JPH07104205A - Rotating body - Google Patents

Rotating body

Info

Publication number
JPH07104205A
JPH07104205A JP27125093A JP27125093A JPH07104205A JP H07104205 A JPH07104205 A JP H07104205A JP 27125093 A JP27125093 A JP 27125093A JP 27125093 A JP27125093 A JP 27125093A JP H07104205 A JPH07104205 A JP H07104205A
Authority
JP
Japan
Prior art keywords
rotor
rotating body
yoke
generated
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27125093A
Other languages
Japanese (ja)
Inventor
Hironori Kurosawa
博徳 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP27125093A priority Critical patent/JPH07104205A/en
Publication of JPH07104205A publication Critical patent/JPH07104205A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To provide the rotating body which is formed by coupling >=2 parts varying in coefft. of linear expansion, does not generate an unbalance change even if the temp. of the rotating body is changed by the heat generation of the rotating body itself or environmental temp. and does not generate vibrations in spite of rotation at a high speed. CONSTITUTION:This rotating body is constituted by disposing two cylindrical parts to face each other apart a spacing to fix a blind cylindrical rotor 2 and rotor 19 varying in materials. Since the inner and outer peripheries of the cylindrical parts are not in contact with each other, the force acting on the cylindrical parts is generated only in both bottoms joined by a screw 18 even if the temp. of the rotating body changes and a difference in the expansion and shrinkage of the rotor 2 and the yoke 19 is generated by a difference in the coefft. of linear expansion. A deviated deformation is not generated and vibrations are not generated if the rotating body rotates at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線膨張係数の異なる部
材から構成された回転体、特にポリゴンミラーモータ等
の高速の回転体において、温度変化による構成部材間の
相対移動を抑制し、それによる振動の発生を抑制した回
転体の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses relative movement between constituent members due to temperature change in a rotating member composed of members having different linear expansion coefficients, particularly in a high speed rotating member such as a polygon mirror motor. The present invention relates to the structure of a rotating body that suppresses the occurrence of vibration due to.

【0002】[0002]

【従来の技術】線膨張係数の異なる部材から構成された
回転体は、例えば図4に示すポリゴンミラーモータが挙
げられる。ポリゴンミラーモータは従来よりデジタルコ
ピー、レーザプリンタ等のレーザスキャナーとして用い
られ、その回転数は10000から30000RPM程
度と極めて高速で回転する。そのため、軸受には非接触
で回転支持が可能な動圧空気軸受等が用いられる。ポリ
ゴンミラー1はロータ2端部の凸部13に嵌合され、バ
ランスプレート16との間に挟んだ波形バネ17でロー
タ2に押圧固定されており、ロータ2の外周面14に形
成したスパイラル溝15と軸受5内周との動圧軸受4に
より支持されて高速回転する。ロータ2の材質は、切削
加工が容易で、一般的なポリゴンミラー1の材質と同じ
アルミニウム合金が使用されている。ロータ2内部には
駆動用の磁気回路をつくる環状マグネット10と鉄製の
ヨーク19が配置されている。ヨーク19は有底円筒形
状をしており、底部に設けたねじ孔20にネジ18を螺
合してバランスプレート16と共にロータ2に固定して
ある。尚、ヨーク19のロータ2への固定は接着でもよ
い。22はネジ18の頭部を突出させない凹部である。
ロータ2内周部のヨーク19との締結部付近の円筒部に
はヨーク19との接触を防止する逃げ部21が形成され
ている。
2. Description of the Related Art A polygon mirror motor shown in FIG. 4 can be cited as an example of a rotating body composed of members having different linear expansion coefficients. Conventionally, the polygon mirror motor has been used as a laser scanner for digital copying, laser printers, etc., and its rotation speed is extremely high at about 10,000 to 30,000 RPM. Therefore, as the bearing, a dynamic pressure air bearing or the like that can be rotationally supported without contact is used. The polygon mirror 1 is fitted to the convex portion 13 at the end of the rotor 2 and is pressed and fixed to the rotor 2 by a corrugated spring 17 sandwiched between the polygon mirror 1 and the balance plate 16, and a spiral groove formed on the outer peripheral surface 14 of the rotor 2. The bearing 15 is supported by the dynamic pressure bearing 4 between the bearing 15 and the inner circumference of the bearing 5, and rotates at high speed. The material of the rotor 2 is easy to cut, and the same aluminum alloy as the material of the general polygon mirror 1 is used. Inside the rotor 2, an annular magnet 10 that forms a magnetic circuit for driving and a yoke 19 made of iron are arranged. The yoke 19 has a cylindrical shape with a bottom, and a screw 18 is screwed into a screw hole 20 provided at the bottom to be fixed to the rotor 2 together with the balance plate 16. The yoke 19 may be fixed to the rotor 2 by adhesion. Reference numeral 22 is a recess for preventing the head of the screw 18 from protruding.
An escape portion 21 for preventing contact with the yoke 19 is formed in the cylindrical portion of the inner peripheral portion of the rotor 2 near the fastening portion with the yoke 19.

【0003】ポリゴンミラー1等が組み付けられたロー
タ2は数μmから10数μmの動圧発生用隙間を隔てて
軸受5に挿入されており、軸受5に固定されたベース8
の中央柱状部にロータ駆動用コイル9が嵌合固定されて
いる。このコイル10と環状マグネット9でモータ部を
構成している。また、ベース8の中央柱状部の上部外周
とバランスプレート16内周には一対の環状マグネット
11、12が対向配置され、磁気スラスト軸受を形成し
ている。ロータ2は周囲環境温度の変化、駆動用コイル
9の発熱、動圧軸受の空気摩擦損失による発熱、ポリゴ
ンミラー1の空気との摩擦による発熱等により温度変化
が生じる。この温度変化によりロータ2を構成している
線膨張係数の異なる2つの部材(ロータ2とヨーク1
9)は相対的に移動しアンバランスが生じる。このアン
バランスの生じたモータは回転に伴う振動が発生し、そ
れは回転数が大きくなるに従い顕著となる。
A rotor 2 having a polygon mirror 1 and the like assembled therein is inserted into a bearing 5 with a dynamic pressure generating gap of several μm to several tens of μm, and a base 8 fixed to the bearing 5 is provided.
The rotor driving coil 9 is fitted and fixed to the central columnar portion of the. The coil 10 and the annular magnet 9 form a motor unit. Further, a pair of annular magnets 11 and 12 are arranged so as to face each other on the upper outer periphery of the central columnar portion of the base 8 and the inner periphery of the balance plate 16 to form a magnetic thrust bearing. The temperature of the rotor 2 changes due to a change in ambient temperature, heat generated by the driving coil 9, heat generated by air friction loss of the dynamic pressure bearing, heat generated by friction of the polygon mirror 1 with air, and the like. Due to this temperature change, the two members (the rotor 2 and the yoke 1) forming the rotor 2 and having different linear expansion coefficients are formed.
9) moves relatively and an imbalance occurs. The unbalanced motor causes vibrations due to rotation, which become more noticeable as the rotation speed increases.

【0004】[0004]

【発明が解決しようとする課題】アルミ製ロータ2と鉄
製ヨーク19のように線膨張係数の異なる部材を固定さ
せる場合、図4のように固定部近傍に隙間(逃げ部2
1)が設けられていて、その下側においてはヨーク19
外周部は、ロータ2内周部とどこかの点で接触してい
る。このような構造の場合、ロータ2とヨーク19は、
温度変化により膨張差を生じて相対移動を起こす。例え
ば動作時にモータ自身の発熱により温度上昇を起こせ
ば、それに伴いアンバランス変化を起こし、始動初期の
振動と暖気後の振動に変化が生じることとなる。その振
動は周囲の機械系、光学系を振動させ、レーザビームプ
リンタであれば印字の乱れ、騒音等が発生することとな
る。本発明の目的は上記欠点に鑑み、線膨張係数の異な
る2以上の部品を結合した回転体において、回転体自身
の発熱、あるいは環境温度により回転体の温度が変化し
てもアンバランス変化を発生せず、高速で回転しても振
動を発生する事の無い回転体を提供する事を目的とす
る。
When fixing members having different linear expansion coefficients, such as the rotor 2 made of aluminum and the yoke 19 made of iron, as shown in FIG. 4, a gap (escape portion 2) is formed near the fixing portion.
1) is provided, and the yoke 19 is provided below it.
The outer peripheral portion is in contact with the inner peripheral portion of the rotor 2 at some point. In the case of such a structure, the rotor 2 and the yoke 19 are
A change in temperature causes a difference in expansion and causes relative movement. For example, if a temperature rise occurs due to heat generation of the motor itself during operation, an imbalance change will occur accordingly, and a change will occur in the vibration at the initial stage of start-up and the vibration after warm-up. The vibration vibrates the surrounding mechanical system and optical system, and in the case of a laser beam printer, the printing is disturbed and noise is generated. In view of the above drawbacks, an object of the present invention is to provide an unbalanced change in a rotating body in which two or more parts having different linear expansion coefficients are combined, even if the temperature of the rotating body changes due to heat generation of the rotating body itself or environmental temperature. The object is to provide a rotating body that does not generate vibration even when rotated at high speed without rotating.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、回転体を構成する大小2つ以上の有底円
筒体の結合において、有底円筒体の底部を結合させ、円
筒部が接触しないように重ねた。また、回転体を構成す
る大小2つ以上の円筒体の結合において、円筒体の円筒
部の円周方向の一部のみを接触させるようにした。
In order to achieve the above-mentioned object, the present invention is a method of connecting two or more large and small bottomed cylindrical bodies forming a rotating body by connecting the bottoms of the bottomed cylindrical bodies to form a cylinder. Stacked so that the parts do not touch. Further, in coupling of two or more large and small cylindrical bodies constituting the rotating body, only a part of the cylindrical portion of the cylindrical body in the circumferential direction is brought into contact with each other.

【0006】[0006]

【作用】このように有底円筒体の底部のみを結合させ、
円筒部の内外周面が接触しなければ、回転体の温度が変
化し、線膨張係数の違いにより内円筒と外円筒の膨張収
縮の差が発生しても、円筒に作用する力はネジ等で接合
している底部のみで発生し、それにより変形が生じても
重心は変化しない。よってアンバランスの変化は発生せ
ず、高速回転しても振動を発生しない。また、円筒体の
円筒部の内外周面が円周方向の一部で接触している場
合、内外円筒体の芯出しが確実となり、この接触部分を
接着等で固定すると、温度が変化し線膨張係数の違いに
より内円筒と外円筒の膨張収縮の差が発生しても、円筒
に作用する力は接触点に集中する。しかし、接触点は固
定されており移動はできず、接触点と接触点の間の部材
形状が変化し力を吸収する。よって、変形した部材の重
心は変化しないからアンバランスも変化せず、高速回転
しても振動を発生しない。
[Operation] In this way, only the bottom of the bottomed cylinder is joined,
If the inner and outer peripheral surfaces of the cylinder do not contact, the temperature of the rotating body changes, and even if there is a difference in expansion and contraction between the inner cylinder and the outer cylinder due to the difference in linear expansion coefficient, the force acting on the cylinder is It occurs only at the bottom part that is joined by, so that the center of gravity does not change even if deformation occurs. Therefore, no change in unbalance occurs and no vibration is generated even when rotating at high speed. In addition, when the inner and outer peripheral surfaces of the cylindrical part of the cylindrical body are in contact with each other in the circumferential direction, centering of the inner and outer cylindrical body is ensured. Even if a difference in expansion and contraction occurs between the inner cylinder and the outer cylinder due to the difference in expansion coefficient, the force acting on the cylinder is concentrated at the contact point. However, the contact point is fixed and cannot move, and the shape of the member between the contact points changes to absorb the force. Therefore, the center of gravity of the deformed member does not change, the unbalance does not change, and vibration does not occur even at high speed rotation.

【0007】[0007]

【実施例】以下、図示の一実施例で本発明を説明する。
図1に本考案を適用した第1の実施例を示す。本モータ
はポリゴンミラー1、ロータ2を含む回転部分と軸受、
ベースを含む固定部分から構成されており、図4と同一
符号は同一部品を指す。モータの回転部分はバランスプ
レート16、波形バネ17、ポリゴンミラー1、ロータ
マグネット12、ロータ2、ヨーク19、駆動マグネッ
ト10、ネジ18から構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to one embodiment shown in the drawings.
FIG. 1 shows a first embodiment to which the present invention is applied. This motor includes a polygon mirror 1, a rotating portion including a rotor 2 and a bearing,
It is composed of a fixed part including a base, and the same reference numerals as those in FIG. 4 indicate the same parts. The rotating part of the motor comprises a balance plate 16, a wavy spring 17, a polygon mirror 1, a rotor magnet 12, a rotor 2, a yoke 19, a drive magnet 10 and a screw 18.

【0008】有底筒状のロータ2の円筒部分外周には動
圧発生用のヘリングボーンタイプの溝15が形成され、
その表面には腐食防止、摩耗防止のためメッキ等の表面
処理が施されている。ロータ端部13にはポリゴンミラ
ー1が嵌合され、ミラー面精度が組付けにより悪化する
ことが無いように波形バネ17を介してロータ2に押圧
固定されている。バランスプレート16はロータ2の底
部に固定され、ミラー固定用のバネ17を押さえる役割
と、組立後のアンバランスを修正する部位を提供する役
割と、持ち運び用の取っ手の役割をもつ。ロータ2内部
には回転トルク発生用の磁気回路を構成する鉄製ヨーク
19とスラスト磁気軸受を構成する駆動マグネット12
が重ねて配置されている。有底筒状のヨーク19の円筒
部分はロータ2との接触を防止する隙間21が全周にわ
たって設けられ、底部でネジ18によりロータ2に固定
されている。このネジ18は等配で2箇所に設けてあ
る。
A herringbone type groove 15 for generating dynamic pressure is formed on the outer periphery of the cylindrical portion of the bottomed cylindrical rotor 2.
The surface is subjected to surface treatment such as plating to prevent corrosion and wear. The polygon mirror 1 is fitted to the rotor end portion 13 and is fixed to the rotor 2 via a corrugated spring 17 so that the mirror surface accuracy does not deteriorate due to assembly. The balance plate 16 is fixed to the bottom portion of the rotor 2, and has a role of pressing the spring 17 for fixing the mirror, a role of providing a portion for correcting unbalance after assembly, and a role of a carrying handle. Inside the rotor 2, an iron yoke 19 that constitutes a magnetic circuit for generating rotational torque and a drive magnet 12 that constitutes a thrust magnetic bearing.
Are placed one on top of the other. The cylindrical portion of the bottomed cylindrical yoke 19 is provided with a gap 21 for preventing contact with the rotor 2 over the entire circumference, and is fixed to the rotor 2 by a screw 18 at the bottom portion. The screws 18 are evenly arranged at two places.

【0009】モータの固定部分はベースマグネット1
1、柱状部を有するベース8、コイル9、コア23、軸
受5より構成される。ベースマグネット11はロータマ
グネット12に対向する位置の前記柱状部に設置され、
スラスト磁気軸受を構成する。またコイル9は内側にコ
ア23を配置し駆動マグネット10と対向する位置の前
記柱状部に固定されている。ベース8は軸受5にビスに
より固定されている。軸受5内面にはロータ2外面と同
様に腐食防止、摩耗防止のためアルマイト等の表面処理
が施されている。バランスプレート16、ポリゴンミラ
ー1、ロータ2、軸受5、ベース8は共にアルミ合金と
し、温度変化にともなう機械的な歪、部品間のズレが起
こりにくく構成され、また、鉄等に比較し質量の小さい
利点により起動時間の短縮等を図っている。
The fixed portion of the motor is the base magnet 1
1, a base 8 having a columnar portion, a coil 9, a core 23, and a bearing 5. The base magnet 11 is installed in the columnar portion at a position facing the rotor magnet 12,
It constitutes a thrust magnetic bearing. The coil 9 has a core 23 disposed inside and is fixed to the columnar portion facing the drive magnet 10. The base 8 is fixed to the bearing 5 with screws. Similar to the outer surface of the rotor 2, the inner surface of the bearing 5 is surface-treated with alumite or the like to prevent corrosion and wear. The balance plate 16, the polygon mirror 1, the rotor 2, the bearing 5, and the base 8 are all made of aluminum alloy so that mechanical distortion due to temperature change and misalignment between parts are unlikely to occur. Due to its small advantages, the startup time is shortened.

【0010】ロータ2を主とする回転部分は、軸受5を
主とする固定部分に円周方向に数μmから10数μmの
隙間を設けて挿入されて動圧空気軸受を構成し、回転す
ることにより圧力を発生して回転部分を円周方向に保持
する。スラスト方向は一対のマグネット11、12の吸
引力を利用した磁気スラスト軸受により浮上支持されて
いる。回転部分は構成部品の機械的な嵌合構成のため
に、組立時には通常使用可能なアンバランスよりもかな
り大きなアンバランスを伴っている。このため多くのロ
ータ2はアンバランスを修正する必要がある。バランス
プレート16とロータ2端部にはドリルによる切削によ
り孔24、24’が必要に応じて開けられアンバランス
の修正がされる。
The rotating portion mainly composed of the rotor 2 is inserted into the fixed portion mainly composed of the bearing 5 with a gap of several μm to several tens of μm in the circumferential direction to form a dynamic pressure air bearing and rotate. As a result, pressure is generated to hold the rotating portion in the circumferential direction. The thrust direction is levitationally supported by a magnetic thrust bearing that utilizes the attractive force of the pair of magnets 11 and 12. Due to the mechanical interlocking configuration of the components, the rotating part is associated with a significantly greater imbalance than is normally available during assembly. Therefore, many rotors 2 need to be corrected for imbalance. Holes 24 and 24 'are opened in the balance plate 16 and the end portion of the rotor 2 by cutting with a drill as needed to correct the imbalance.

【0011】このように有底円筒体の底部のみを結合さ
せ、円筒部の内外周面が接触していないので、回転体の
温度が変化し、線膨張係数の違いによりロータ2とヨー
ク19の膨張収縮の差が発生しても、円筒部に作用する
力はネジ18で接合している両底部のみで発生し、それ
により変形が生じても重心は変化しない。よってアンバ
ランスの変化は発生せず、高速回転しても振動を発生し
ない。
As described above, since only the bottom of the bottomed cylindrical body is joined and the inner and outer peripheral surfaces of the cylindrical portion are not in contact with each other, the temperature of the rotor changes and the difference in linear expansion coefficient causes the rotor 2 and the yoke 19 to be different. Even if a difference in expansion and contraction occurs, the force acting on the cylindrical portion is generated only at both bottom portions joined by the screw 18, and even if deformation occurs, the center of gravity does not change. Therefore, no change in unbalance occurs and no vibration is generated even when rotating at high speed.

【0012】次に、図2、3により本考案を適用した第
2の実施例を説明する。本モータはポリゴンミラー1、
ロータ2を含む回転部分と軸受、ベースを含む固定部分
から構成されており、図1と同一符号は同一部品を指
す。この実施例は、上記第1の実施例においてロータ2
の開口端の内周に等間隔で3個の凸部2が形成してあっ
て、この凸部2aがヨーク19の外周と当たっている。
従って、ロータ2とヨーク19の芯出しができて位置精
度が向上する。
Next, a second embodiment to which the present invention is applied will be described with reference to FIGS. This motor is a polygon mirror 1,
It is composed of a rotating portion including the rotor 2, a bearing, and a fixed portion including a base, and the same reference numerals as those in FIG. 1 indicate the same parts. This embodiment is the same as the rotor 2 in the first embodiment.
Three convex portions 2 are formed at equal intervals on the inner periphery of the opening end of the convex portion 2 a, and the convex portions 2 a abut the outer periphery of the yoke 19.
Therefore, the rotor 2 and the yoke 19 can be centered and the positional accuracy is improved.

【0013】このように有底円筒体の底部のみを結合さ
せ、円筒部の内外周面が接触していないので、回転体の
温度が変化し、線膨張係数の違いによりロータ2とヨー
ク19の膨張収縮の差が発生しても、円筒部に作用する
力はネジ18で接合している両底部のみで発生し、それ
により変形が生じても重心は変化しない。よってアンバ
ランスの変化は発生せず、高速回転しても振動を発生し
ない上、凸部2aがヨーク19の外周と当たっているの
で、ロータ2とヨーク19の芯出しができて位置精度が
向上する。
As described above, since only the bottom of the bottomed cylindrical body is connected and the inner and outer peripheral surfaces of the cylindrical portion are not in contact with each other, the temperature of the rotating body changes, and the rotor 2 and the yoke 19 differ in linear expansion coefficient. Even if a difference in expansion and contraction occurs, the force acting on the cylindrical portion is generated only at both bottom portions joined by the screw 18, and even if deformation occurs, the center of gravity does not change. Therefore, there is no change in unbalance, vibration does not occur even when rotating at high speed, and since the convex portion 2a abuts the outer circumference of the yoke 19, the rotor 2 and the yoke 19 can be centered and the positional accuracy is improved. To do.

【0014】[0014]

【変更例】上述の実施例は本発明を使用した一例であ
り、本発明の要旨を逸脱しない範囲において種々変形実
施可能で、例えばビスによる固定は接着剤、溶接による
固定に置き換え可能であるし、円筒体の数、固定位置や
凸部の数も適宜にでき、固定位置や凸部での接触位置は
等配が好ましいが、等配でなくても本発明の効果は得ら
れる。また、材質もアルミ合金、鉄系材料に限らず、銅
合金、樹脂材料においても実施可能である。
[Modification] The above-described embodiment is an example of using the present invention, and various modifications can be made without departing from the gist of the present invention. For example, fixing with screws can be replaced with fixing with adhesive or welding. The number of cylindrical bodies, the fixed positions and the number of convex portions can be appropriately set, and the fixed positions and the contact positions on the convex portions are preferably equidistant, but the effects of the present invention can be obtained even if they are not equidistant. Further, the material is not limited to aluminum alloys and iron-based materials, but copper alloys and resin materials can be used.

【0015】そして、第2の実施例の場合、ロータ2に
凸部2aを形成するのは加工性があまり良くないので、
外径がロータ外径よりも小さいアルミ合金の環状体に凸
部2aを形成しておいて、この凸部2aをヨーク19に
接着し、ロータ2の内周側に環状の段部を形成して、こ
こに環状体を嵌合するようにしてもよい。勿論、環状体
はロータ2に固定してもよい。このようにすると、孔2
4は環状体に開ければよいのでロータ2の円筒部の厚さ
を薄くできる。
In the case of the second embodiment, since the workability of forming the convex portion 2a on the rotor 2 is not so good,
A convex portion 2a is formed on an annular body of an aluminum alloy having an outer diameter smaller than the outer diameter of the rotor, and the convex portion 2a is bonded to the yoke 19 to form an annular step portion on the inner peripheral side of the rotor 2. Then, an annular body may be fitted here. Of course, the annular body may be fixed to the rotor 2. In this way, the hole 2
Since the ring 4 may be opened in the annular body, the thickness of the cylindrical portion of the rotor 2 can be reduced.

【0016】また、第2の実施例において、ヨーク19
を円筒状にし、凸部2aを軸方向に延ばし、凸部でヨー
クを接着固定するようにしてもよく、このようにすると
ヨークの形状が簡単化され、パイプを切断したヨークが
使用できる。そして、凸部2aをヨーク19に固定する
と、温度が変化し線膨張係数の違いにより環状体とヨー
ク19膨張収縮の差が発生しても、円筒に作用する力は
接触点に集中する。しかし、接触点は固定されており移
動はできず、接触点と接触点の間の部材形状が変化し力
を吸収する。よって、変形した部材の重心は変化しない
からアンバランスも変化せず、高速回転しても振動を発
生しない。
Further, in the second embodiment, the yoke 19
May be formed into a cylindrical shape, the convex portion 2a may be extended in the axial direction, and the yoke may be bonded and fixed by the convex portion. In this case, the shape of the yoke is simplified and a yoke obtained by cutting a pipe can be used. When the convex portion 2a is fixed to the yoke 19, the force acting on the cylinder is concentrated at the contact point even if the temperature changes and a difference in expansion and contraction between the annular body and the yoke 19 occurs due to the difference in linear expansion coefficient. However, the contact point is fixed and cannot move, and the shape of the member between the contact points changes to absorb the force. Therefore, the center of gravity of the deformed member does not change, the unbalance does not change, and vibration does not occur even at high speed rotation.

【0017】[0017]

【発明の効果】本発明は上述のように、高速回転体にお
いて、線膨張係数の異なる部材の結合において、回転体
を構成する大小2つ以上の円筒体の結合において、円筒
体が接触しないか、円筒体の一部しかが接触しないよう
にしたので、簡単な構成により、回転体温度の変化があ
ってもアンバランスの変化が無く、温度の変化にかかわ
らず回転振動の発生の小さい回転体が得られる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, in a high-speed rotating body, when connecting members having different linear expansion coefficients, in connecting two or more large and small cylindrical bodies forming the rotating body, whether the cylindrical bodies contact each other or not. Since only a part of the cylindrical body is in contact with the rotating body, there is no change in the unbalance even if there is a change in the temperature of the rotating body due to the simple structure. Is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例であるモータの断面図を
示す。
FIG. 1 is a sectional view of a motor that is a first embodiment of the present invention.

【図2】本発明の第2の実施例であるモータの断面図を
示す。
FIG. 2 shows a sectional view of a motor that is a second embodiment of the present invention.

【図3】図2のA−A断面図を示す。FIG. 3 is a sectional view taken along line AA of FIG.

【図4】従来の結合例であるモータの断面図を示す。FIG. 4 shows a cross-sectional view of a motor that is a conventional coupling example.

【符号の説明】[Explanation of symbols]

1 ポリゴンミラー 2 アルミ製ロータ 5 軸受 19 鉄製ヨーク 1 Polygon mirror 2 Aluminum rotor 5 Bearing 19 Iron yoke

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転体を構成する大小2つ以上の有底円
筒体を線膨張係数の異なる部材で構成し、有底円筒体の
底部で2つの有底円筒体を固定し、円筒部が接触しない
ように空間をおいて対向させた回転体。
1. A rotary body comprising two or more large and small bottomed cylindrical bodies made of members having different linear expansion coefficients, the two bottomed cylindrical bodies being fixed at the bottom of the bottomed cylindrical body, Rotating body facing each other with a space so as not to contact.
【請求項2】 回転体を構成する大小2つ以上の円筒体
を線膨張係数の異なる部材で構成し、空間をおいて2つ
以上の円筒体を重ね、対向部の円周の一部に凸部を設け
て円周方向の一部で両者を接触させた回転体。
2. A rotary body comprising two or more large and small cylinders made of members having different linear expansion coefficients, and two or more cylinders being overlapped with each other at a space, and a part of the circumference of the facing portion. A rotating body that has a convex portion and makes them contact with each other at a part in the circumferential direction.
JP27125093A 1993-10-04 1993-10-04 Rotating body Withdrawn JPH07104205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27125093A JPH07104205A (en) 1993-10-04 1993-10-04 Rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27125093A JPH07104205A (en) 1993-10-04 1993-10-04 Rotating body

Publications (1)

Publication Number Publication Date
JPH07104205A true JPH07104205A (en) 1995-04-21

Family

ID=17497459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27125093A Withdrawn JPH07104205A (en) 1993-10-04 1993-10-04 Rotating body

Country Status (1)

Country Link
JP (1) JPH07104205A (en)

Similar Documents

Publication Publication Date Title
US5227686A (en) Spindle motor
JPH08266030A (en) Rotor device of brushless motor
JPH11299151A (en) Motor
JP2006187970A (en) Polygon scanner motor
JPH10104544A (en) Rotary polygon mirror motor
US6087749A (en) Rotary polygonal mirror driving apparatus
JPH07104205A (en) Rotating body
JP3240637B2 (en) Bearing device
WO2020148939A1 (en) Rotor of rotary electric machine
JP2001069704A (en) Method of adjusting balance of electric motor and its rotor
JP4121142B2 (en) motor
JP3024283B2 (en) Bearing device
JP2952656B2 (en) Rotating polygon mirror type optical deflector
JP2002341282A (en) Rotary polygon mirror driving device
JP2999581B2 (en) Spindle motor
JP2003070194A (en) Manufacturing method of rotary driving device and rotor, and polygon mirror scanner
JPH094641A (en) Dynamic pressure bearing
JP4033283B2 (en) DYNAMIC PRESSURE AIR BEARING TYPE OPTICAL DEFLECTOR, METHOD OF PROCESSING THE ROTATING BODY, AND RECYCLING METHOD OF COMPONENT FOR DYNAMIC PRESSURE AIR BEARING TYPE OPTICAL DEFLECTOR
JP2002165395A (en) Electric motor
JP3796297B2 (en) Spindle motor and manufacturing method thereof
JPH0135558Y2 (en)
JPH05209622A (en) Bearing device
JP3730036B2 (en) Rotating body
JP2021078330A (en) Rotor of rotary electric machine
JPH05141420A (en) Bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226