JPH07104191A - Posture and position controller for particulate of cell and the like - Google Patents

Posture and position controller for particulate of cell and the like

Info

Publication number
JPH07104191A
JPH07104191A JP3246504A JP24650491A JPH07104191A JP H07104191 A JPH07104191 A JP H07104191A JP 3246504 A JP3246504 A JP 3246504A JP 24650491 A JP24650491 A JP 24650491A JP H07104191 A JPH07104191 A JP H07104191A
Authority
JP
Japan
Prior art keywords
electrodes
fine particles
posture
slide glass
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3246504A
Other languages
Japanese (ja)
Inventor
Masaki Nishioka
将輝 西岡
Akira Mizuno
彰 水野
Hirohide Sakano
博英 坂野
Yuji Ono
雄司 大野
Shuichi Matsumoto
修一 松本
Mitsuo Watanabe
光雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP3246504A priority Critical patent/JPH07104191A/en
Publication of JPH07104191A publication Critical patent/JPH07104191A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide the posture and position controller for particulates of cells, etc., capable of trapping the particulates without contact in the state of holding the particulates in a prescribed position and desired direction (posture). CONSTITUTION:The laser beam oscillated from a YAG laser 1 is bent downward in a progressing direction via a half mirror 3 and the bent laser beam is condensed by passing an objective lens 4 existing below the laser. This bent laser beam focuses on slide glass 5 with electrodes. The objective lens 4 is formed vertically freely slidable so that the slide glass 5 is movable in a horizontal direction. The prescribed electrodes are formed atop the slide glass 5 and a high-frequency voltage is applied from an oscillator 11 to these electrodes to generate electric fields between the electrodes. The electrodes consist of three sets of electrodes and are so formed that the lines connecting the front ends of the respective paired electrodes intersect with each other at one point and intersect with each other at about 60 deg. intervals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は細胞等の微粒子の姿勢位
置制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a posture position control device for fine particles such as cells.

【0002】[0002]

【従来の技術】細胞,ウイルス,染色体等の微粒子の選
別や形状,特性の測定等を行うには、係る微粒子を所定
位置に位置させるとともに、その位置に止める必要があ
る。係る操作を行うための姿勢位置制御装置としては、
従来レーザー光の光圧力を利用したレーザートラップと
称されるものがある。
2. Description of the Related Art In order to select fine particles such as cells, viruses and chromosomes, and to measure their shapes and characteristics, it is necessary to position such fine particles at a predetermined position and stop them at that position. As an attitude position control device for performing such an operation,
Conventionally, there is a so-called laser trap utilizing the light pressure of laser light.

【0003】このレーザートラップは、微粒子に光を照
射すると、光の屈折が生じ、光子の運動量が変化し、こ
れにより微粒子に力(光圧力)が働く。そして、レーザ
ー光をレンズにより集光させると、レーザー光中あるい
はその周囲に位置する微粒子は、そのレーザー光の前進
にともない前進移動するが、密度の高い集光部位でその
位置を止めることになり、この状態でレーザー光の光軸
を移動することにより微粒子をトラップしつつ光軸の移
動に追従させながら微粒子を移動させることができる。
In this laser trap, when the fine particles are irradiated with light, the light is refracted and the momentum of photons is changed, whereby a force (light pressure) acts on the fine particles. Then, when the laser light is focused by the lens, the fine particles located in or around the laser light move forward with the advance of the laser light, but the position is stopped at the densely focused portion. By moving the optical axis of the laser light in this state, the fine particles can be moved while trapping the fine particles and following the movement of the optical axis.

【0004】従って、例えば顕微鏡のスライドガラス上
近傍や、各種の分光器の計測ポイントに上記のレーザー
光の焦点(集光部位)を持ってくることにより、微粒子
に対し物理的な接触をすることなく所定位置にセットす
ることができる。そして、レーザー光の出力を数mW程
度の十分な低レベルとすることにより、微粒子にダメー
ジを与えることなく数10分間に当たる被接触トラップ
が可能となる。
Therefore, for example, by bringing the focal point (focusing portion) of the laser light near the slide glass of the microscope or at the measurement point of various spectroscopes, physical contact with the fine particles is made. Instead, it can be set in place. Then, by setting the output of the laser light to a sufficiently low level of about several mW, it is possible to carry out a contact trap for several tens of minutes without damaging the fine particles.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記したレー
ザートラップでは、微粒子を集光部位近傍に位置させる
ことはできるものの、単に微粒子を所定の位置に止める
だけであるため、所定の姿勢(向き)に保つことができ
なかった。また、レーザートラップの場合、集光部位近
傍に位置させることはできるものの、係る部位に位置す
る微粒子は集光部位が固定されていてもそこにおいて微
小移動するため、より高精度の位置合わせが要求される
ものには適用することができなかった。
However, in the above-mentioned laser trap, although the fine particles can be positioned in the vicinity of the condensing portion, they simply stop the fine particles at a predetermined position, so that they have a predetermined posture (direction). Couldn't keep up. Further, in the case of a laser trap, although it can be positioned in the vicinity of the condensing part, the fine particles located in such a part move minutely even if the converging part is fixed, so that more precise alignment is required. It could not be applied to what is done.

【0006】本発明は上記した背景に鑑みてなされたも
ので、その目的とするところは、微粒子を所望の向き
(姿勢)にさせた状態で、しかも所定位置に位置させる
ことのできる細胞等の微粒子の姿勢位置制御装置を提供
することにある。
The present invention has been made in view of the above background, and an object of the present invention is to provide, for example, a cell capable of positioning fine particles in a desired direction (posture) and at a predetermined position. An object is to provide a posture control device for fine particles.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る細胞等の微粒子の姿勢位置制御装
置では、細胞等の微粒子に対し集光したレーザー光を照
射する手段と、その集光されたレーザー光にトラップさ
れた前記微粒子に対し、所定方向の電界を印加する手段
とを有し、前記電界を印加する手段が、複数対の電極
と、その電極に対し電圧を印加する手段から構成した。
In order to achieve the above-mentioned object, in the attitude position control device for fine particles such as cells according to the present invention, means for irradiating fine particles such as cells with focused laser light, A means for applying an electric field in a predetermined direction to the fine particles trapped by the collected laser light, and the means for applying the electric field applies a plurality of pairs of electrodes and a voltage to the electrodes. It consisted of a means to do.

【0008】[0008]

【作用】本発明に係る細胞等の微粒子の姿勢位置制御装
置では、レーザー光を照射する手段にて得られる光圧力
と、電界を印加する手段にて得られる静電力の両者を利
用して微粒子を無接触トラップする。よって、精度良く
位置合わせさせる。しかも、静電力を発生させるための
電極を複数対設けたため、所定の電極対に電圧を印加す
ると、それにより得られる電界の方向に微粒子が向く。
よって姿勢(向き)制御が確実に行うことができる。ま
た、電極に順次電圧を印加していくことにより、微粒子
を回転させることができる。
In the attitude position control apparatus for fine particles such as cells according to the present invention, the fine pressure is obtained by using both the light pressure obtained by the means for irradiating the laser beam and the electrostatic force obtained by the means for applying the electric field. To contactlessly trap. Therefore, the position is accurately aligned. Moreover, since a plurality of pairs of electrodes for generating an electrostatic force are provided, when a voltage is applied to a predetermined pair of electrodes, the fine particles are oriented in the direction of the electric field obtained thereby.
Therefore, the posture (orientation) control can be reliably performed. Further, the particles can be rotated by sequentially applying a voltage to the electrodes.

【0009】[0009]

【実施例】以下本発明に係る細胞等の微粒子の姿勢位置
制御装置の好適な実施例を添付図面を参照にして詳述す
る。図1は本発明の一実施例を示しており、顕微鏡に適
応した例を示している。同図に示すように、YAGレー
ザー1から発振されたレーザー光がその進行方向前方に
位置されたハーフミラー3を介して進行方向が下方に折
曲され、その折曲されたレーザ光がその下方に位置する
対物レンズ4を通過することにより電極付きのスライド
ガラス5上に焦点を結ぶようになっている。なお、使用
するレーザー光としては、円形のものでも良くまたは楕
円形等のように偏平のものでも良い。そして、対物レン
ズ4は、上下移動自在となっており、それを移動させる
ことにより、焦点位置、レーザー光の集光位置を上下移
動させるようになっている。さらに、スライドガラス5
が水平方向に移動するようになっている。その結果、対
物レンズ4並びにスライドガラス5を所定量移動させる
ことにより、スライドガラス5上の3次元上の任意の位
置に集光位置すなわち試料(微粒子)のトラップ部位を
位置させることが可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the posture position control apparatus for fine particles such as cells according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of the present invention and shows an example adapted to a microscope. As shown in the figure, the laser light oscillated from the YAG laser 1 is bent downward in the direction of travel through the half mirror 3 located in the front of the direction of travel, and the bent laser light is directed downward. By passing through the objective lens 4 located at, the focal point is focused on the slide glass 5 with electrodes. The laser light used may be circular or flat such as elliptical. The objective lens 4 is vertically movable, and by moving it, the focus position and the focus position of the laser light are vertically moved. Furthermore, slide glass 5
Is designed to move horizontally. As a result, by moving the objective lens 4 and the slide glass 5 by a predetermined amount, it becomes possible to position the condensing position, that is, the trap site of the sample (fine particles) at an arbitrary three-dimensional position on the slide glass 5. .

【0010】また、ハーフミラー3の上方にはTVカメ
ラ6が配設されており、スライドガラス5上に位置した
試料を投影できるようになっている。そして、その投影
した映像は、TVカメラ6に連繋されたVTR7並びに
モニター8にて録画、再生されるようになっている。
A TV camera 6 is arranged above the half mirror 3 so that a sample located on the slide glass 5 can be projected. Then, the projected image is recorded and reproduced on the VTR 7 and the monitor 8 connected to the TV camera 6.

【0011】ここで本発明では、スライドガラス5の上
面に図2に示すような所定の電極10を形成し、その電
極10に発振器11を接続している。そして、本例にお
ける電極10は、3組の電極、すなわち第1の電極10
a,10a、第2の電極10b,10b並びに第3の電
極10c,10cとからなり、それぞれの対となる電極
の先端部同士を結んだ線は一か所で交差し、しかも略6
0度間隔で交差するようになっている。さらに、かかる
構成の電極10は、スライドガラス5の表面に対しアル
ミ蒸着を施し、それに対しフォトリソグラフィを利用し
て作成する。さらに本例では、上記発振器11から第1
の電極10a、第2の電極10b、第3の電極10cの
順に電圧を加えることにより、中央部で回転電界を作り
出せるようになっている。
In the present invention, a predetermined electrode 10 as shown in FIG. 2 is formed on the upper surface of the slide glass 5, and the oscillator 11 is connected to the electrode 10. The electrodes 10 in this example are three sets of electrodes, that is, the first electrode 10
a, 10a, the second electrodes 10b, 10b, and the third electrodes 10c, 10c, the lines connecting the tips of the electrodes forming the respective pairs intersect at one point, and are approximately 6
They intersect at 0 degree intervals. Further, the electrode 10 having such a configuration is formed by vapor-depositing aluminum on the surface of the slide glass 5 and then using photolithography. Furthermore, in this example, the oscillator 11
A rotating electric field can be generated at the central portion by applying a voltage to the electrode 10a, the second electrode 10b, and the third electrode 10c in this order.

【0012】また、図示省略するが、微粒子に対するレ
ーザー光の入射方向と異なる方向から分析用の光を入射
させることにより、分光・分析を行うことができる。
Although not shown, spectroscopy / analysis can be performed by making analysis light incident from a direction different from the laser light incident direction on the fine particles.

【0013】次に上記した実施例の作用に付いて説明す
る。まず、YAGレーザ1を作動させレーザー光を発振
させ、集光されたレーザー光で微粒子溶液12中に試料
たる微粒子13を集光部位D近傍にてトラップさせる。
ついでその状態を維持させつつ図3に示すように対物レ
ンズ4並びにスライドガラス5を所定方向(A方向,B
方向)に所定量だけ移動させることにより集光部位を移
動させ、それにより微粒子13を図2に示す電極10の
中央部位に位置させる。
Next, the operation of the above embodiment will be described. First, the YAG laser 1 is operated to oscillate a laser beam, and the collected laser beam traps the fine particles 13 as a sample in the fine particle solution 12 in the vicinity of the condensing portion D.
Then, while maintaining this state, the objective lens 4 and the slide glass 5 are moved in a predetermined direction (A direction, B direction) as shown in FIG.
Direction), the light collecting portion is moved to move the fine particles 13 to the central portion of the electrode 10 shown in FIG.

【0014】ついで、発振器11を作動させて、3つの
電極10a〜10cの内の任意の一組に電圧を印加す
る。すると、電界方向すなわち印加された電極間を結ぶ
線上に微粒子の長軸が配向する。これにより所定位置に
微粒子を向かせることができ、姿勢制御が正確に行え
る。また、電圧印加により生じる電界(静電気力)によ
りトラップされた微粒子は、光圧力のみによるトラップ
に比べ移動量が少ないため、ほぼ静止状態となる。よっ
て位置合わせ制御も正確となる細胞や染色体等の解析や
分離等を高精度で行うことができる。
Then, the oscillator 11 is operated to apply a voltage to any one of the three electrodes 10a to 10c. Then, the long axis of the fine particles is oriented in the electric field direction, that is, on the line connecting the applied electrodes. Thereby, the fine particles can be directed to a predetermined position, and the posture control can be accurately performed. In addition, the fine particles trapped by the electric field (electrostatic force) generated by the voltage application have a smaller movement amount than the trap caused by only the light pressure, and thus are in a substantially stationary state. Therefore, it is possible to perform highly accurate analysis and separation of cells, chromosomes, etc., in which alignment control is also accurate.

【0015】また、3つの電極10a〜10cに順次電
圧を印加して中央部で回転電界を作ると、その回転電界
の回転にともない微粒子も回転移動する。
When a voltage is sequentially applied to the three electrodes 10a to 10c to create a rotating electric field in the central portion, the fine particles also move as the rotating electric field rotates.

【0016】尚、上記した実施例では3組の電極から構
成したが、電極対の数はこれに限ることなく2組或いは
4組以上でも良く任意のものとすることができる。そし
て、組み数が多くなるほど精度の高い姿勢制御等が可能
となる。
In the above-mentioned embodiment, the number of electrode pairs is three, but the number of electrode pairs is not limited to this and may be two or four or more, and may be arbitrary. As the number of sets increases, more accurate posture control or the like becomes possible.

【0017】*実験結果等 上記の装置を用い、本発明の効果を実証するための試験
を行った。本実験では微粒子として非球形のイースト菌
(3〜6μm)を用いる。そして、顕微鏡視野の中央に
レーザー光を集光し、イースト菌のトラップを行う。こ
の状態ではイースト菌は任意の方向を向いている。つい
で、周波数1MHz、ピーク電界強度1kV/cmの高周
波交流を印加すると電界方向に長軸が配向した。この状
態でコンピュータ等で画像解析を行えば簡単な処理で正
確な解析が行える。また、微粒子はレーザー光の中心に
閉じ込められているので鮮明な解析パターンを得ること
ができる。さらにレーザー光に短波長のレーザー光を重
畳することにより蛍光測定も組み合わせることができ
る。
* Experimental Results, etc. A test was conducted to verify the effect of the present invention by using the above apparatus. In this experiment, non-spherical yeast (3 to 6 μm) is used as fine particles. Then, the laser light is focused on the center of the microscope field to trap the yeast. In this state, yeasts are oriented in any direction. Then, when a high frequency alternating current having a frequency of 1 MHz and a peak electric field intensity of 1 kV / cm was applied, the major axis was oriented in the electric field direction. If image analysis is performed with a computer or the like in this state, accurate analysis can be performed with simple processing. Further, since the fine particles are confined in the center of the laser beam, a clear analysis pattern can be obtained. Furthermore, fluorescence measurement can be combined by superimposing a laser beam of short wavelength on the laser beam.

【0018】ついで、回転電極に1MHz、 ピーク電界強
度0〜1.5kV/cmの範囲の電圧を加えた。する
と、イースト菌が回転している様子が観測できた。そし
て、この時電界強度が高いほど高速で回転した。図4に
長さ約4μmのイースト菌の回転電界追随性を示す。こ
のことから光圧力を軸受けとしたマイクロモータが可能
であり、微生物等を回転させ、その反応や状態を調べる
こと、また回転特性から細胞個々の物理的性質を調べる
こと等が行える。
Then, a voltage of 1 MHz and a peak electric field intensity of 0 to 1.5 kV / cm was applied to the rotating electrode. Then, it was possible to observe the yeast rotating. At this time, the higher the electric field strength, the faster the rotation. FIG. 4 shows the followability of the rotating electric field of yeast having a length of about 4 μm. For this reason, a micromotor that uses light pressure as a bearing can be used, and it is possible to rotate microorganisms and examine the reaction and state thereof, and also to examine the physical properties of individual cells from the rotation characteristics.

【0019】[0019]

【発明の効果】以上のように、本発明に係る細胞等の微
粒子の姿勢位置制御装置では、光圧力と、静電力の両者
を利用して微粒子を無接触トラップするため、精度良く
位置合わせをすることかできる。しかも、静電力を発生
させるための電極を複数対設けたため、所定の電極に電
圧に印加することにより得られる電界の方向に微粒子を
向かせることができるため、微粒子の姿勢(向き)制御
も確実に行うことができる。
INDUSTRIAL APPLICABILITY As described above, in the posture position control device for fine particles such as cells according to the present invention, the fine particles are contactlessly trapped by using both the light pressure and the electrostatic force, so that the alignment can be performed accurately. You can do it. Moreover, since a plurality of pairs of electrodes for generating electrostatic force are provided, the particles can be directed in the direction of the electric field obtained by applying a voltage to a predetermined electrode, so that the attitude (orientation) of the particles can be surely controlled. Can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る微粒子の姿勢位置制御装置の一実
施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a particle attitude position control device according to the present invention.

【図2】電極のパターンを示す平面図である。FIG. 2 is a plan view showing an electrode pattern.

【図3】微粒子のトラップ状態を示す図である。FIG. 3 is a diagram showing a trapped state of fine particles.

【図4】レーザトラップしたイースト菌の回転電界追随
性を示すグラフである。
FIG. 4 is a graph showing the rotating electric field following ability of laser-trapped yeast.

【符号の説明】[Explanation of symbols]

1 YAGレーザー 3 ハーフミラー 4 対物レンズ 5 スライドガラス(電極付き) 10 電極 10a 第1の電極 10b 第2の電極 10c 第3の電極 11 発振器 1 YAG laser 3 Half mirror 4 Objective lens 5 Slide glass (with electrode) 10 Electrode 10a 1st electrode 10b 2nd electrode 10c 3rd electrode 11 Oscillator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂野 博英 愛知県名古屋市名東区39−1 (72)発明者 大野 雄司 愛知県豊橋市北山町94 (72)発明者 松本 修一 愛知県豊橋市天伯町字雲雀ヶ丘1の1 (72)発明者 渡辺 光雄 東京都八王子市石川町2967番地の5 日本 分光工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hirohide Sakano 39-1 Meito-ku, Nagoya, Aichi Prefecture (72) Inventor Yuji Ohno 94 Kitayama-cho, Toyohashi City, Aichi Prefecture (72) Inventor Shuichi Matsumoto Tenhaku City, Toyohashi City, Aichi Prefecture 1-72, Hibarigaoka 1 (72) Inventor Mitsuo Watanabe 5 2967, Ishikawa-cho, Hachioji-shi, Tokyo Inside JASCO Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 細胞等の微粒子に対し集光したレーザー
光を照射する手段と、その集光されたレーザー光にトラ
ップされた前記微粒子に対し、所定方向の電界を印加す
る手段とを有し、前記電界を印加する手段が、複数対の
電極と、その電極に対し電圧を印加する手段からなるこ
とを特徴とする細胞等の微粒子の姿勢位置制御装置。
1. A means for irradiating fine particles such as cells with condensed laser light, and a means for applying an electric field in a predetermined direction to the fine particles trapped by the condensed laser light. A posture position control device for fine particles such as cells, wherein the means for applying the electric field includes a plurality of pairs of electrodes and means for applying a voltage to the electrodes.
JP3246504A 1991-09-02 1991-09-02 Posture and position controller for particulate of cell and the like Withdrawn JPH07104191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3246504A JPH07104191A (en) 1991-09-02 1991-09-02 Posture and position controller for particulate of cell and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3246504A JPH07104191A (en) 1991-09-02 1991-09-02 Posture and position controller for particulate of cell and the like

Publications (1)

Publication Number Publication Date
JPH07104191A true JPH07104191A (en) 1995-04-21

Family

ID=17149386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3246504A Withdrawn JPH07104191A (en) 1991-09-02 1991-09-02 Posture and position controller for particulate of cell and the like

Country Status (1)

Country Link
JP (1) JPH07104191A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827371A2 (en) * 1996-08-26 1998-03-04 Moritex Corporation Laser manipulation apparatus and cell plate used therefor
WO2004039501A1 (en) 2002-11-01 2004-05-13 Techno Network Shikoku Co., Ltd. Method for sorting and recovering fine particle and apparatus for recovery
JP2004305076A (en) * 2003-04-04 2004-11-04 Canon Inc Modification device for object
JP2011141190A (en) * 2010-01-07 2011-07-21 Mitsui Eng & Shipbuild Co Ltd Fluorescence measuring instrument and fluorescence measuring method
US10393644B2 (en) 2012-07-27 2019-08-27 Engender Technologies Limited Method and system for microfluidic particle orientation and/or sorting

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827371A2 (en) * 1996-08-26 1998-03-04 Moritex Corporation Laser manipulation apparatus and cell plate used therefor
EP0827371A3 (en) * 1996-08-26 1999-08-11 Moritex Corporation Laser manipulation apparatus and cell plate used therefor
EP1367868A1 (en) * 1996-08-26 2003-12-03 Moritex Corporation Laser manipulation apparatus and cell plate used therefor
WO2004039501A1 (en) 2002-11-01 2004-05-13 Techno Network Shikoku Co., Ltd. Method for sorting and recovering fine particle and apparatus for recovery
JP2004305076A (en) * 2003-04-04 2004-11-04 Canon Inc Modification device for object
JP2011141190A (en) * 2010-01-07 2011-07-21 Mitsui Eng & Shipbuild Co Ltd Fluorescence measuring instrument and fluorescence measuring method
US10393644B2 (en) 2012-07-27 2019-08-27 Engender Technologies Limited Method and system for microfluidic particle orientation and/or sorting
US10712255B2 (en) 2012-07-27 2020-07-14 Engender Technologies Limited Method and system for microfluidic particle orientation and/or sorting
EP2877832B1 (en) * 2012-07-27 2020-10-28 Engender Technologies Limited System for microfluidic orientation and sorting of particles

Similar Documents

Publication Publication Date Title
JPH04354532A (en) Method for manipulating fine particle with multiple beams
JP2002210730A (en) Method for laser-aid working
JP2008524634A5 (en)
CN111105889A (en) Device and method for representing two-photon absorption effect of micro-nano particles by using femtosecond optical tweezers and optical field regulation
US20220350125A1 (en) Optical trap calibration apparatus and method based on variation of electric field by optical imaging of nanoparticle
JPH07104191A (en) Posture and position controller for particulate of cell and the like
WO2021055217A1 (en) Use of optical polarization states to control a ponderomotive phase plate
JP3568846B2 (en) Three-dimensional image acquisition method and apparatus
Hooper et al. Efficiency studies of particle removal with pulsed-laser induced plasma
JP5035798B2 (en) Fine particle light capture and rotation control device
CN110899144B (en) Device and method for optical detection and sorting of chiral particles
JP2006235319A (en) Device for controlling movement of particulate
US20220397551A1 (en) Method for the analytical measurement of sample material on a sample support
JPH03297385A (en) Cell fusion using light trapping by laser
JPH11218691A (en) Method and device for operating liquid drop
JP3138497B2 (en) Measurement and operation method of fine particles
JPH06249632A (en) Three-dimensional shape measuring instrument
JPH05332934A (en) Spectroscope
KR100777803B1 (en) Hybrid Machining Center using Focused Ion Beam and Its Processing Technology
JPS60164487A (en) Method for cell fusion
CN109485013B (en) Nano connecting device
US11415487B2 (en) Collection device and method for collecting dissected or ablated specimens and microscope having such a device
JP2003071800A (en) Method and device for manufacturing nanosize structure
JPH09145899A (en) X-ray condensing system
JPH0887328A (en) Optical operation method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203