JPH07104085B2 - Ice storage device for ice heat storage - Google Patents

Ice storage device for ice heat storage

Info

Publication number
JPH07104085B2
JPH07104085B2 JP3089750A JP8975091A JPH07104085B2 JP H07104085 B2 JPH07104085 B2 JP H07104085B2 JP 3089750 A JP3089750 A JP 3089750A JP 8975091 A JP8975091 A JP 8975091A JP H07104085 B2 JPH07104085 B2 JP H07104085B2
Authority
JP
Japan
Prior art keywords
ice
refrigerant
cycle
making
ice making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3089750A
Other languages
Japanese (ja)
Other versions
JPH04302969A (en
Inventor
征四郎 五十嵐
哲也 中辻
陸男 田村
幹夫 増本
正和 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Shimizu Corp
Original Assignee
Ebara Corp
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Shimizu Corp filed Critical Ebara Corp
Priority to JP3089750A priority Critical patent/JPH07104085B2/en
Publication of JPH04302969A publication Critical patent/JPH04302969A/en
Publication of JPH07104085B2 publication Critical patent/JPH07104085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はダイナミック形氷蓄熱用
製氷装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic ice heat storage ice making device.

【0002】[0002]

【従来技術及び発明が解決しようとする課題】シェルア
ンドチューブ形の製氷クーラ内のチューブに蓄熱材を封
入し(製氷サイクル)、さらにこの氷を製氷クーラんら
搬出する(脱氷サイクル)という2つのサイクルを持
ち、さらに製氷クーラが数ブロックに分割されていて製
氷サイクルと脱氷サイクルを同時に行う製氷方法を採用
する場合は、各サイクルの切替において、高価な切替弁
を多数必要とし、切替のための制御も複雑となる。
2. Description of the Related Art A heat storage material is enclosed in a tube in a shell-and-tube type ice cooler (ice making cycle), and this ice is carried out from the ice making cooler (de-ice cycle). When using the ice making method that has two cycles and the ice making cooler is divided into several blocks and performs the ice making cycle and the deicing cycle at the same time, a large number of expensive changeover valves are required to change over each cycle, The control for this is also complicated.

【0003】また、切替弁が多くなればなるほど気密不
良の危険性が増大する。気密不良は特に低圧冷媒を使用
する場合には性能低下の原因となるため極力避ける必要
がある。
Further, as the number of switching valves increases, the risk of air tightness increases. Poor airtightness causes performance deterioration especially when using a low-pressure refrigerant, so it is necessary to avoid it as much as possible.

【0004】本発明は上述の点に鑑みてなされたもの
で、安価で安定した性能を満足するダイナミック形氷蓄
製氷装置を提供することにある。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a dynamic ice heat storage device for ice storage which satisfies stable performance.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明は、製氷用熱交換器、凝縮器及び圧縮機を具備
し、これらの機器を冷媒を通す冷媒配管で連結し、製氷
用熱交換器の製氷部は複数本のチューブを水平に配列し
たシェルアンドチューブ形で該チューブ内に製氷させる
と共に、該製氷用熱交換器の製氷部は数ブロックに分割
され、その内の少なくとも一つを脱氷サイクルとすると
きは他方を製氷サイクルとし、製氷サイクルと脱氷サイ
クルを同時に行うことができるようにし、更に製氷部
のチューブ内に蓄熱液を凍結、脱氷する際、該蓄熱液を
停止させ、チューブ内に該蓄熱液を封入するように構成
された氷蓄熱用製氷装置において、脱氷サイクル時にお
ける脱氷用の熱源として凝縮冷媒液と圧縮冷媒ガスを用
、脱氷サイクルと製氷サイクルの切替時における該凝
縮冷媒液の切替を1つの多方向弁を用いて行ない、製氷
サイクル時の冷媒ガスと脱氷サイクル時の脱氷用の圧縮
冷媒ガスの切替を共通の冷媒切替弁で行なうことを特徴
とする。
In order to solve the above problems, the present invention comprises a heat exchanger for ice making, a condenser and a compressor, and these devices are connected by a refrigerant pipe through which a refrigerant is passed, and heat for ice making is provided. The ice making part of the exchanger is a shell-and-tube type in which a plurality of tubes are arranged horizontally, and the ice making part of the ice making heat exchanger is divided into several blocks, and at least one of them is made. was the other ice making cycle when the Datsukori cycle, ice making cycle and Datsukori cycle to allow simultaneous row of Ukoto, when further to de ice frozen, the thermal storage fluid in the tube of the ice making section, said heat reservoir In an ice heat storage ice-making device configured to stop the liquid and seal the heat storage liquid in a tube, a condensed refrigerant liquid and a compressed refrigerant gas are used as a heat source for de-icing during a de-icing cycle, and the de-icing cycle When The switching of the condensing refrigerant liquid line which have with one way valves at the time of switching of the ice cycle, ice
Refrigerant gas during cycling and compression for de-icing during de-icing
It is characterized in that the refrigerant gas is switched by a common refrigerant switching valve .

【0006】また、共通の冷媒切替弁による製氷用の冷
媒液と脱氷用の冷媒液の切替を製氷サイクル時の冷媒ガ
スと脱氷サイクル時の脱氷用の圧縮冷媒ガスの切替1つ
2方向電磁弁でうことを特徴とする。
In addition, a common refrigerant switching valve is used for ice making.
Switching between the medium liquid and the refrigerant liquid for de-icing is done by the refrigerant gas during the ice making cycle.
Graphics and Datsukori cycle time row of Ukoto in 2 way solenoid valve switching one <br/> compressed refrigerant gas for de-ice and said.

【0007】[0007]

【0008】[0008]

【0009】[0009]

【作用】上記のように、脱氷用の凝縮冷媒液及び圧縮冷
媒ガスの切替えを1つの多方向弁を用いて行うので、多
くの切替弁を用いることがない。従って、弁を作動させ
るための手段が極めて簡単になる。
As described above, since switching between the condensed refrigerant liquid for deicing and the compressed refrigerant gas is performed by using one multi-way valve, many switching valves are not used. Therefore, the means for actuating the valve are very simple.

【0010】上記のように、脱氷用の熱源として、冷媒
吐出ガスと凝縮冷媒液を併用することにより、短時間の
加熱が可能になる。また、凝縮冷媒液は脱氷用の熱源と
して使用される際、冷媒液自身は過冷却されることにな
り、製氷サイクルの製氷効率の向上になる。
As described above, by using the refrigerant discharge gas and the condensed refrigerant liquid together as a heat source for de-icing, heating can be performed in a short time. Further, when the condensed refrigerant liquid is used as a heat source for deicing, the refrigerant liquid itself is supercooled, which improves the ice making efficiency of the ice making cycle.

【0011】[0011]

【実施例】以下本発明の一実施例を図面に基づいて説明
する。図1は本発明の一実施例である氷蓄熱用製氷装置
のシステム構成を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the system configuration of an ice heat storage ice-making apparatus according to an embodiment of the present invention.

【0012】図示するように、本氷蓄熱用製氷装置は、
製氷クーラ(製氷用熱交換器)1、圧縮機2及び凝縮器
3を具備し、これらの機器を冷媒配管4,5,6で連結
した構成である。製氷クーラ1は、4ブロックの製氷ク
ーラ7−1,7−2,7−3,7−4に分割されてい
る。各製氷クーラ7−1,7−2,7−3,7−4に
は、複数本のチューブを水平に配列したシェルアンドチ
ューブ形の製氷部8−1,8−2,8−3,8−4が設
けられている。そして各製氷部8−1,8−2,8−
3,8−4の上には冷媒を霧状に散布するスプレー管9
−1,9−2,9−3,9−4が配置されており、該各
スプレー管9−1,9−2,9−3,9−4には冷媒ス
プレーポンプ10−1,10−2,10−3,10−4
が接続されている。
As shown in the figure, the ice-making device for ice storage is
An ice making cooler (heat exchanger for ice making) 1, a compressor 2, and a condenser 3 are provided, and these devices are connected by refrigerant pipes 4, 5, and 6. The ice making cooler 1 is divided into four blocks of ice making coolers 7-1, 7-2, 7-3, 7-4. Each ice making cooler 7-1, 7-2, 7-3, 7-4 has a shell-and-tube type ice making unit 8-1, 8-2, 8-3, 8 in which a plurality of tubes are horizontally arranged. -4 is provided. And each ice making section 8-1, 8-2, 8-
Spray pipe 9 for spraying the refrigerant in a mist state on 3, 8-4
-1, 9-2, 9-3, 9-4 are arranged, and refrigerant spray pumps 10-1, 10- are provided in the respective spray pipes 9-1, 9-2, 9-3, 9-4. 2, 10-3, 10-4
Are connected.

【0013】また、各製氷クーラ7−1,7−2,7−
3,7−4には、冷媒液のレベルが所定を越えたら閉
じ、冷媒レベルがこの所定のレベル以上にならないよう
にするフロートバルブ11−1,11−2,11−3,
11−4が設けられている。
Further, each ice making cooler 7-1, 7-2, 7-
The float valves 11-1, 11-2, 11-3, 3 and 7-4 are closed when the level of the refrigerant liquid exceeds a predetermined level so that the refrigerant level does not exceed the predetermined level.
11-4 are provided.

【0014】また、各製氷クーラ7−1,7−2,7−
3,7−4は冷媒配管12−1,12−2,12−3,
12−4及び冷媒切替弁V1,V2,V3,V4、ヘッ
ダー18を通して冷媒配管4に接続されている。
Further, each ice making cooler 7-1, 7-2, 7-
3, 7-4 are refrigerant pipes 12-1, 12-2, 12-3,
12-4, the refrigerant switching valves V1, V2, V3, V4, and the header 18 are connected to the refrigerant pipe 4.

【0015】また、冷媒切替弁V1,V2,V3,V4
にはそれぞれ二方電磁弁13−1,13−2,13−
3,13−4が設けられており、該二方電磁弁13−
1,13−2,13−3,13−4の一方の開口は冷媒
配管14を介して冷媒配管5に連通している。また、二
方電磁弁13−1,13−2,13−3,13−4の他
の開口は冷媒切替弁に接続される共に一方弁V5,V
6,V7,V8を通して多方弁V9に接続されている。
Further, the refrigerant switching valves V1, V2, V3, V4
Two-way solenoid valves 13-1, 13-2, 13-
3, 13-4 are provided, and the two-way solenoid valve 13-
One of the openings 1, 13-2, 13-3, 13-4 communicates with the refrigerant pipe 5 via the refrigerant pipe 14. Further, the other openings of the two-way solenoid valves 13-1, 13-2, 13-3, 13-4 are connected to the refrigerant switching valve and both one-way valves V5, V are provided.
It is connected to the multi-way valve V9 through 6, V7 and V8.

【0016】冷媒切替弁V1,V2,V3,V4は、二
方電磁弁13−1,13−2,13−3,13−4の切
替えにより冷媒配管5内の冷媒圧力を導き該冷媒圧力と
製氷クーラ7−1,7−2,7−3,7−4の冷媒圧力
差により、閉じられるようになっている。即ち、冷媒切
替弁V1,V2,V3,V4は装置内に発生する冷媒圧
力差を駆動源とする切替弁である。
The refrigerant switching valves V1, V2, V3, V4 guide the refrigerant pressure in the refrigerant pipe 5 by switching the two-way solenoid valves 13-1, 13-2, 13-3, 13-4 and the refrigerant pressures. The ice making coolers 7-1, 7-2, 7-3, and 7-4 are closed by the refrigerant pressure difference. That is, the refrigerant switching valves V1, V2, V3, V4 are switching valves that use the refrigerant pressure difference generated in the device as a drive source.

【0017】図1においては、製氷クーラ7−1は脱氷
サイクルにあり、製氷クーラ7−2,7−3,7−4は
製氷サイクルにあり、常時3ブロック以上で製氷が行わ
れている。図1においては、二方向電磁弁13−1を通
して、冷媒配管5内の冷媒が冷媒切替弁V1に供給され
ている。これにより、冷媒切替弁V1は製氷クーラ7−
1から排出される低圧の冷媒ガス媒を閉止し、冷媒配管
5の高温圧縮冷媒ガスを製氷クーラ7−1内に供給す
る。
In FIG. 1, the ice-making cooler 7-1 is in the de-icing cycle, and the ice-making coolers 7-2, 7-3, 7-4 are in the ice-making cycle, and the ice-making is always performed in 3 blocks or more. . In FIG. 1, the refrigerant in the refrigerant pipe 5 is supplied to the refrigerant switching valve V1 through the two-way solenoid valve 13-1. As a result, the refrigerant switching valve V1 is operated by the ice making cooler 7-
The low-pressure refrigerant gas medium discharged from No. 1 is closed, and the high-temperature compressed refrigerant gas in the refrigerant pipe 5 is supplied into the ice making cooler 7-1.

【0018】また、二方向電磁弁13−2,13−3,
13−4は閉じており、冷媒配管5の高温圧縮冷媒ガス
は、製氷サイクル中の製氷クーラ7−2,7−3,7−
4に供給されない。製氷クーラ7−2,7−3,7−4
の製氷部8−2,8−3,8−4のチューブ内には凍結
させるため蓄熱液が封入されている。冷媒液は冷媒スプ
レーポンプ10−2,10−3,10−4により、製氷
クーラ7−2,7−3,7−4内のスプレー管9−2,
9−3,9−4に送られ、該スプレー管9−2,9−
3,9−4のノズルから霧状になって、製氷部8−2,
8−3,8−4のチューブ上に散布され、蒸発する。
The two-way solenoid valves 13-2, 13-3,
13-4 is closed, and the hot compressed refrigerant gas in the refrigerant pipe 5 is cooled by the ice making coolers 7-2, 7-3, 7- during the ice making cycle.
Not supplied to 4. Ice maker 7-2, 7-3, 7-4
A heat storage liquid is enclosed in the tubes of the ice making units 8-2, 8-3, 8-4 for freezing. The refrigerant liquid is sprayed by the refrigerant spray pumps 10-2, 10-3, 10-4 into the spray pipes 9-2 in the ice making coolers 7-2, 7-3, 7-4.
9-3, 9-4, the spray pipe 9-2, 9-
Nozzles 3, 9-4 turned into mist, and ice-making unit 8-2,
It is sprinkled on the tubes 8-3 and 8-4 and evaporated.

【0019】蒸発した冷媒ガスは冷媒配管12−2,1
2−3,12−4及び冷媒切替弁V2,V3,V4、ヘ
ッダー18及び冷媒配管4を通って圧縮機2に吸い込ま
れる。圧縮機2により昇圧された冷媒は凝縮器3におい
て冷却水で冷却され、液化された冷媒液となって冷媒配
管6を通ってヘッダー16に送られる。ヘッダー16に
送られた冷媒液は、二方弁V10、多方弁V9の開口V
9−5及びV9−1、製氷クーラ7−1を通ってヘッダ
ー17で製氷クーラ7−2,7−3,7−4に分配され
る。
The evaporated refrigerant gas is transferred to the refrigerant pipes 12-2, 1
It is sucked into the compressor 2 through 2-3, 12-4, the refrigerant switching valves V2, V3, V4, the header 18 and the refrigerant pipe 4. The refrigerant whose pressure has been increased by the compressor 2 is cooled by the cooling water in the condenser 3, becomes a liquefied refrigerant liquid, and is sent to the header 16 through the refrigerant pipe 6. The refrigerant liquid sent to the header 16 is the opening V of the two-way valve V10 and the multi-way valve V9.
9-5, V9-1, and ice-making cooler 7-1, and header 17 distributes to ice-making coolers 7-2, 7-3, 7-4.

【0020】製氷クーラ7−1を通る高温の冷媒液は、
製氷クーラ7−1において二方電磁弁13−1と冷媒切
替弁V1を通って流入する高温の冷媒ガスと共に脱氷用
熱源として利用される。即ち製氷部8−1のチューブ内
で凍結した蓄熱液の壁面に接する部分の氷の若干量を解
氷する熱量として利用される。同時に冷媒液は過冷却さ
れて、製氷クーラ7−2,7−3,7−4に流入するか
らめ冷却効果が大きくなり、システム全体の効率が向上
する。
The high temperature refrigerant liquid passing through the ice making cooler 7-1 is
In the ice making cooler 7-1, it is used as a heat source for de-icing together with the high-temperature refrigerant gas flowing through the two-way solenoid valve 13-1 and the refrigerant switching valve V1. That is, a small amount of ice in the portion in contact with the wall surface of the heat storage liquid frozen in the tube of the ice making unit 8-1 is used as the amount of heat for defrosting. At the same time, the refrigerant liquid is supercooled and flows into the ice making coolers 7-2, 7-3, 7-4, so that the cooling effect is increased and the efficiency of the entire system is improved.

【0021】一方、製氷クーラ7−2,7−3,7−4
においては冷媒が蒸発し、この蒸発潜熱により、製氷部
8−2,8−3,8−4のチューブ内の蓄熱液の温度は
降下し、凍結点以下になると凍結する。
On the other hand, ice making coolers 7-2, 7-3, 7-4
In, the refrigerant evaporates, and the latent heat of vaporization lowers the temperature of the heat storage liquid in the tubes of the ice-making units 8-2, 8-3, 8-4, and freezes when the temperature is below the freezing point.

【0022】図2は冷媒切替弁V1〜V4の構造を示す
断面図である。該冷媒切替弁は冷凍装置の冷媒配管12
−1〜12−4に連結される弁筐体101と、該弁筐体
101に連結部材103を通じて接続されたシリンダ部
104とからなる。該シリンダ部104は上蓋105と
下蓋106を備え、その中にピストン部材107が滑動
自在に挿入され、該ピストン部材107によりシリンダ
部を高圧室108と低圧室109の二つの密閉室に仕切
られている。
FIG. 2 is a sectional view showing the structure of the refrigerant switching valves V1 to V4. The refrigerant switching valve is the refrigerant pipe 12 of the refrigeration system.
The valve housing 101 is connected to -1 to 12-4, and the cylinder portion 104 is connected to the valve housing 101 through a connecting member 103. The cylinder portion 104 is provided with an upper lid 105 and a lower lid 106, into which a piston member 107 is slidably inserted, and the piston member 107 divides the cylinder portion into two closed chambers, a high pressure chamber 108 and a low pressure chamber 109. ing.

【0023】該ピストン部材107の片側面(図2にお
いては下面)と前記下蓋106の間に圧縮スプリング1
14が配設され、ピストン部材107を高圧室108側
に弾発している。前記ピストン部材107に一端が固定
された軸110は低圧室109の中と下蓋106を通
り、更に連結部材103の中を滑動自在に伸び、その他
端が弁筐体101の中の回転式の弁部材111に枢着さ
れている。また、軸110の連結部103の内面に接触
する部分には弁筐体101と低圧室109を結ぶみぞ状
又は孔状の貫通孔112が設けられている。また、ピス
トン部材107に貫通孔113が設けられている。
A compression spring 1 is provided between one side surface (lower surface in FIG. 2) of the piston member 107 and the lower lid 106.
14 is arranged to elastically push the piston member 107 toward the high pressure chamber 108 side. A shaft 110, one end of which is fixed to the piston member 107, extends slidably in the low pressure chamber 109, through the lower lid 106, and further in the connecting member 103, and the other end thereof is a rotary type in the valve housing 101. It is pivotally attached to the valve member 111. In addition, a groove-shaped or hole-shaped through hole 112 that connects the valve housing 101 and the low pressure chamber 109 is provided in a portion of the shaft 110 that contacts the inner surface of the connecting portion 103. Further, the piston member 107 is provided with a through hole 113.

【0024】上記構造の冷媒切替弁において、通常前記
二方電磁弁13(図1においては二方電磁弁13−1〜
13−4)が閉じている場合、弁筐体101内の冷媒圧
は軸110の貫通孔112及びピストン部材107の貫
通孔113を通して低圧室109及び高圧室108に導
かれ、低圧室109の圧力P1、高圧室108の圧力P
h及び弁筐体101内の圧力Pcは等しくなり(P1=
Ph=Pc)、ピストン部材107は圧縮スプリング1
14の弾発力により上昇し、弁部材111が反時計方向
に回動し、弁筐体101を開く。
In the refrigerant switching valve having the above structure, the two-way solenoid valve 13 (two-way solenoid valves 13-1 to 13-1 in FIG. 1) is usually used.
13-4) is closed, the refrigerant pressure in the valve housing 101 is guided to the low pressure chamber 109 and the high pressure chamber 108 through the through hole 112 of the shaft 110 and the through hole 113 of the piston member 107 , and the pressure of the low pressure chamber 109 is reduced. P1, the pressure P of the high pressure chamber 108
h and the pressure Pc in the valve housing 101 become equal (P1 =
Ph = Pc), the piston member 107 is the compression spring 1
The valve member 111 is rotated counterclockwise by the elastic force of 14 to open the valve housing 101.

【0025】二方電磁弁13を開くと、圧縮機2から吐
出する高温圧縮冷媒ガスは、該二方電磁弁13を介して
高圧室108に導かれた場合、この高圧冷媒ガスがピス
トン部材107の貫通孔113を通ることにより減圧さ
れ、ピストン部材107の上下に圧力差を生じ、ピスト
ン部材107は圧縮スプリング114の弾発力に抗して
下降し、弁部材111が時計方向回動し、弁筐体101
を閉じる。そしてこの高温圧縮冷媒ガスが製氷クーラ
(図1では製氷クーラ7−1)に供給される。
When the two-way solenoid valve 13 is opened, the high-temperature compressed refrigerant gas discharged from the compressor 2 is introduced into the high-pressure chamber 108 via the two-way solenoid valve 13, and this high-pressure refrigerant gas is transferred to the piston member 107. The pressure is reduced by passing through the through hole 113 of the piston member 107, a pressure difference is generated between the upper and lower sides of the piston member 107, the piston member 107 descends against the elastic force of the compression spring 114, and the valve member 111 rotates clockwise, Valve housing 101
Close. Then, this high-temperature compressed refrigerant gas is supplied to the ice-making cooler (ice-making cooler 7-1 in FIG. 1).

【0026】図3は多方弁V9の構造例を示す図で、図
3(a)は平断面図(A−A断面)、図3(b)は正断
面図である。多方弁V9は図示するようにケーシング2
00周囲に開口V9−1,V9−2,V9−3,V9−
4が設けられ、下方に開口V9−5が設けられ、更にケ
ーシング200内にはボール弁201が配置されてい
る。該ボール弁には貫通孔202が設けられている。該
ボール弁201が90°づつ回転することにより、貫通
孔202は開口V9−5と開口V9−1,V9−2,V
9−3,V9−4とのいずれか一つと連通される。開口
V9−1,V9−2,V9−3,V9−4のそれぞれに
は図1に示すように、製氷クーラ7−1,7−2,7−
3,7−4を通る冷媒配管に接続されており、開口V9
−5は冷媒配管6に接続されている。
FIG. 3 is a view showing an example of the structure of the multi-way valve V9, FIG. 3 (a) is a plan sectional view (AA cross section), and FIG. 3 (b) is a front sectional view. The multi-way valve V9 is a casing 2 as shown.
00 around the opening V9-1, V9-2, V9-3, V9-
4 is provided, an opening V9-5 is provided below, and a ball valve 201 is provided in the casing 200. A through hole 202 is provided in the ball valve. By rotating the ball valve 201 by 90 °, the through hole 202 is opened V9-5 and V9-1, V9-2, V.
9-3 and V9-4. As shown in FIG. 1, each of the openings V9-1, V9-2, V9-3, V9-4 has an ice making cooler 7-1, 7-2, 7-.
It is connected to a refrigerant pipe passing through 3, 7-4 and has an opening V9.
-5 is connected to the refrigerant pipe 6.

【0027】また、図1に示すように、多方弁V9のシ
リンダーの一方の室には冷媒配管5からの高圧の冷媒ガ
スが二方弁13−1,13−2,13−3,13−4の
作動により導かれ、他方の室にはヘッダー18の低圧の
冷媒ガスが導かれる。この冷媒圧力差により多方弁V9
は作動するようになっている。
Further, as shown in FIG. 1, high-pressure refrigerant gas from the refrigerant pipe 5 is introduced into one chamber of the cylinder of the multi-way valve V9 by the two-way valves 13-1, 13-2, 13-3, 13-. 4, the low-pressure refrigerant gas in the header 18 is introduced into the other chamber. Due to this refrigerant pressure difference, the multi-way valve V9
Is designed to work.

【0028】今製氷クーラの全ブロックが製氷サイクル
を行っているとすると、冷媒切替弁V1,V2,V3,
V4は閉となり二方電磁弁13−1,13−2,13−
3,13−4は閉となる。また、二方弁V10が閉じ、
二方弁V11が開となり凝縮器3で凝縮した冷媒液はV
11、ヘッダー17を通り、各製氷クーラへ分配され
る。ここで、この後製氷クーラ7−1が脱氷サイクルに
入ると、全製氷クーラが製氷を製氷を行っている時点か
ら多方弁V9の開口V9−5とV9−1を開としてお
き、該冷媒液を開口V9−5,V9−1 、製氷クーラ
7−1、ヘッダー17に流し、製氷クーラ7−1,7−
2,7−3,7−4に分配するとすると、二方弁V1
0,V11は不要となる。
Assuming that all blocks of the ice cooler are now performing the ice making cycle, the refrigerant switching valves V1, V2, V3.
V4 is closed and two-way solenoid valves 13-1, 13-2, 13-
3, 13-4 are closed. Also, the two-way valve V10 is closed,
The two-way valve V11 is opened and the refrigerant liquid condensed in the condenser 3 is V
11. It passes through the header 17 and is distributed to each ice making cooler. Here, when the ice-making cooler 7-1 thereafter enters the de-icing cycle, the openings V9-5 and V9-1 of the multi-way valve V9 are left open from the time when all the ice-making coolers are making ice to make the refrigerant. The liquid is caused to flow through the openings V9-5, V9-1, the ice-making cooler 7-1 and the header 17, and the ice-making coolers 7-1, 7-
When divided into 2, 7-3, 7-4, the two-way valve V1
0 and V11 are unnecessary.

【0029】図4は本発明の氷蓄熱用製氷装置の他のシ
ステム構成を示す図である。図4の氷蓄熱用製氷装置が
図1の氷蓄熱用製氷装置と異なる点は、冷媒配管5から
の高温圧縮冷媒ガスは二方弁V13及び多方弁V12を
通してき各製氷クーラ7−1,7−2,7−3,7−4
に供給されるようになっている点、冷媒切替弁V1,V
2,V3,V4,V9,V12の駆動用弁として三方電
磁弁が接続されている点で、他は図1のものと略同様で
ある。また、その動作も図1のものと略同様であるので
説明は省力する。
FIG. 4 is a diagram showing another system configuration of the ice heat storage ice-making apparatus of the present invention. The ice heat storage ice-making apparatus of FIG. 4 is different from the ice heat storage ice-making apparatus of FIG. 1 in that the high-temperature compressed refrigerant gas from the refrigerant pipe 5 passes through the two-way valve V13 and the multi-way valve V12. -2, 7-3, 7-4
The refrigerant switching valves V1 and V
Others are substantially the same as those in FIG. 1 in that a three-way solenoid valve is connected as a driving valve for 2, V3, V4, V9, and V12. Also, the operation thereof is substantially the same as that of FIG.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、下
記のような優れた効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0031】(1)脱氷用の凝縮冷媒液及び圧縮冷媒ガ
スの切替えを1つの多方向弁を用いて行うので、多くの
切替弁を用いることがく、弁を作動させるための手段も
極めて簡単なものとなり、気密に対する装置全体の信頼
性が増す。
(1) Since switching between the condensed refrigerant liquid for de-icing and the compressed refrigerant gas is performed by using one multi-directional valve, many switching valves can be used and the means for operating the valves is extremely simple. And the reliability of the entire device with respect to airtightness increases.

【0032】[0032]

【0033】(2)脱氷サイクル時における脱氷用の熱
源として凝縮冷媒液と圧縮冷媒ガスを用いることによ
り、短時間で効率のよい脱氷を行うことができる。
[0033] (2) by using a condensing refrigerant fluid and the compressed refrigerant gas as a heat source for the de-ice during de-ice cycle, short time efficient removal ice can rows of Ukoto.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である製氷装置のシステム構
成を示す図である。
FIG. 1 is a diagram showing a system configuration of an ice making device according to an embodiment of the present invention.

【図2】本発明の製氷装置に用いる冷媒切替弁の構造例
を示す図である。
FIG. 2 is a diagram showing a structural example of a refrigerant switching valve used in the ice making device of the present invention.

【図3】本発明の製氷装置に用いる多方弁の構造例を示
す図である。
FIG. 3 is a diagram showing a structural example of a multi-way valve used in the ice making device of the present invention.

【図4】本発明の一実施例である製氷装置のシステム構
成を示す図である。
FIG. 4 is a diagram showing a system configuration of an ice making device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 製氷クーラ 2 圧縮機 3 凝縮器 4〜6 冷媒配管 7−1〜7−4 製氷クーラ 8−1〜8−4 製氷部 9−1〜9−4 スプレー管 10−1〜10−4 冷媒スプレーポンプ 11−1〜11−4 フロートバルブ 12−1〜12−4 冷媒配管 13−1〜13−4 二方電磁弁 14 冷媒配管 17−1〜17−4 三方電磁弁 V1〜V4 冷媒切替弁 V5〜V8 一方弁 V9,V12 多方弁 1 Ice Cooler 2 Compressor 3 Condenser 4 to 6 Refrigerant Pipe 7-1 to 7-4 Ice Cooler 8-1 to 8-4 Ice Making Part 9-1 to 9-4 Spray Pipe 10-1 to 10-4 Refrigerant Spray Pump 11-1 to 11-4 Float valve 12-1 to 12-4 Refrigerant piping 13-1 to 13-4 Two-way solenoid valve 14 Refrigerant piping 17-1 to 17-4 Three-way solenoid valve V1 to V4 Refrigerant switching valve V5 ~ V8 one-way valve V9, V12 multi-way valve

フロントページの続き (72)発明者 田村 陸男 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 増本 幹夫 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 藤本 正和 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (56)参考文献 特開 平2−187581(JP,A) 特開 昭61−99776(JP,A) 実開 平2−48767(JP,U)Front page continuation (72) Inventor Rikuo Tamura 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Mikio Masumoto 11-11 Haneda-Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Masakazu Fujimoto 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (56) References JP-A-2-187581 (JP, A) JP-A-61-99776 (JP, A) Actual Kaihei 2-48767 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 製氷用熱交換器、凝縮器及び圧縮機を具
備し、これらの機器を冷媒を通す冷媒配管で連結し、前
記製氷用熱交換器の製氷部は複数本のチューブを水平に
配列したシェルアンドチューブ形で該チューブ内に製氷
させると共に、該製氷用熱交換器の製氷部は数ブロック
に分割され、その内の少なくとも一つを脱氷サイクルと
するときは他方を製氷サイクルとし、製氷サイクルと脱
氷サイクルを同時に行なうことができるようにし、更に
前記製氷部のチューブ内に蓄熱液を凍結、脱氷する際、
該蓄熱液を停止させ、チューブ内に該蓄熱液を封入する
ように構成された氷蓄熱用製氷装置において、 前記脱氷サイクル時における脱氷用の熱源として凝縮冷
媒液と圧縮冷媒ガスを用い脱氷サイクルと製氷サイク
ルの切替時における該凝縮冷媒液の切替を1つの多方向
弁を用いて行ない、 製氷サイクル時の冷媒ガスと脱氷サイクル時の脱氷用の
圧縮冷媒ガスの切替を共通の冷媒切替弁で行なう ことを
特徴とする氷蓄熱用製氷装置。
1. An ice making heat exchanger, a condenser, and a compressor are provided, and these devices are connected by a refrigerant pipe through which a refrigerant is passed, and the ice making part of the ice making heat exchanger has a plurality of tubes arranged horizontally. While making ice in the tubes in an arrayed shell-and-tube form, the ice making part of the heat exchanger for ice making is divided into several blocks, and when at least one of them is a deicing cycle, the other is an ice making cycle. , So that the ice-making cycle and the de-icing cycle can be performed at the same time, and further when the heat storage liquid is frozen and de-iced in the tube of the ice-making unit,
In the ice heat storage ice-making device configured to stop the heat storage liquid and seal the heat storage liquid in a tube, using a condensed refrigerant liquid and a compressed refrigerant gas as a heat source for de-icing during the de-icing cycle , the switching of the condensing refrigerant liquid line which have with one way valves at the time of switching of the de-ice cycle and ice cycle, for de-ice during the refrigerant gas and the Datsukori cycle during the ice making cycle
An ice-storage device for ice storage, wherein compressed refrigerant gas is switched by a common refrigerant switching valve .
【請求項2】 前記共通の冷媒切替弁による製氷用の冷
媒液と脱氷用の冷媒液の切替と製氷サイクル時の冷媒ガ
スと脱氷サイクル時の脱氷用の圧縮冷媒ガスの切替1つ
の2方向電磁弁でうことを特徴とする請求項1記載
の氷蓄熱用製氷装置。
2. The cooling for ice making by the common refrigerant switching valve
Switching between the medium liquid and the refrigerant liquid for de-icing and the refrigerant gas during the ice making cycle
Switch between compressed refrigerant gas for de-icing during the de-icing cycle
Ice thermal storage for ice making apparatus of claim 1, wherein the row of Ukoto in 2 way solenoid valves.
JP3089750A 1991-03-28 1991-03-28 Ice storage device for ice heat storage Expired - Lifetime JPH07104085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089750A JPH07104085B2 (en) 1991-03-28 1991-03-28 Ice storage device for ice heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089750A JPH07104085B2 (en) 1991-03-28 1991-03-28 Ice storage device for ice heat storage

Publications (2)

Publication Number Publication Date
JPH04302969A JPH04302969A (en) 1992-10-26
JPH07104085B2 true JPH07104085B2 (en) 1995-11-13

Family

ID=13979428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089750A Expired - Lifetime JPH07104085B2 (en) 1991-03-28 1991-03-28 Ice storage device for ice heat storage

Country Status (1)

Country Link
JP (1) JPH07104085B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112797686B (en) * 2020-12-24 2022-03-25 李囿桦 Direct-cooling type ice-making system for balancing load of compressor and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199776A (en) * 1984-10-22 1986-05-17 Toshiba Mach Co Ltd Multi-way valve
JPH0248767U (en) * 1988-09-27 1990-04-04
JP2560104B2 (en) * 1989-01-13 1996-12-04 清水建設株式会社 In-pipe ice making unit and in-pipe ice making method

Also Published As

Publication number Publication date
JPH04302969A (en) 1992-10-26

Similar Documents

Publication Publication Date Title
CN1111692C (en) Refrigerating plant
CN100472152C (en) Refrigeration equipment
KR100381634B1 (en) Refrigerator
WO2006051617A1 (en) Heat pump employing co2 as refrigerant and its operating method
JPH07104085B2 (en) Ice storage device for ice heat storage
JPH02187581A (en) In-tube ice making unit and in-tube ice making method
CN106679211B (en) Indoor cooling and snow making two-in-one system
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
KR100605615B1 (en) A refrigerating cycle
JPS61282739A (en) Ice slurry thermal accumulation device
JPH07104088B2 (en) Ice storage device for ice heat storage
KR100366358B1 (en) Refrigerator system
CN220250412U (en) Double-tank positive uninterrupted thermal fluoride frost liquid drainage system
KR20040003876A (en) method for controling cooling system with two evaporators
CN101178211A (en) Air conditioner
JP2004251541A (en) Dual freezing equipment
KR100531365B1 (en) method for controling the cooling system with 2 evaporator
JP2869408B1 (en) Frozen dessert production equipment
JP2853439B2 (en) Absorption type ice machine
JP2000145478A (en) Gas turbine plant and thermal storage cooling system
KR101699084B1 (en) Air conditioning system
KR100189625B1 (en) Defroster and its method of a refrigerator
CN201653018U (en) Refrigeration device defroster
JP2001070738A (en) Cold air generator
CN102269493A (en) Defroster for refrigerating equipment