグラムの面積と比較して測定試料の溶解熱を換算
することを特徴とするセメントおよびセメント構成鉱物
の溶解熱測定方法を提供する。本発明の測定方法は、セ
メントおよびセメント構成鉱物の水に対する溶解熱の測
定を対象とする。セメントとしては市販の普通ポルトラ
ンドセメント(OPCと略す。)早強セメント(RHC
と略す。)、高炉スラグセメント(BSCと略す。)等
および特殊な目的・用途によるセメントもしくは市販さ
れていないたとえば開発中のセメント等あらゆるセメン
トが測定の対象となる。またセメント構成鉱物として
は、C3 S、C2 S、C3 A、C4 AF等セメントを構
成する各種鉱物が含まれる。本発明の測定方法は、溶解
剤として水素型強酸性イオン交換樹脂を用いることを特
徴とする。強酸性イオン交換樹脂は水に不溶性の高分子
電解質で、その水素型のものは酸としての活性をもち、
H−R(水素型のレジン)と略する。本発明において
は、H−Rとして市販品が適用でき、例えば、「ダイヤ
イオン」(登録商標、三菱化成)、「ダウエックス」
〔登録商標、ダウケミカル(Dow Chemica
l)〕、「アンバーライト」〔登録商標、ロームアンド
ハース(Rohm & Haas)〕、「レバチット」
(登録商標、三井東圧ファイン)等を用いることができ
る。使用するH−Rは予め十分な量の純水で洗浄する。
続いてこれを減圧濾過して湿潤樹脂とし、もしくはこれ
を100℃以下に乾燥して使用する。これらH−Rの適
量を含む懸濁水は水に溶け難い物質を室温下で、効果的
に溶解することが可能となる。この溶解反応の駆動力は
上記物質が水中で溶出した僅かの量のイオンとH−Rと
の間で起こる陽イオン交換であり、このイオン交換速度
は秒単位で進むため溶解平衡を右行させて、最終的には
難溶性物質が完全に溶解するに至る。用いるH−Rの比
重は純水のそれよりも僅かに大きく(平均して1.1程
度)、1mm以下の直径をもつ球状粒子からなるため撹
拌は容易で効率よく行うことができ、かつ従来の測定方
法で使用されるフッ酸−硝酸等の鉱酸を一切用いないの
で副反応の併発もなく、操作上、危険を伴わずしかも使
用後のH−Rは適当な濃度の希塩酸で再生、水洗するこ
とにより反復使用でき経済的で環境汚染の心配が全くな
い。本発明の方法において用いられる溶解熱の熱量測定
装置は市販の断熱型もしくは伝導型熱量計のいずれも適
用することができる。測定方法としては、熱容量が既知
の物体に熱量を移し、そのときの物体の温度上昇を測定
する方法もしくは電気的または化学的方法で発生させた
既知の熱量と比較する方法等があり、本発明にはいずれ
も使用することができる。本発明においては、測定試料
を溶解剤と混合し、試料の溶解過程で発生する熱量を温
度差検出器(または高感度温度計)で測定してサーモグ
ラムを画かせ、一方、電気的に与えた基準電力により発
生した熱量(ジュール熱)のサーモグラムとの面積の比
較から供試試料の溶解熱を換算する方法が好適に使用さ
れる。測定試料と溶解剤H−Rとの混合比は、試料に対
して当量の15倍乃至30倍のH−Rを使用するのが好
ましい。H−Rの量が当量の15倍以下であっても試料
は勿論溶解するが、H−Rが少なくなると溶解時間が次
第に長くなるので測定上好ましくない。またH−Rの使
用量が当量の30倍を越えると固形分が多くなり撹拌速
度は上がらなくなるため好ましくない。本測定方法は撹
拌速度の溶解時間に及ぼす効果が大きく、100rpm
以上好ましくは300rpm以上が必要である。溶解時
間が長いと発熱の変化が緩やかになり測定の精度が落ち
るため好ましくない。最も好ましいのは400rpm以
上である。測定に用いる試料の量としては、JIS記載
の方法では3.0gと規定されているが、本発明の方法
においては、使用する計器の増幅感度が50mV程度で
あれば、試料量は200〜500mg程度で十分であ
る。試料の溶解方法は精秤した未水和試料または部分水
和試料を、15〜25ミリリットルの純水中に強力撹拌
により分散させたH−R中に一挙に投入する。部分水和
試料についてはまた予め純水中で部分水和させた試料
に、H−Rを投入してもよい。測定用セルは通常25℃
に保持された恒温槽中に配置する。恒温槽の温度は10
℃から60℃までの任意の温度を用いることができる。
温度が60℃より高くなるとH−Rの劣化を来すことが
あるので好ましくない。以上述べた本発明の測定方法は
測定効率を上げるため、一度に数個の試料について溶解
熱を測定するのが好ましい。例えば、測定装置の中心に
基準電力による発熱測定用対照セルをおきその周囲(例
えば同心円上)にそれぞれ断熱された数個の測定用セル
を配置して、対照セルとそれぞれの測定セルとの温度差
を記録できる多点測定用装置を用いれば効率よく数個試
料の溶解熱を同時に測定することができる。
SUMMARY OF THE INVENTION The present invention is a hydrogen-type strong acid.
Mix the measurement sample with the ion-exchange resin as the dissolving agent.
The heat of fusion generated during the melting process of the sample
Provided is a method for measuring heat of dissolution of cement and cement constituent minerals, which is characterized by being measured by a conduction type calorimeter . The present invention also compares the area of the thermogram of the calorific value generated in the dissolution process of the sample with the measurement sample using the strongly acidic ion exchange resin of hydrogen type as the solubilizing agent, and the area of the thermogram of the reference calorific value. And a method for measuring the heat of solution of cement and cement constituent minerals, characterized by converting the heat of solution of a measurement sample. The measuring method of the present invention is intended for measuring the heat of dissolution of cement and cement constituent minerals in water. Commercially available ordinary Portland cement (abbreviated as OPC) and early strength cement (RHC)
Abbreviated. ), Blast furnace slag cement (abbreviated as BSC), etc., and cement for special purposes and uses, or any cement such as undeveloped cement, which is under development, is subject to measurement. Further, as the cement constituent minerals, various minerals constituting cement such as C 3 S, C 2 S, C 3 A and C 4 AF are included. The measuring method of the present invention is characterized by using a hydrogen-type strongly acidic ion exchange resin as a solubilizer. Strongly acidic ion exchange resin is a water-insoluble polymer electrolyte, and its hydrogen type has acid activity.
Abbreviated as HR (hydrogen type resin). In the present invention, a commercially available product can be applied as HR, for example, "Diaion" (registered trademark, Mitsubishi Kasei), "Dowex".
[Registered Trademark, Dow Chemicala
l)], "Amber Light" [registered trademark, Rohm & Haas], "Levatit"
(Registered trademark, Mitsui Toatsu Fine) or the like can be used. The HR used is washed beforehand with a sufficient amount of pure water.
Subsequently, this is filtered under reduced pressure to obtain a wet resin, or this is dried at 100 ° C. or lower and used. Suspension water containing an appropriate amount of HR can effectively dissolve a substance that is difficult to dissolve in water at room temperature. The driving force for this dissolution reaction is cation exchange that occurs between the small amount of ions eluted in water and HR, and this ion exchange rate proceeds in seconds, which causes dissolution equilibrium to move to the right. Finally, the poorly soluble substance is completely dissolved. The specific gravity of HR used is slightly higher than that of pure water (about 1.1 on average), and because it consists of spherical particles with a diameter of 1 mm or less, stirring can be performed easily and efficiently, and Since no mineral acid such as hydrofluoric acid-nitric acid used in the measuring method is used, side reactions do not occur at the same time, there is no danger in operation, and HR after use is regenerated with an appropriate concentration of dilute hydrochloric acid. It can be used repeatedly by washing with water, is economical, and has no fear of environmental pollution. As the calorimeter for measuring the heat of dissolution used in the method of the present invention, any commercially available adiabatic or conduction calorimeter can be applied. As the measuring method, there is a method of transferring the amount of heat to an object having a known heat capacity, a method of measuring the temperature rise of the object at that time, a method of comparing with a known amount of heat generated by an electrical or chemical method, and the like. Any of these can be used. In the present invention, a measurement sample is mixed with a solubilizer, and the amount of heat generated in the dissolution process of the sample is measured by a temperature difference detector (or a high-sensitivity thermometer) to draw a thermogram, while being electrically supplied. A method of converting the heat of dissolution of the sample under test by comparing the area of the amount of heat (Joule heat) generated by the standard electric power with the thermogram is preferably used. The mixing ratio of the measurement sample and the solubilizer HR is preferably 15 to 30 times the equivalent amount of HR to the sample. Even if the amount of HR is 15 times or less of the equivalent amount, the sample is of course dissolved, but when the amount of HR is small, the dissolution time gradually increases, which is not preferable for measurement. On the other hand, if the amount of HR used exceeds 30 times the equivalent amount, the solid content increases and the stirring speed cannot be increased, which is not preferable. This measuring method has a large effect on the dissolution time of the stirring speed,
More preferably, 300 rpm or more is necessary. If the dissolution time is long, the change in heat generation becomes gradual and the accuracy of measurement decreases, which is not preferable. Most preferably, it is 400 rpm or more. The amount of the sample used for the measurement is specified as 3.0 g in the method described in JIS, but in the method of the present invention, if the amplification sensitivity of the instrument used is about 50 mV, the sample amount is 200 to 500 mg. The degree is enough. The method for dissolving the sample is to put the precisely weighed unhydrated sample or partially hydrated sample into 15 to 25 ml of pure water in HR dispersed by vigorous stirring. As for the partially hydrated sample, HR may be added to a sample that has been partially hydrated in pure water in advance. Measurement cell is usually 25 ℃
Place in a constant temperature bath maintained at. The temperature of the constant temperature bath is 10
Any temperature from 0 ° C to 60 ° C can be used.
When the temperature is higher than 60 ° C, HR may be deteriorated, which is not preferable. In the above-described measuring method of the present invention, it is preferable to measure the heat of solution for several samples at once in order to improve the measuring efficiency. For example, a reference cell for heat generation by reference power is placed in the center of the measurement device, and several insulated measurement cells are placed around the reference cell (for example, on concentric circles), and the temperature between the reference cell and each measurement cell is set. By using a multipoint measuring device capable of recording the difference, it is possible to efficiently measure the heats of dissolution of several samples at the same time.

【0005】[0005]

【実施例】以下本発明のセメントおよびセメント構成物
質の溶解熱測定方法および測定結果について説明する。 1.溶解熱の測定方法 図2はH−R懸濁水を用いる試料の溶解熱測定装置(双
子型伝導タイプ)の一例を示す模式図である。図2にお
いて1は測定用セル、2は基準熱量の対照セルでいずれ
もステンレス製である。図2には測定用セル1が1個の
場合を示したが、測定効率を上げるために対照セル2の
周りに数個の測定セルをセットすることができる。測定
セル1と対照セル2は25℃に保持された恒温槽3中に
セットする。セル1および2は撹拌子4および5、温度
差検出器6および7を備える。両セルにはそれぞれ純水
15ミリリットルを入れ、測定用セル1には三菱化成の
MCIgel湿潤樹脂(交換容量2.1meq/g)
3.0gを入れ、撹拌子4を500rpmで回転させ、
樹脂を分散させて均一な懸濁液とする。測定用セル1に
は測定する試料−RHC(早強セメント)8約200m
gを精秤して入れた円筒状容器9を図のようにセットす
る。円筒状容器9の底にはゴム膜10が強く張られ試料
8はゴム膜10の上に載置されている。セル1内の温度
が平衡に達した時点で、強く張られたゴム膜10を針1
1で突き破ることによって試料8をH−R懸濁水中に落
下させると溶解が始まる。この時に発生する熱量を温度
差検出器(または高感度温度計)6で測定し増幅してサ
ーモグラムに記録させる。一方対照セル2に備えられた
基準電力による加熱器12で発生した熱量(ジュール
熱)を温度差検出器7で測定し増幅して同様にサーモグ
ラムに記録させ、両者の発生熱量の比較から供試試料の
溶解熱量が換算される。 2.溶解熱の測定結果 図1はRHCおよびその水和物についての測定結果を示
したサーモグラムである。この水和物は水/セメント比
75で、25℃で8日間撹拌水和した試料である。図1
のサーモグラムは、横軸の時間の経過に対する発熱量
(J)を示し、実線(A)は未水和RHC、実線(B)
は前記対照セルの基準電力発熱量である。また破線
(C)は前記水和RHC、同じく破線(D)は基準電力
発熱量である。上記のようにして得られたサーモグラム
上の試料の発熱量の面積を測定し、基準熱量の面積と比
較して試料の溶解熱が換算される。面積測定はコンピュ
ータを用いれば迅速かつ正確である。ここに用いたRH
Cを含め、市販OPC(普通ポルトランドセメント)お
よびBSC(高炉スラグセメント)の化学分析結果を表
1に示し、その溶解に十分な量のH−Rを含む懸濁水の
入ったセル中にそれぞれのセメント粉末を投入して得ら
れた熱量測定結果を、投入セメント量に対して図3
(a)に示す。
EXAMPLES The method of measuring the heat of dissolution of the cement and cement constituents of the present invention and the measurement results will be described below. 1. Method of Measuring Heat of Solution FIG. 2 is a schematic diagram showing an example of a device for measuring heat of solution (twin conduction type) using HR suspension water. In FIG. 2, 1 is a measuring cell, and 2 is a reference cell having a standard calorific value, both of which are made of stainless steel. Although FIG. 2 shows the case where there is only one measurement cell 1, several measurement cells can be set around the control cell 2 in order to improve the measurement efficiency. The measurement cell 1 and the control cell 2 are set in a constant temperature bath 3 kept at 25 ° C. The cells 1 and 2 are equipped with stir bars 4 and 5, and temperature difference detectors 6 and 7. Each cell contained 15 ml of pure water, and the measurement cell 1 contained Mitsubishi Kasei's MCIgel wet resin (exchange capacity 2.1 meq / g).
Add 3.0 g, rotate the stirrer 4 at 500 rpm,
Disperse the resin into a uniform suspension. Sample to be measured in the measuring cell 1-RHC (early strong cement) 8 About 200 m
The cylindrical container 9 in which g is precisely weighed and placed is set as shown in the figure. A rubber film 10 is strongly stretched on the bottom of the cylindrical container 9, and the sample 8 is placed on the rubber film 10. When the temperature in the cell 1 reaches equilibrium, the strongly stretched rubber film 10 is attached to the needle 1.
Dissolution begins when sample 8 is dropped into HR suspension water by breaking through at 1. The amount of heat generated at this time is measured by a temperature difference detector (or high-sensitivity thermometer) 6, amplified, and recorded in a thermogram. On the other hand, the amount of heat (Joule heat) generated in the heater 12 by the reference power provided in the control cell 2 is measured by the temperature difference detector 7, amplified and recorded in the thermogram in the same manner. The heat of solution of the sample is converted. 2. Measurement Results of Heat of Solution FIG. 1 is a thermogram showing the measurement results of RHC and its hydrate. This hydrate is a sample having a water / cement ratio of 75 and stirred and hydrated at 25 ° C. for 8 days. Figure 1
The thermogram shows the amount of heat generation (J) with time on the horizontal axis, the solid line (A) is unhydrated RHC, and the solid line (B).
Is the reference power calorific value of the control cell. The broken line (C) is the hydrated RHC, and the broken line (D) is the reference power calorific value. The area of the calorific value of the sample on the thermogram obtained as described above is measured, and compared with the area of the reference calorific value, the heat of solution of the sample is converted. Area measurement is quick and accurate using a computer. RH used here
The results of chemical analysis of commercial OPC (ordinary Portland cement) and BSC (blast furnace slag cement) including C are shown in Table 1. Fig. 3 shows the calorific value measurement results obtained by adding cement powder to the amount of input cement.
It shows in (a).

【0006】[0006]

【表1】 [Table 1]

【0007】図3(a)において縦軸は発熱量(k
J)、横軸は測定に用いた試料の量(g)である。図3
(a)に示される発生熱量〜セメント量の直線的関係
は、明らかにセメントがH−R懸濁水中に完全に溶解す
る事実を物語っておりそれらの勾配から、3種のセメン
トの溶解熱が算出される。図3(b)は図3(a)に示
した測定に用いたものと同一のRHC試料約0.2g
を、25℃の純水15ミリリットルを用いて3.5日な
らびに8日間水和したものにつき溶解熱を測定した結果
を示した。図3(b)の縦軸は図3(a)と同じ発熱量
(kJ)、横軸は水和日数(日)である。以上の測定か
ら算出されたセメントのH−Rによる溶解熱量の測定結
果を表2に纏めた。この表にはセメントの構成鉱物およ
びセメントの水和生成物に関する結果もあわせて示し、
一部試料についてはフッ酸−硝酸法による先行研究者の
結果も比較の意味で併示した。ここで表2について若干
の考察を含め、箇条書きで説明する。 1.セメントおよびセメント構成鉱物の溶解熱量を比較
すると、フッ酸−硝酸法の値が、H−Rの値に比べ全体
的に高く、ほぼ1.3倍である。これは恐らく混酸によ
る苛酷な溶解に基づく化学的副反応の併発が溶解熱量の
より高値に寄与したものと考えられる。 2.セメント鉱物の溶解熱量においては、両溶解剤の間
にほぼ相関関係が見られる。すなわち、C3 Aの溶解熱
が最も高く、C3 S、C2 Sの順で低くなる。また、β
−、およびγ−C2 SのH−Rによる溶解熱量はグラム
単位ではほぼ1.1kJと等しいが、モル単位ではγ−
2 Sがβ−相より僅かながら上回りフッ酸−硝酸法を
類似な関係を示す。 3.その他、セメントの水和構成化合物もH−R懸濁水
で処理することにより、セッコウを除き全て発熱的に溶
解することが分かる。
In FIG. 3 (a), the vertical axis represents the heat generation amount (k
J), the horizontal axis is the amount (g) of the sample used for the measurement. Figure 3
The linear relationship between the amount of generated heat and the amount of cement shown in (a) clearly shows the fact that cement is completely dissolved in HR suspension water, and from the gradients of these, the heats of dissolution of three types of cement are It is calculated. Figure 3 (b) shows about 0.2g of the same RHC sample used for the measurement shown in Figure 3 (a).
The results of measurement of the heat of solution of the hydrated product were hydrated with 15 ml of pure water at 25 ° C. for 3.5 days and 8 days. The vertical axis in FIG. 3 (b) is the same calorific value (kJ) as in FIG. 3 (a), and the horizontal axis is the number of days of hydration (days). Table 2 summarizes the measurement results of the amount of heat of dissolution of cement by HR calculated from the above measurements. This table also shows the results of the constituent minerals of cement and the hydration products of cement,
For some samples, the results of previous researchers using the hydrofluoric acid-nitric acid method are also shown for comparison. Here, Table 2 will be described in a bulleted list including some consideration. 1. Comparing the amounts of heat of dissolution of cement and cement constituent minerals, the value of the hydrofluoric acid-nitric acid method is generally higher than the value of HR and is about 1.3 times. This is presumably due to the concomitant occurrence of chemical side reactions due to severe dissolution by mixed acid, which contributed to the higher value of the heat of solution. 2. There is almost a correlation between the two dissolving agents in the heat of dissolution of cement minerals. That is, the heat of fusion of C 3 A is the highest, and the heats of C 3 S and C 2 S decrease in that order. Also, β
-, And the heat of dissolution of γ-C 2 S by HR is almost equal to 1.1 kJ in gram units, but γ-in molar units.
C 2 S slightly exceeds the β-phase and shows a similar relationship to the hydrofluoric acid-nitric acid method. 3. In addition, it is understood that the hydrated constituent compounds of cement are also exothermicly dissolved except for gypsum by treating with HR suspension water.

【0008】[0008]

【表2】 [Table 2]

【0009】[0009]

【発明の効果】本発明の強酸型イオン交換樹脂H−Rに
よるセメント、セメント水和物ならびにセメント関係化
合物の溶解熱測定方法は従来のJIS法に比べ、次の諸
点で優ることが判明し実用化が可能である。 1)取り扱いに危険性を伴わず、溶解剤として使用する
樹脂の再生、再利用が可能である。 2)使用樹脂による装置の腐食が全くないので、装置材
質選択の必要がない。 3)2)の利点は今後、高精度、多機能装置などの製作
を可能とする。 4)廃酸処理操作が省け、環境汚染の心配が全くない。 5)フッ酸−硝酸を用いて測定している現行の装置が適
用できる。
The method for measuring the heat of dissolution of cement, cement hydrate and cement-related compounds using the strong acid ion exchange resin HR of the present invention is found to be superior to the conventional JIS method in the following points and is practically used. Is possible. 1) The resin used as the solubilizer can be recycled and reused without any danger in handling. 2) Since there is no corrosion of the device due to the resin used, there is no need to select the material of the device. 3) The advantage of 2) will enable the manufacture of high-precision, multi-function devices and the like in the future. 4) The waste acid treatment operation is omitted, and there is no concern about environmental pollution. 5) The current device for measurement using hydrofluoric acid-nitric acid can be applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】RHCおよびその水和物のサーモグラム。1 is a thermogram of RHC and its hydrate.

【図2】本発明の溶解熱測定装置の一例を示す模式図。FIG. 2 is a schematic diagram showing an example of a melting heat measuring device of the present invention.

【図3】(a)は試料の量に対する発熱量測定結果のグ
ラフ。(b)はOPCの水和日数に対する溶解熱の変化
を示すグラフ。
FIG. 3A is a graph of measurement results of calorific value with respect to sample amount. (B) Change in heat of solution with OPC hydration days
The graph showing.

【符号の説明】[Explanation of symbols]

1 測定セル 2 対照セル 3 恒温槽 4、5 撹拌子 6、7 温度差検出器 8 試料 9 円筒状容器 10 ゴム膜 11 針 12 基準電力加熱器 1 Measurement Cell 2 Control Cell 3 Constant Temperature Bath 4, 5 Stirrer 6, 7 Temperature Difference Detector 8 Sample 9 Cylindrical Container 10 Rubber Membrane 11 Needle 12 Standard Power Heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素型強酸性イオン交換樹脂を溶解剤と
して測定試料を該溶解剤と混合し、試料の溶解過程で発
生する溶解熱を断熱型もしくは伝導型熱量測定装置で測
することを特徴とするセメントおよびセメント構成鉱
物の溶解熱測定方法。
1. A hydrogen-type strongly acidic ion exchange resin as a solubilizer
Then, the measurement sample is mixed with the lysing agent,
Measure the generated heat of dissolution with an adiabatic or conduction calorimeter
A method for measuring heat of dissolution of cement and cement constituent minerals, which is characterized by:
【請求項2】 水素型強酸性イオン交換樹脂を溶解剤と
して測定試料を該溶解剤と混合し、試料の溶解過程で発
生する熱量のサーモグラムの面積を、基準熱量のサーモ
グラムの面積と比較して測定試料の溶解熱を換算するこ
とを特徴とするセメントおよびセメント構成鉱物の溶解
熱測定方法。
2. The area of the thermogram of the calorific value generated during the dissolution process of the sample is compared with the area of the thermogram of the reference calorific value by mixing the measurement sample with the hydrogen-type strongly acidic ion exchange resin as the solubilizing agent. And a method for measuring heat of dissolution of cement and cement constituent minerals, which comprises converting the heat of dissolution of a measurement sample by means of the above.
JP13977792A 1992-05-01 1992-05-01 Method for measuring heat of dissolution of cement and cement constituent minerals Expired - Fee Related JPH07104302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13977792A JPH07104302B2 (en) 1992-05-01 1992-05-01 Method for measuring heat of dissolution of cement and cement constituent minerals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13977792A JPH07104302B2 (en) 1992-05-01 1992-05-01 Method for measuring heat of dissolution of cement and cement constituent minerals

Publications (2)

Publication Number Publication Date
JPH05312744A JPH05312744A (en) 1993-11-22
JPH07104302B2 true JPH07104302B2 (en) 1995-11-13

Family

ID=15253181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13977792A Expired - Fee Related JPH07104302B2 (en) 1992-05-01 1992-05-01 Method for measuring heat of dissolution of cement and cement constituent minerals

Country Status (1)

Country Link
JP (1) JPH07104302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6697974B2 (en) * 2016-08-09 2020-05-27 太平洋セメント株式会社 Method for predicting heat of hydration of cement and method for manufacturing and managing cement

Also Published As

Publication number Publication date
JPH05312744A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
Diamond et al. Physics and chemistry of alkali-silica reactions
Feng et al. Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure
Kondo et al. Early hydration of tricalcium silicate: a solid reaction with induction and acceleration periods
Matysik et al. Application of Zeolite‐Polydimethylsiloxane Electrodes to Potentiometric Studies of Cationic Species
Qiao et al. Damage in cement pastes exposed to MgCl 2 solutions
Wang et al. Prediction of temperature distribution in concrete incorporating fly ash or slag using a hydration model
Chen et al. Microstructural development of hydrating portland cement paste at early ages investigated with non-destructive methods and numerical simulation
JPS632345B2 (en)
JP2008241520A (en) Adiabatic calorimeter and quality control method of cement and concrete using it
Yuan et al. Chloride binding isotherm from migration and diffusion tests
Gluth et al. Carbonation rate of alkali-activated concretes and high-volume SCM concretes: a literature data analysis by RILEM TC 281-CCC
Rivard et al. Characterization of the ASR rim: Application to the Potsdam sandstone
Fujii et al. Rate and mechanism of hydration of β‐dicalcium silicate
JPH07104302B2 (en) Method for measuring heat of dissolution of cement and cement constituent minerals
Tronche et al. Instability of TiC particles in aluminium melts inoculated with an Al-Ti-C grain refiner
JPS6159262A (en) Method and reagent for measuring fibrin monomer in plasma
Watt et al. The composition and pozzolanic properties of pulverised fuel ashes
JP5462499B2 (en) Cement activity detection method and detection apparatus
Kurumisawa et al. Effect of alkali activators on diffusivity of metakaolin-based geopolymers
JPS58109851A (en) Immunochemical measuring method and device
Suzuki-Muresan et al. Alteration of vitrified intermediate level nuclear waste in alkaline media: effects of cementitious materials, pH and temperature
JP3528048B2 (en) Determination of pozzolan in cement
CN108489844B (en) Method for detecting boron in alpha-alumina and alumina product grade discrimination
Gong et al. DuraLith alkali-aluminosilicate geopolymer waste form testing for Hanford secondary waste
JPS62106368A (en) Method for measuring unit water content of concrete

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514

LAPS Cancellation because of no payment of annual fees