JPH07103841A - Differential pressure transmitter - Google Patents

Differential pressure transmitter

Info

Publication number
JPH07103841A
JPH07103841A JP25137893A JP25137893A JPH07103841A JP H07103841 A JPH07103841 A JP H07103841A JP 25137893 A JP25137893 A JP 25137893A JP 25137893 A JP25137893 A JP 25137893A JP H07103841 A JPH07103841 A JP H07103841A
Authority
JP
Japan
Prior art keywords
differential pressure
diaphragm
pressure
pressure transmitter
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25137893A
Other languages
Japanese (ja)
Inventor
Yoji Tajiri
洋治 田尻
Yoshiki Yamamoto
芳己 山本
Akira Nagasu
章 長須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25137893A priority Critical patent/JPH07103841A/en
Publication of JPH07103841A publication Critical patent/JPH07103841A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the workability and manufacturability by employing a metal flow junction as means for fitting members airtightly each other. CONSTITUTION:A pressure receiving section for measuring fluid comprises a unit component of the seal diaphragm fixing hole part of a pressure receiving member 20 and plugs 35, 36. Seal diaphragms 6, 7 comprise a center diaphragm fixed in parallel with the opposite ends of the pressure receiving section. A seal metal 2 is disposed perpendicularly to the seal diaphragms 6, 7 and a first pressure receiving chamber 201 is communicated with an isolation chamber 203 and a semiconductor sensor 44 through conduction paths 24, 61, 63. Similarly, a second pressure receiving chamber 202 is communicated with a second isolation chamber 204 and the semiconductor sensor 44 through conduction paths 25, 26, 60, 62. A metal flow junction is employed entirely in the constitution. Consequently, a differential manometer can be manufactured using a machine of only one type thus realizing a line production through a conveyor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は差圧伝送器に係り、特に
製作性を向上させた差圧伝送器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential pressure transmitter, and more particularly to a differential pressure transmitter with improved manufacturability.

【0002】[0002]

【従来の技術】従来の差圧伝送器の受圧部構造は、特開
昭60−185131号公報(図2参照)に記載されたように、
圧力受圧部材は本体H,本体Lの2つの部品で構成さ
れ、本体Hの片面にはシールダイアフラムが、もう一方
の面にはセンサ部とセンターダイアフラムが固定されて
いる。
2. Description of the Related Art A conventional pressure receiving portion structure of a differential pressure transmitter is disclosed in Japanese Patent Laid-Open No. 60-185131 (see FIG. 2).
The pressure receiving member is composed of two parts, a main body H and a main body L, and a seal diaphragm is fixed to one surface of the main body H, and a sensor portion and a center diaphragm are fixed to the other surface.

【0003】本体Lの片面にもシールダイアフラムが固
定され、もう一方の面は本体Hのセンターダイアフラム
を押し付けるように、本体Hと本体Lを重ね外周を溶接
する。また本体H,Lで構成された本体の両側に、第
一,第二の流体を受圧するシールダイアフラムによって
形成された第一,第二の受圧室を構成し、そして本体
H,センサ部組,センターダイアフラム,本体Lによっ
て第一,第二の隔離室を設け、さらに第一の受圧室と第
一の隔離室をつなぐ導圧路,第一の隔離室と半導体差圧
センサをつなぐ導圧路,第二の受圧室と第二の隔離室を
つなぐ導圧路,第二の隔離室と半導体差圧センサをつな
ぐ導圧路を構成している。
The seal diaphragm is fixed to one surface of the body L, and the other surface is welded on the outer periphery of the body H and the body L so that the center diaphragm of the body H is pressed against the seal diaphragm. Further, on both sides of the main body composed of the main bodies H and L, first and second pressure receiving chambers formed by seal diaphragms for receiving the first and second fluids are formed, and the main body H, the sensor assembly, A center diaphragm and a main body L provide first and second isolation chambers, and a pressure guiding path that connects the first pressure receiving chamber and the first isolation chamber, and a pressure guiding path that connects the first isolation chamber and the semiconductor differential pressure sensor. , A pressure guiding path connecting the second pressure receiving chamber and the second isolation chamber, and a pressure guiding path connecting the second isolation chamber and the semiconductor differential pressure sensor.

【0004】これら第一の受圧室,第一の隔離室,半導
体差圧センサ、これらをつなぐ導圧路内には封入液が充
填されている。同様に第二の受圧室,第二の隔離室,半
導体圧差圧センサ、これらをつなぐ導圧路内にも封入液
が充填され、圧力が半導体差圧センサに伝達される構造
になっていた。
Filling liquid is filled in the first pressure receiving chamber, the first isolation chamber, the semiconductor differential pressure sensor, and the pressure guide path connecting these. Similarly, the second pressure receiving chamber, the second isolation chamber, the semiconductor pressure differential pressure sensor, and the pressure guiding path connecting these are filled with the filled liquid, and the pressure is transmitted to the semiconductor differential pressure sensor.

【0005】そして従来の差圧伝送器は、シールダイア
フラムに対向した場所にフランジを取り付け、本体H,
Lとフランジをボルト,ナットにより締付固定すること
により、プロセス流体からの圧力をそれぞれの受圧室に
伝達するようになっていた。
In the conventional differential pressure transmitter, a flange is attached at a position facing the seal diaphragm, and the main body H,
By tightening and fixing L and the flange with bolts and nuts, the pressure from the process fluid is transmitted to each pressure receiving chamber.

【0006】[0006]

【発明が解決しようとする課題】従来の差圧伝送器の受
圧部においては、接合は溶接が主流であり、特に、シー
ル金具,センサダイアフラム,シールダイアフラムなど
は溶接による接合が全てであった。このような溶接によ
る作業は、TIG,レーザ,電子ビーム溶接など数種類
の溶接機を必要とし製作が困難であった。
In the pressure receiving portion of the conventional differential pressure transmitter, welding is the mainstream of welding, and in particular, the welding of the seal fitting, the sensor diaphragm, the seal diaphragm, etc., is all. Such welding work requires several kinds of welding machines such as TIG, laser, and electron beam welding, and is difficult to manufacture.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の差圧伝送器においては、部材と部材を合わ
せ、気密を作る手段として、メタルフローを用いる。ま
た、メタルフローで固定する箇所に三角溝を設け、そこ
に硬度の低いメタルを流し込むことにより、より気密の
程度を高めることができる。そしてこの三角溝へ流れ込
んだメタルのせん断力で強度を持たせ、角部でシール性
を持たせることが可能である。さらに硬度の低い銅や黄
銅を使用すれば溝の数を減らしたり、無くしたりしても
メタルフローを達成することができる。これにより、プ
レス機を使用して、圧力を変えるだけで簡単に接合する
ことができる為、多くの製作工程をかけずに、伝送器の
気密を作る工程を短縮することができる。
In order to solve the above problems, in the differential pressure transmitter according to the present invention, a metal flow is used as a means for combining members with each other to make airtight. Further, a triangular groove is provided at a portion fixed by metal flow, and a metal having a low hardness is poured into the triangular groove, so that the degree of airtightness can be further increased. Then, it is possible to give strength by the shearing force of the metal that has flowed into the triangular groove, and to give a sealing property at the corners. If copper or brass having a lower hardness is used, metal flow can be achieved even if the number of grooves is reduced or eliminated. As a result, since it is possible to easily perform joining by changing the pressure using a press machine, it is possible to shorten the process of making the transmitter airtight without performing many manufacturing processes.

【0008】[0008]

【作用】以下、本発明の差圧伝送器の作用を従来の差圧
伝送器と比較して述べる。
The operation of the differential pressure transmitter according to the present invention will be described below in comparison with the conventional differential pressure transmitter.

【0009】従来の差圧伝送器においては、TIG,レ
ーザー,電子ビームなどの高い熱を発生する手段により
部材と部材を溶接していたため、製作過程において、部
材が変形を起こしてしまい、内部のシリコンオイルの圧
力伝達状態が変わってしまうことがあり、このため段取
り検査などの生産以外の時間が多くかかっていた。これ
に対し本発明の差圧伝送器ではメタルフローするときの
押し方や圧力状態を変えるだけで全ての作業を行うこと
ができ、製作行程を容易にすることができる。また、こ
のメタルフローの方法によれば、直接三角溝で栓やシー
ル金具などを固定することができるため部品点数を低減
できる作用もある。
In the conventional differential pressure transmitter, the members are welded by means of generating high heat such as TIG, laser, electron beam, etc., so that the members are deformed in the manufacturing process, and The pressure transmission state of the silicone oil may change, which requires a lot of time other than production such as setup inspection. On the other hand, in the differential pressure transmitter of the present invention, all the work can be performed only by changing the pressing method and the pressure state at the time of metal flow, and the manufacturing process can be facilitated. Further, according to the metal flow method, the plugs and the seal fittings can be directly fixed by the triangular groove, so that the number of parts can be reduced.

【0010】[0010]

【実施例】以下、本発明の差圧伝送器を図を用いて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The differential pressure transmitter of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の差圧伝送器の一実施例を示
したものであり、この差圧伝送器は主に、圧力受圧部材
20,シール金具部組2,シールダイアフラム6,7,
過負荷保護ダイアフラム4,第一,第二の圧力室20
1,202,第一,第二の隔離室203,204で構成
されている。
FIG. 1 shows an embodiment of a differential pressure transmitter according to the present invention. The differential pressure transmitter mainly comprises a pressure receiving member 20, a seal fitting part group 2, seal diaphragms 6, 7 ,.
Overload protection diaphragm 4, first and second pressure chamber 20
1, 202, first and second isolation chambers 203 and 204.

【0012】図3に図1で示した圧力受圧部材20の詳
細図を示す。圧力受圧部材20は単一の部材からなり、
圧力受圧部材20の両端には対称にシールダイアフラム
6,7を取り付けるための穴部21,22があり、そこ
に取り付け用の三角溝90,91を設け、底面にはシー
ルダイアフラム6,7と同一形状に加工を施し、穴部2
1,22の入口には栓35,36を固定するためのシー
ルダイアフラム6,7より大きな径で、三角溝78,7
9を設けてある。
FIG. 3 is a detailed view of the pressure receiving member 20 shown in FIG. The pressure receiving member 20 is composed of a single member,
At both ends of the pressure receiving member 20, there are symmetrically provided holes 21, 22 for attaching the seal diaphragms 6, 7, triangular grooves 90, 91 for attachment are provided therein, and the bottom surface is the same as the seal diaphragms 6, 7. The shape is processed and the hole 2
The inlets of 1, 22 have a larger diameter than the sealing diaphragms 6, 7 for fixing the stoppers 35, 36, and have triangular grooves 78, 7
9 is provided.

【0013】また、圧力受圧部材20の中心軸上には、
過負荷保護ダイアフラム4,シール金具部組2を収納す
るための段付穴部23に、シールダイアフラム6,7と
直角方向にシール金具部組2を固定する三角溝80,8
1,過負荷保護ダイアフラム4を固定する三角溝82を
設けてある。段付穴23の小径側には、増幅器を取り付
けるための三角溝83が、また大径側には過負荷保護ダ
イアフラム4を固定するための固定金具10を取り付け
るための三角溝84が設けてある。
Further, on the central axis of the pressure receiving member 20,
Triangular grooves 80, 8 for fixing the seal fitting part set 2 in a direction perpendicular to the seal diaphragms 6, 7 in the stepped hole part 23 for housing the overload protection diaphragm 4 and the seal fitting part set 2.
1, a triangular groove 82 for fixing the overload protection diaphragm 4 is provided. A triangular groove 83 for mounting an amplifier is provided on the small diameter side of the stepped hole 23, and a triangular groove 84 for mounting the fixing metal fitting 10 for fixing the overload protection diaphragm 4 is provided on the large diameter side. .

【0014】そして、シールダイアフラム6,7,過負
荷保護ダイアフラム4,センサ部組2の間を導通路2
4,25,26,27で接続している。
A conduction path 2 is formed between the seal diaphragms 6 and 7, the overload protection diaphragm 4, and the sensor unit set 2.
4, 25, 26 and 27 are connected.

【0015】本発明の一実施例の差圧伝送器における第
一の受圧室201,第二の受圧室202,第一の隔離室
203,第二の隔離室204の構造を図1を用いて説明
する。
The structure of the first pressure receiving chamber 201, the second pressure receiving chamber 202, the first isolation chamber 203, and the second isolation chamber 204 in the differential pressure transmitter of one embodiment of the present invention will be described with reference to FIG. explain.

【0016】本実施例の差圧伝送器においては、圧力受
圧部材20の穴部21,22からシールダイアフラム
6,7を組み込み、シールダイアフラム6,7の面が平
行となるように圧力受圧部材20より硬度の低いメタル
11,12を当て板にしてメタルフロー接合することに
より、第一,第二の受圧室201,202を形成する。
次に栓35,36を段付穴37,38に組み込み、栓3
5,36を三角溝78,79にメタルフロー接合を行
い、測定流体受圧室17,18を形成する。
In the differential pressure transmitter of the present embodiment, the seal diaphragms 6 and 7 are incorporated from the holes 21 and 22 of the pressure receiving member 20 so that the surfaces of the seal diaphragms 6 and 7 are parallel to each other. The first and second pressure receiving chambers 201 and 202 are formed by performing metal flow bonding using the metals 11 and 12 having lower hardness as the contact plates.
Next, the stoppers 35 and 36 are assembled into the stepped holes 37 and 38, and the stopper 3
Metal flow joining of 5, 36 to the triangular grooves 78, 79 is performed to form measurement fluid pressure receiving chambers 17, 18.

【0017】圧力受圧部材20の中心段付穴部23に
は、径の大きな方向よりシール金具部組2を挿入し、シ
ール金具部組2の導通路60と圧力受圧部材20の導通
路27が導通するように組み込み、シール金具部組2の
両端をメタルフローする。
In the central stepped hole portion 23 of the pressure receiving member 20, the seal fitting portion set 2 is inserted from the direction of the larger diameter, and the passage 60 of the sealing fitting portion set 2 and the passage 27 of the pressure receiving member 20 are formed. It is assembled so as to be electrically connected, and both ends of the seal fitting part assembly 2 are metal-flowed.

【0018】その後、センタ金具5をセンタ金具5の導
通路61と圧力受圧部材20の導通部24が導通するよ
うな位置に、また過負荷保護ダイアフラム4の波形状と
同一に加工した面を過負荷保護ダイアフラム4側に向け
て取り付け、さらに過負荷保護ダイアフラム4を圧力受
圧部材20より硬度の低いメタル66を当て板にしてメ
タルフロー接合し、第一の隔離室203を形成する。
After that, the center metal fitting 5 is placed at a position where the conduction path 61 of the center metal fitting 5 and the conduction portion 24 of the pressure receiving member 20 are electrically connected, and the surface of the overload protection diaphragm 4 which has been processed into the same wavy shape is overpassed. The first isolation chamber 203 is formed by mounting the load protection diaphragm 4 toward the overload protection diaphragm 4 and further metal-flow joining the overload protection diaphragm 4 with a metal 66 having a hardness lower than that of the pressure receiving member 20 as a contact plate.

【0019】センタ金具5の中心には過負荷保護ダイア
フラム4から半導体センサ44へ圧力を伝達するための
導通路63が設けてある。固定金具取り付け穴10に固
定金具8を固定金具8の導通路62と圧力受圧部材20
の導通路26が導通するように、また過負荷保護ダイア
フラム4の波形状と同一に加工した面を過負荷保護ダイ
アフラム4側に向けて取り付け、固定金具8を圧力受圧
部材20の三角溝84にメタルフロー接合を行い、第二
の隔離室204を形成する。
At the center of the center metal fitting 5, there is provided a conducting path 63 for transmitting pressure from the overload protection diaphragm 4 to the semiconductor sensor 44. The fixing metal fitting 8 is installed in the fixing metal fitting mounting hole 10 and the pressure passage member 20 and the passage 62 of the fixing metal fitting 8 are connected.
Of the overload protection diaphragm 4 is attached to the triangular groove 84 of the pressure receiving member 20 such that the surface of the overload protection diaphragm 4 processed in the same shape as the corrugated shape of the overload protection diaphragm 4 faces toward the overload protection diaphragm 4 side. Metal flow bonding is performed to form the second isolation chamber 204.

【0020】そして、シールダイアフラム6,過負荷保
護ダイアフラム4,シール金具部組2,導通路24,6
1,63,液封口のシールピン51で囲まれた空間に
は、封入液15が充填してあり、同様にシールダイアフ
ラム7,過負荷保護ダイアフラム4,シール金具部組
2,導通路25,26,27,60,62,液封口のシ
ールピン52で囲まれた空間にも封入液16が充填して
ある。
Then, the seal diaphragm 6, the overload protection diaphragm 4, the seal fitting part set 2, the conductive paths 24, 6
1, 63, the space surrounded by the seal pin 51 of the liquid sealing port is filled with the filled liquid 15, and similarly, the seal diaphragm 7, the overload protection diaphragm 4, the seal fitting part set 2, the conductive paths 25, 26, The enclosed liquid 16 is also filled in the space surrounded by 27, 60, 62 and the seal pin 52 of the liquid sealing port.

【0021】シールピン51,52のシール方法も強度
を持たせる為、三角溝85,86を設けてメタルフロー
により形成している。
In order to increase the strength of the sealing method of the seal pins 51 and 52, the triangular grooves 85 and 86 are provided and formed by metal flow.

【0022】増幅器取付穴9には、増幅器ケース47を
挿入し、三角溝で、メタルフロー接合によって、増幅器
ケース47を圧力受圧部材20に固定する。
The amplifier case 47 is inserted into the amplifier mounting hole 9, and the amplifier case 47 is fixed to the pressure receiving member 20 by metal flow bonding with a triangular groove.

【0023】このような構成からなる差圧伝送器の差圧
検出動作を図1を用いて説明する。シールダイアフラム
6にプロセス流体からの第一の圧力が印加すると、シー
ルダイアフラム6を介してシールダイアフラム6の裏側
の第一の受圧室201の封入液15に測定流体の第一圧
力が伝達される。さらにこの第一の圧力は導通路24,
61を通って過負荷保護ダイアフラム4とセンタ金具5
の間に形成された第一の隔離室203に伝達され、さら
にセンタ金具4の導通路63を通って半導体センサ44
に伝達される。またプロセス流体からの第二の圧力がシ
ールダイアフラム7に印加した場合も同様にシールダイ
アフラム7を介して第二の受圧室202の封入液16に
測定流体の第二の圧力が伝達され、この第二の圧力は導
通路25,26,27によって過負荷保護ダイアフラム
4と固定金具8の間で形成された第二の隔離室204
と、導通路60によってセンサの裏面へ伝達される。こ
のように半導体センサ44はセンタダイアフラムの表,
裏に伝達した測定流体の第一,第二の圧力を検出し、半
導体センサ44の出力はハーメチックシールピン45よ
り大気開放側に取り出され、FPC46を介して増幅器
に伝送される。また過負荷保護ダイアフラム4は半導体
センサ44の保護用のダイアフラムで、シールダイアフ
ラム6,または7に過大圧力が印加したときセンサを保
護する役目をはたす。シールダイアフラム6または7は
過大圧力を印加したとき、シールダイアフラム6,7の
形状と同一の波形に加工した圧力受圧部材20に差座し
封入液15,16の内圧上昇を防止する。過負荷保護ダ
イアフラム4は、シールダイアフラム6,7が着座する
までの移動液量を第一,第二の隔離室203,204で
吸収し、内圧上昇を半導体センサ44の耐圧以下に押さ
えることによって半導体センサ44を保護する。
The differential pressure detecting operation of the differential pressure transmitter having such a configuration will be described with reference to FIG. When the first pressure from the process fluid is applied to the seal diaphragm 6, the first pressure of the measurement fluid is transmitted to the sealed liquid 15 in the first pressure receiving chamber 201 on the back side of the seal diaphragm 6 through the seal diaphragm 6. Further, this first pressure is applied to the conduit 24,
61 overload protection diaphragm 4 and center metal fitting 5
Is transmitted to the first isolation chamber 203 formed between the semiconductor sensor 44 and the center metal fitting 4 through the conducting path 63.
Be transmitted to. Also, when the second pressure from the process fluid is applied to the seal diaphragm 7, the second pressure of the measurement fluid is similarly transmitted to the enclosed liquid 16 in the second pressure receiving chamber 202 via the seal diaphragm 7, and this second pressure is transmitted. The second pressure is the second isolation chamber 204 formed between the overload protection diaphragm 4 and the fixing member 8 by the communication passages 25, 26 and 27.
Is transmitted to the back surface of the sensor through the conduction path 60. In this way, the semiconductor sensor 44 has a center diaphragm table,
The first and second pressures of the measurement fluid transmitted to the back are detected, and the output of the semiconductor sensor 44 is taken out to the atmosphere open side from the hermetic seal pin 45 and is transmitted to the amplifier via the FPC 46. Further, the overload protection diaphragm 4 is a diaphragm for protecting the semiconductor sensor 44, and serves to protect the sensor when an excessive pressure is applied to the seal diaphragm 6 or 7. When an excessive pressure is applied, the seal diaphragm 6 or 7 is seated on the pressure receiving member 20 processed into the same waveform as the shape of the seal diaphragms 6 and 7 to prevent the internal pressure of the filled liquids 15 and 16 from rising. The overload protection diaphragm 4 absorbs the amount of the moving liquid until the seal diaphragms 6 and 7 are seated in the first and second isolation chambers 203 and 204, and suppresses the internal pressure rise below the breakdown voltage of the semiconductor sensor 44. Protect the sensor 44.

【0024】図6は本発明で使用される複合機能形セン
サの一実施例を示す断面図であり、図8は図6のセンサ
のみの平面図であり、図7はその回路図である。
FIG. 6 is a sectional view showing an embodiment of the multi-function type sensor used in the present invention, FIG. 8 is a plan view of only the sensor of FIG. 6, and FIG. 7 is a circuit diagram thereof.

【0025】図6において44は単結晶シリコンからな
る複合機能形センサチップである。複合機能形センサチ
ップ44は中空の第1の固定台302,中空の第2の固
定台303を介してハウジング2に取付けられる。第1
の固定台302は複合機能形センサチップ44のハウジ
ング2からの電気絶縁およびハウジング2からの線膨張
係数の相違による熱歪の低減を考慮し、シリコンと線膨
張係数の近似した硼珪酸塩ガラス又はその接合面のみに
酸化膜を付けたシリコンが好ましい。また、第2の固定
台303は固定台302と同様に、線膨張係数およびハ
ウジング2への溶接接合等の取付けを考慮し、シリコン
と線膨張係数の近似したFe−Ni合金、あるいはFe
−Ni−Co合金が好ましい。第1の固定台302を硼
珪酸液ガラス、又は接合面に酸化膜を付したシリコン、
第2の固定台303をFe−Ni合金又はFe−Ni−
Co合金とすると、複合機能形センサチップ44と第1
の固定台302、および第2の固定台303は陽極接合
法により容易に接合できる。さらに、第2の固定台3と
ハウジング4は通常の溶接接合(例えばTIG溶接2は
プラズマ溶接)により容易に接合される。
In FIG. 6, reference numeral 44 denotes a composite function type sensor chip made of single crystal silicon. The multifunctional sensor chip 44 is attached to the housing 2 via a hollow first fixing base 302 and a hollow second fixing base 303. First
The fixing base 302 of is made of borosilicate glass having a linear expansion coefficient close to that of silicon in consideration of electrical insulation from the housing 2 of the multi-function sensor chip 44 and reduction of thermal strain due to a difference in linear expansion coefficient from the housing 2. Silicon having an oxide film only on its bonding surface is preferable. Further, the second fixing base 303, like the fixing base 302, takes into consideration the linear expansion coefficient and attachment to the housing 2 by welding or the like, and in consideration of the linear expansion coefficient, a Fe—Ni alloy or Fe which has a linear expansion coefficient close to that of silicon.
-Ni-Co alloy is preferred. The first fixing table 302 is made of borosilicate liquid glass, or silicon having an oxide film on the bonding surface,
The second fixed base 303 is made of Fe-Ni alloy or Fe-Ni-
If a Co alloy is used, the multi-functional sensor chip 44 and the first
The fixing base 302 and the second fixing base 303 can be easily joined by the anodic bonding method. Further, the second fixing base 3 and the housing 4 are easily joined by ordinary welding joining (for example, TIG welding 2 is plasma welding).

【0026】複合機能形センサチップ1からの差圧又は
圧力差信号,静圧信号,温度信号の各信号はリード線3
17、および配線板305を介して、ハウジング2に設
けられたハーメチックシール部341の端子45により
それぞれ取出される。
The differential pressure or pressure difference signal, the static pressure signal, and the temperature signal from the composite function type sensor chip 1 are connected to the lead wire 3.
It is taken out through the terminal 17 of the hermetic seal portion 341 provided in the housing 2 through the wiring board 17 and the wiring board 305.

【0027】複合機能形センサチップ44は(100)
面のn形単結晶シリコンであり、その一方の面のほぼ中
央にほぼ円形又は環状の薄肉部311を有する。一方、
チップ44の他方の面は、中央に孔を有する第1の固定
台302により凹部313を形成する。この凹部313
に検出すべき圧力の一方を中央に孔を有する第2の固定
台303より圧力を導入する。これにより、前記薄肉部
311は差圧又は圧力差に感応する起歪体となり、差圧
感圧ダイアフラムとして動作する。
The composite function type sensor chip 44 is (100)
The surface is n-type single crystal silicon, and has a substantially circular or annular thin-walled portion 311 at approximately the center of one surface thereof. on the other hand,
On the other surface of the chip 44, a recess 313 is formed by the first fixing base 302 having a hole in the center. This recess 313
One of the pressures to be detected is introduced from the second fixing base 303 having a hole in the center. As a result, the thin portion 311 becomes a strain-generating body sensitive to the differential pressure or the pressure difference, and operates as a differential pressure sensitive diaphragm.

【0028】差圧感圧ダイアフラム311の上面には、
(100)面におけるピエゾ抵抗係数が最大となる〈1
10〉軸方向に、p形ゲージ抵抗611〜614,65
1〜654の差圧又は圧力差抵抗がそれぞれ平行に、又
は直角方向に拡散法あるいはイオン注入法により4個形
成される。前記各抵抗611〜614,651〜654の
位置は差圧又は圧力差印加時に差圧感圧ダイアフラム3
11上に発生する半径方向と周方向の応力が最大になる
固定部近傍に形成される。またそれらの抵抗の方向とし
て、611と613を半径方向とし、612と614を
接線方向としている。これらの抵抗群は図15に示すよ
うなブリッジに結線される。差圧感圧ダイアフラム31
1の形状と肉厚は感応する差圧又は圧力差により所望の
形状と肉厚に設定されている。
On the upper surface of the differential pressure sensitive diaphragm 311,
The piezoresistive coefficient in the (100) plane becomes maximum <1
10> p-type gauge resistors 611 to 614, 65 in the axial direction
Four differential pressures 1 to 654 or pressure differential resistances are formed in parallel or at right angles by the diffusion method or the ion implantation method. The positions of the resistors 611 to 614 and 651 to 654 are the differential pressure sensitive diaphragm 3 when the differential pressure or the pressure difference is applied.
It is formed in the vicinity of the fixed portion where the stress in the radial direction and the circumferential direction generated on 11 is maximized. The directions of the resistances are 611 and 613 in the radial direction and 612 and 614 in the tangential direction. These resistance groups are connected to a bridge as shown in FIG. Differential pressure sensitive diaphragm 31
The shape and wall thickness of No. 1 are set to a desired shape and wall thickness depending on the differential pressure or pressure difference that is sensitive.

【0029】差圧感圧ダイアフラム311上の抵抗群6
11〜614はダイアフラムの上面と凹部13の圧力差
により発生する応力を受けることにより、ピエゾ抵抗効
果にてその抵抗値が変化するため、図15の回路におけ
る504〜507の端子より差動にて取出せる。しかし
ながら、この出力は差圧感圧ダイアフラム311の両面
にかかる圧力が等しいときでさえ、あるいは温度が変化
したときでも感応してしまう。これらの主要因としては
第1には、611〜614の抵抗値は温度の関数で変化
してしまうということである。第2には複合機能形セン
サチップ44は図14に示すように材質の相違する接合
を有した連続の構造体としてその機能を発揮するため、
圧力印加時には何らかの応力が必然的に発生してしまう
ということである。
Resistor group 6 on differential pressure sensitive diaphragm 311
11 to 614 are subjected to stress generated by the pressure difference between the upper surface of the diaphragm and the concave portion 13, and their resistance values change due to the piezoresistive effect, so that the terminals 504 to 507 in the circuit of FIG. You can take it out. However, this output is sensitive even when the pressure on both sides of the differential pressure sensitive diaphragm 311 is equal, or even when the temperature changes. The first of these is that the resistance values of 611 to 614 change as a function of temperature. Secondly, the multi-function sensor chip 44 exerts its function as a continuous structure having joints made of different materials as shown in FIG.
It means that some kind of stress is inevitably generated when pressure is applied.

【0030】このため、本発明の一実施例では、圧力と
温度に感応する補助センサを複合機能形センサチップ4
4上に設け、それらの信号にて差圧又は圧力差信号を高
精度に補正するようにしてある。
For this reason, in one embodiment of the present invention, the auxiliary sensor sensitive to pressure and temperature is used as the composite function type sensor chip 4.
4 and the signals are used to correct the differential pressure or the pressure difference signal with high accuracy.

【0031】図14,図16において、複合機能形セン
サチップ44の前記差圧感圧ダイアフラム311以外の
厚肉部312に少なくとも1個の感温抵抗655が形成
される。この感温抵抗は(100)面におけるピエゾ抵
抗係数の最小感度を示す〈100〉軸方向に配置された
p形の感温抵抗であり、圧力には感応しない。この抵抗
は差圧抵抗群611〜614と同様に拡散又はイオン注
入法により所定の出力が得られる抵抗値で形成される。
14 and 16, at least one temperature-sensitive resistor 655 is formed in the thick portion 312 of the multi-function sensor chip 44 other than the differential pressure-sensitive diaphragm 311. This temperature-sensitive resistance is a p-type temperature-sensitive resistance arranged in the <100> axis direction showing the minimum sensitivity of the piezoresistive coefficient in the (100) plane, and is insensitive to pressure. Similar to the differential pressure resistance groups 611 to 614, this resistance is formed with a resistance value by which a predetermined output can be obtained by the diffusion or ion implantation method.

【0032】一方、もう1つの補助センサである静圧セ
ンサは、前記感温抵抗655と同様に、センサチップ4
4の厚肉部312に前記差圧抵抗群と同じ結晶軸方向
に、それぞれ平行に又は直角方向に4個の静圧抵抗群6
51〜654が形成される。静圧抵抗群651〜654
のうち、651と654は前記チップ44の厚肉部312
の一部に薄肉部315を有する面上に形成される。この
薄肉部315のもう一方の面は前記第1の固定台302
の一方の面と凹部321を形成する。この凹部321は
接合時に完全に封入されるので、静圧と完全に分離さ
れ、所定の圧力を有した基準圧室として動作する。一般
には、この基準圧室の圧力としては真空〜大気圧間の所
定の圧力に保持されている。これにより、厚肉部312
上の薄肉部315は静圧に感応する起歪体となり、基準
圧室の圧力と静圧との圧力差に感応する静圧感応ダイア
フラムとして動作する。この静圧感圧ダイアフラム31
5には前記差圧感圧ダイアフラム311に比して数百倍
の差圧に耐える必要があるため、前記凹部321の形状
設定に十分注意する必要がある。
On the other hand, the static pressure sensor, which is another auxiliary sensor, is similar to the temperature-sensitive resistor 655 in that the sensor chip 4
Four static pressure resistance groups 6 are provided in the thick portion 312 of 4 in the same crystal axis direction as the differential pressure resistance group, in parallel or at right angles.
51-654 are formed. Static pressure resistance group 651-654
Of these, 651 and 654 are thick portions 312 of the tip 44.
Is formed on a surface having a thin portion 315 in a part thereof. The other surface of the thin portion 315 is the first fixing base 302.
One surface and the concave portion 321 are formed. Since the recess 321 is completely enclosed at the time of joining, it is completely separated from the static pressure and operates as a reference pressure chamber having a predetermined pressure. Generally, the pressure of the reference pressure chamber is maintained at a predetermined pressure between vacuum and atmospheric pressure. As a result, the thick portion 312
The upper thin portion 315 serves as a flexure element sensitive to static pressure, and operates as a static pressure sensitive diaphragm sensitive to the pressure difference between the pressure of the reference pressure chamber and the static pressure. This static pressure sensitive diaphragm 31
5 is required to withstand a pressure difference several hundred times higher than that of the differential pressure sensitive diaphragm 311. Therefore, it is necessary to pay sufficient attention to setting the shape of the recess 321.

【0033】図9は本発明で使用されるメタルフローの
作業工程の一実施例を示したものである。尚、本発明の
差圧伝送器においては部材と部材を接合する場所にはメ
タルフローを使用することが可能であるが、説明のた
め、圧力受圧部材20と栓36とのメタルフローを例に
取って説明する。
FIG. 9 shows an embodiment of the metal flow working process used in the present invention. In the differential pressure transmitter of the present invention, it is possible to use a metal flow at the place where the members are joined, but for the sake of explanation, the metal flow between the pressure receiving member 20 and the plug 36 will be taken as an example. Take and explain.

【0034】まず、第1段目の作業工程として、圧力受
圧部材20の栓が入る段付穴38に溝部698を形成す
る。この溝部698の形成方法としては、旋盤等その他
の加工法により適宜作成することができる。次に段付穴
38に栓材36を組み込ませ、そしてこの栓材36に押
し刃699を固着させる。そして、この押し刃にプレス
圧700(約十数トン)を加えることにより、栓材36
の溝部698に接する部分を変形させメタルフロー接合
させる。
First, as the first working step, the groove portion 698 is formed in the stepped hole 38 into which the plug of the pressure receiving member 20 is inserted. As a method of forming the groove portion 698, it can be appropriately created by a lathe or other processing method. Next, the stopper 36 is incorporated into the stepped hole 38, and the push blade 699 is fixed to the stopper 36. Then, a pressing pressure of 700 (about ten tons) is applied to this pushing blade to remove the plug material 36.
The portion in contact with the groove portion 698 is deformed and metal flow joining is performed.

【0035】この結果、溝部698の部分は図10に示
したように、溝部の三角部分に部材20と部材36間に
シール性が発生し、さらに栓36の溝部に入った部分が
せん断力により部材間の強度を持たせることが可能にな
る。
As a result, as shown in FIG. 10, in the groove portion 698, a sealing property is generated between the member 20 and the member 36 in the triangular portion of the groove portion, and further, the portion of the plug 36 that has entered the groove portion is sheared. It becomes possible to give strength between members.

【0036】また、メタルフロー接合を行う時、2つの
部材間の強度の関係が問題となる。たとえば、圧力受圧
部材にステンレススチール(SUS316)を使用した場合、
栓36として銅などの比較的やわらかい部材を用いれ
ば、メタルフローは比較的簡単に行えることができる。
しかし、根本的にやわらかい部材では、栓材として、強
度的に不足するため問題が残る。
Further, when performing metal flow bonding, the strength relationship between two members becomes a problem. For example, if stainless steel (SUS316) is used for the pressure receiving member,
If a relatively soft member such as copper is used as the plug 36, the metal flow can be performed relatively easily.
However, a fundamentally soft member is insufficient in strength as a plug material, and thus a problem remains.

【0037】そこで、本発明の一実施例では、栓材とし
て圧力受圧部材と同差の材質を用いた場合、栓材の溝部
に入る部分を固溶化処理等により、周辺部と比べ比較的
やわらかくする処理を取ることにより、メタルフロー作
業をやりやすくすることが可能である。
Therefore, in one embodiment of the present invention, when a material having the same difference as the pressure receiving member is used as the plug material, the portion of the plug material that enters the groove is made relatively softer than the peripheral portion by the solution treatment or the like. It is possible to facilitate the metal flow work by performing the processing.

【0038】以下に示した表1は、圧力受圧部材20に
SUS316を用いた場合に、メタルフローを行いやすくする
ため、各材質で作られた栓材に対して行った固溶化処理
前,処理後の硬度変化を示したものである。
Table 1 below shows the pressure receiving member 20.
When SUS316 is used, the hardness change before and after the solution treatment performed on the plug material made of each material is shown to facilitate the metal flow.

【0039】尚、固溶化処理温度としては1000℃前
後の条件にて行っている。
The solution treatment temperature is about 1000 ° C.

【0040】[0040]

【表1】 [Table 1]

【0041】このように栓材の周囲をやわらかくするこ
とによりメタロフロー接合をやりやすくすることが可能
である。
By thus softening the circumference of the plug material, it is possible to facilitate the metalloflow bonding.

【0042】次に栓の取付けの変形例を図4〜図5に示
す。
Next, modified examples of mounting the plug are shown in FIGS.

【0043】図4は、過負荷保護ダイアフラム4と固定
金具8を同時に接合する方法で、固定金具8に過負荷保
護ダイアフラム4と当たる面に円周上に突起を設けその
突起で過負荷保護ダイアフラムを押さえる。これによ
り、過負荷保護ダイアフラム4をメタルフローする際の
メタル66が不必要となり、かつ作業回数が1回で済む
というメリットがある。
FIG. 4 shows a method in which the overload protection diaphragm 4 and the fixing metal fitting 8 are joined at the same time. A projection is provided on the circumference of the surface of the fixing metal fitting 8 that contacts the overload protection diaphragm 4, and the overload protection diaphragm is attached by the projection. Hold down. As a result, there is an advantage that the metal 66 is not needed when the overload protection diaphragm 4 is metal-flowed, and the number of operations is only one.

【0044】図5も同様にして、栓35,36に突起を
設けることで、シールダイアフラム6,7と栓35,3
6を同時に接合することができ、シールダイアフラム
6,7をメタルフローする際のメタル11,12が不要
となり、作業回数が1回で済むようにしたものである。
Similarly in FIG. 5, by providing protrusions on the plugs 35 and 36, the seal diaphragms 6 and 7 and the plugs 35 and 3 are formed.
6 can be joined at the same time, the metal 11 and 12 at the time of metal-flowing the seal diaphragms 6 and 7 are unnecessary, and the number of times of work is only one.

【0045】尚、上述した本発明の一実施例では、部材
と部材とをメタルフローで接合する場合、溝部を2ケ所
設けて部材を押し込む例が示されているが、部材の材質
としてやわらかい部材を用いることにより、溝部を1ケ
所としても完全なメタルフロー接合を行うことが可能に
なる。
In the above-described embodiment of the present invention, when joining members to each other by metal flow, there is shown an example in which two groove portions are provided and the members are pushed in. By using, it becomes possible to perform a complete metal flow joining even if there is only one groove.

【0046】また、本発明の一実施例として差圧伝送器
内の部材と部材を接合する部分をメタルフローにてすべ
て行った例を示しているが、メタルフローが必然でない
部分があれば、それらの部材間の接合を従来例の方法で
行う方法を取ることも可能であり、例えば栓35と栓3
6のみ、又は固定金具8のみ、さらにはそれら3つの部
材のみを行うことも可能である。
Further, as one embodiment of the present invention, an example is shown in which all the members in the differential pressure transmitter and the parts for joining the members are subjected to the metal flow. However, if there is a part where the metal flow is not necessary, It is also possible to adopt a method of joining these members by a conventional method, for example, the stopper 35 and the stopper 3
It is also possible to carry out only 6 or only the fixing member 8 and further only these three members.

【0047】さらには、製作を容易にし受圧部材20の
変形をおさえるために、対向方向にある部材、例えば栓
36と栓35,増幅器ケース47と固定金具8をそれぞ
れの方向からプレス圧で押しつけることにより、変形を
押さえ製作をやりやすくすることができる。
Further, in order to facilitate the production and suppress the deformation of the pressure receiving member 20, the members in the opposite directions, for example, the plug 36 and the plug 35, the amplifier case 47 and the fixing member 8 are pressed by the press pressure from the respective directions. This makes it possible to suppress deformation and facilitate manufacturing.

【0048】そして、本実施例では受圧部材20、およ
びそれぞれの部材を単一部材にて構成した例を示してい
るがこれらは、当然に複数の部材を組み合わせても同等
の効果を得ることができる。
In this embodiment, the pressure receiving member 20 and the respective members are constituted by a single member. However, it is of course possible to obtain the same effect by combining a plurality of members. it can.

【0049】図11に本発明の差圧伝送器の信号処理回
路の一実施例を示す。複合センサ44は差圧と静圧と温
度によるゲージ抵抗の変化を電気信号として出力し、マ
ルチプレクサー(MPX)731に選択的に取り込まれ
る。
FIG. 11 shows an embodiment of the signal processing circuit of the differential pressure transmitter of the present invention. The composite sensor 44 outputs a change in gauge resistance due to differential pressure, static pressure and temperature as an electric signal, and is selectively taken into the multiplexer (MPX) 731.

【0050】マルチプレクサー731に取り込まれた各
種の信号はプログラマブルゲインアンプ(PGA)73
3で増幅され、次にA/D変換器734でディジタル信
号に変換され、マイクロプロセッサー(MPU)730
に送信される。メモリ739(EPROM)には差圧,
静圧,温度センサの各特性(圧力伝送器の場合は圧力と
同度センサの各特性)が予め記憶されており、これらの
データを用いて前記マイクロプロセッサー730にて補
正演算することにより、高精度の差圧信号種と、静圧,
温度信号値を演算する。この演算結果は、D/A変換器
737とV/I変換器738を介して通常のアナログ信
号に変換され、DC4〜20mAの信号となって上位の
制御装置であるコンピュータ740に差圧,静圧,温度
信号が送出される構成となっている。
Various signals taken in by the multiplexer 731 are programmable gain amplifier (PGA) 73.
3 and then converted into a digital signal by the A / D converter 734, and the microprocessor (MPU) 730
Sent to. Memory 739 (EPROM) has a differential pressure,
Each characteristic of the static pressure and temperature sensors (in the case of a pressure transmitter, each characteristic of the pressure and the same degree sensor) is stored in advance, and by using these data, the microprocessor 730 corrects and calculates Precision differential pressure signal type, static pressure,
Calculate the temperature signal value. The calculation result is converted into a normal analog signal through the D / A converter 737 and the V / I converter 738, and becomes a signal of DC 4 to 20 mA, which is applied to the computer 740, which is a higher-level control device, by differential pressure and static. It is configured to send out pressure and temperature signals.

【0051】そして、本実施例の装置では、複合機能セ
ンサ44より求めたプロセス状態に関する情報を、直流
電流(例えばDC4〜20mA)に変換して信号処理回
路の近くに設けた表示部(図示していない)に送るこ
と,直流電流に情報のデジタル信号を重畳して送るこ
と、さらに図では示していないが信号処理回路から直接
にデジタル信号を送ることによりプロセス情報を出力す
ることが困難である。
In the apparatus of this embodiment, the information about the process state obtained from the multi-function sensor 44 is converted into a direct current (for example, DC 4 to 20 mA) and provided near the signal processing circuit (shown in the figure). It is difficult to output process information by sending a digital signal directly from the signal processing circuit (not shown in the figure). .

【0052】また、デジタルI/O回路740により直
流電流信号にデジタル信号を重畳して、外部に設けられ
た監視制御装置と通信を行い、この装置によりプロセス
状態に関する情報を表示し、そしてこの装置から測定レ
ンジなどパラメータの設定,変更,出力調整,入出力モ
ニタ,自己診断などを行うことができる。
Further, the digital I / O circuit 740 superimposes a digital signal on the direct current signal to communicate with an external monitoring control device, and this device displays information on the process state, and this device. Can set and change parameters such as measurement range, output adjustment, input / output monitor, and self-diagnosis.

【0053】図18に本発明の差圧伝送器を、プロセス
状態を監視,制御する上位機器に接続した場合のプロセ
ス制御システムの一実施例を示す。
FIG. 18 shows an embodiment of a process control system when the differential pressure transmitter of the present invention is connected to a host device for monitoring and controlling the process state.

【0054】2線式伝送器950に接続された差圧伝送
器930および940のプロセス状態を検出した信号
は、シグナルコンパレータ910を介してオペレータコ
ンソール740に接続することにより、プロセス現場か
ら離れた場所でも知ることができるようになる。またオ
ペレーターズコンソール740以外で、2線式伝送路に
接続されたハンドルヘルドタイプ通信器920において
もプロセス状態検出器の経路変化状態を検出することを
可能にしている。
The signal that has detected the process state of the differential pressure transmitters 930 and 940 connected to the two-wire type transmitter 950 is connected to the operator console 740 via the signal comparator 910, so that the signal can be transmitted from a location remote from the process site. But you will be able to know. In addition to the operator's console 740, the handle-held type communication device 920 connected to the two-wire transmission line can detect the path change state of the process state detector.

【0055】[0055]

【発明の効果】本発明の差圧伝送器によれば受圧部本体
へのシール金具,センタダイアフラム,固定金具,シー
ルダイアフラム,測定流体受圧室形成栓,シールピンお
よび増幅器の接合をメタルフローで行うことにより、一
種類の機械で製造することができる。また、コンベアに
よるライン生産も可能となり、これにより生産性がきわ
めて高く、安価な差圧伝送器を製造する効果がある。
According to the differential pressure transmitter of the present invention, the metal fitting is used to join the seal fitting, the center diaphragm, the fixing fitting, the seal diaphragm, the measurement fluid pressure receiving chamber forming plug, the seal pin and the amplifier to the pressure receiving body. Therefore, it can be manufactured by one type of machine. In addition, line production by a conveyor is also possible, which has the effect of manufacturing a differential pressure transmitter that has extremely high productivity and is inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の差圧伝送器の一実施例を示す縦断面
図。
FIG. 1 is a vertical sectional view showing an embodiment of a differential pressure transmitter of the present invention.

【図2】従来の差圧伝送器の縦断面図。FIG. 2 is a vertical sectional view of a conventional differential pressure transmitter.

【図3】図1の圧力受圧部材の縦断面図。3 is a longitudinal sectional view of the pressure receiving member of FIG.

【図4】過負荷保護ダイアフラム接合別実施例の断面
図。
FIG. 4 is a cross-sectional view of another embodiment of overload protection diaphragm bonding.

【図5】シールダイアフラム接合別実施例の断面図。FIG. 5 is a cross-sectional view of another embodiment of sealing diaphragm bonding.

【図6】本発明の一実施例に使用される複合機能形セン
サ。
FIG. 6 is a multifunctional sensor used in an embodiment of the present invention.

【図7】図6のセンサの回路図。FIG. 7 is a circuit diagram of the sensor of FIG.

【図8】図6のセンサの平面図。FIG. 8 is a plan view of the sensor of FIG.

【図9】本発明の差圧伝送器の作成工程の一実施例。FIG. 9 is an example of a manufacturing process of the differential pressure transmitter of the present invention.

【図10】本発明の差圧伝送器の溝部の説明図。FIG. 10 is an explanatory view of a groove portion of the differential pressure transmitter of the present invention.

【図11】本発明の差圧伝送器の検出回路の一実施例。FIG. 11 is an embodiment of the detection circuit of the differential pressure transmitter of the present invention.

【図12】本発明の差圧伝送器の伝送路への取付図。FIG. 12 is a diagram showing how the differential pressure transmitter of the present invention is attached to a transmission line.

【符号の説明】[Explanation of symbols]

2…シール金具部組、4…過負荷保護ダイアフラム、5
…センタ金具、6,7…シールダイアフラム、8…固定
金具、9…増幅器取付穴、10…固定金具取付穴、1
1,12,13,14,66…メタル、15,16…封
入液、17,18…測定流体受圧室、20…圧力受圧部
材、21,22…シールダイアフラム取付け穴部、23
…センサ部組収納穴部、24,25,26,27,6
0,61,62,63…導通路、35,36…栓、3
7,38…段付穴、44…半導体差圧センサ、45…ハ
ーメチックシールピン、46…FPC、47…増幅器ケ
ース、51,52…シールピン、53,54…液封口、
201…第一の受圧室、202…第二の受圧室、203
…第一の隔離室、204…第二の隔離室、699…押し
刃。
2 ... Seal metal part assembly, 4 ... Overload protection diaphragm, 5
... Center metal fittings, 6,7 ... Seal diaphragm, 8 ... Fixing metal fittings, 9 ... Amplifier mounting hole, 10 ... Fixing metal fitting mounting hole, 1
1, 12, 13, 14, 66 ... Metal, 15, 16 ... Filled liquid, 17, 18 ... Measuring fluid pressure receiving chamber, 20 ... Pressure receiving member 21, 22 ... Seal diaphragm mounting hole portion, 23
... Sensor assembly storage holes, 24, 25, 26, 27, 6
0, 61, 62, 63 ... Conducting path, 35, 36 ... Stopper, 3
7, 38 ... Stepped hole, 44 ... Semiconductor differential pressure sensor, 45 ... Hermetic seal pin, 46 ... FPC, 47 ... Amplifier case, 51, 52 ... Seal pin, 53, 54 ... Liquid sealing port,
201 ... First pressure receiving chamber, 202 ... Second pressure receiving chamber, 203
... first isolation chamber, 204 ... second isolation chamber, 699 ... push blade.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】第一のダイアフラムによって形成され、か
つ第一の検出流体が封入された第一の受圧室と、第二の
ダイアフラムによって形成され、かつ第二の検出流体が
封入された第二の受圧室とを備え、前記第一のダイアフ
ラムに第一の測定流体の圧力,前記第二のダイアフラム
に第二の測定流体の圧力を印加して両圧力の差を差圧検
出センサで検出する差圧伝送器において、前記第一の受
圧室に導通する第一の隔離室と、前記第二の受圧室に導
通する第二の隔離室とを、前記第一,第二のダイアフラ
ムと異なる方向に配置された第三のダイアフラムで構成
し、前記第一,第二の隔離室に導通する前記第一,第二
の検出流体を前記差圧検出センサに印加する構造の差圧
伝送器を、メタルフローで結合することを特徴とする差
圧伝送器。
1. A first pressure receiving chamber formed by a first diaphragm and containing a first detection fluid, and a second pressure receiving chamber formed by a second diaphragm and containing a second detection fluid. A pressure-receiving chamber, the pressure of the first measurement fluid is applied to the first diaphragm, the pressure of the second measurement fluid is applied to the second diaphragm, and the difference between the two pressures is detected by a differential pressure detection sensor. In the differential pressure transmitter, a first isolation chamber conducting to the first pressure receiving chamber and a second isolation chamber conducting to the second pressure receiving chamber are provided in different directions from the first and second diaphragms. A differential pressure transmitter having a structure configured to apply the first and second detection fluids that are electrically connected to the first and second isolation chambers to the differential pressure detection sensor, A differential pressure transmitter characterized by coupling with a metal flow.
【請求項2】請求項第1項の差圧伝送器において、 前記第一のダイアフラムを前記差圧伝送器の受圧部材本
体の第一の端面に配置し、前記第二のダイアフラムを前
記第一の端面に対向する前記受圧部材本体の第二の端面
に配置した差圧伝送器の前記第一,第二のダイアフラム
をメタルフローで結合したことを特徴とする差圧伝送
器。
2. The differential pressure transmitter according to claim 1, wherein the first diaphragm is disposed on a first end face of a pressure receiving member main body of the differential pressure transmitter, and the second diaphragm is the first diaphragm. A differential pressure transmitter characterized in that the first and second diaphragms of the differential pressure transmitter arranged on the second end face of the pressure receiving member main body facing the end face of are connected by a metal flow.
【請求項3】請求項第1項の差圧伝送器において、 前記第一のダイアフラムの圧力受圧方向と、前記第三の
ダイアフラムの圧力受圧方向とが直角に位置するように
前記第一,第三のダイアフラムが配置され、かつ前記第
二のダイアフラムの圧力受圧方向と、前記第三のダイア
フラムの圧力受圧方向とが直角に位置するように前記第
二,第三のダイアフラムが配置された差圧伝送器をメタ
ルフローで結合することを特徴とする差圧伝送器。
3. The differential pressure transmitter according to claim 1, wherein the pressure receiving direction of the first diaphragm and the pressure receiving direction of the third diaphragm are positioned at right angles to each other. A differential pressure in which three diaphragms are arranged and the second and third diaphragms are arranged so that the pressure receiving direction of the second diaphragm and the pressure receiving direction of the third diaphragm are positioned at right angles. A differential pressure transmitter characterized in that the transmitter is coupled with a metal flow.
【請求項4】請求項第1項の差圧伝送器において、 第三のダイアフラムの片面を前記差圧伝送器を構成する
受圧部材に接合して、前記第一の隔離室を形成するとき
の接合に、メタルフローを用いて接合したことを特徴と
する差圧伝送器。
4. The differential pressure transmitter according to claim 1, wherein one side of the third diaphragm is joined to a pressure receiving member constituting the differential pressure transmitter to form the first isolation chamber. A differential pressure transmitter characterized in that a metal flow is used for joining.
【請求項5】請求項第4項の差圧伝送器において、 該第三のダイアフラムの片面に密閉部材を接合して、前
記第二の隔離室を形成するときの接合に、メタルフロー
を用いて接合したことを特徴とする差圧伝送器。
5. The differential pressure transmitter according to claim 4, wherein a metal member is used for joining when a sealing member is joined to one surface of the third diaphragm to form the second isolation chamber. Differential pressure transmitter characterized by being joined together.
【請求項6】請求項第1項の差圧伝送器において、 前記差圧検出センサとして圧力検出ダイアフラムを有す
る半導体差圧センサを備え、前記圧力検出ダイアフラム
の圧力受圧方向と前記第三のダイアフラムの圧力受圧方
向が同方向になる差圧伝送器を、メタルフローで結合す
ることを特徴とする差圧伝送器。
6. The differential pressure transmitter according to claim 1, further comprising a semiconductor differential pressure sensor having a pressure detection diaphragm as the differential pressure detection sensor, the pressure receiving direction of the pressure detection diaphragm and the third diaphragm. A differential pressure transmitter characterized in that the differential pressure transmitters whose pressure receiving directions are the same direction are connected by a metal flow.
【請求項7】請求項第6項の差圧伝送器において、 前記半導体差圧センサをシール金具により保持し、前記
差圧伝送器を構成する受圧部材と該シール金具との接合
に、メタルフローを用いたことを特徴とする差圧伝送
器。
7. The differential pressure transmitter according to claim 6, wherein the semiconductor differential pressure sensor is held by a seal fitting, and a metal flow is used for joining the pressure receiving member constituting the differential pressure transmitter and the seal fitting. A differential pressure transmitter characterized by using.
【請求項8】請求項第7項の差圧伝送器において、 前記シール金具と同軸となるように前記差圧伝送器を構
成する受圧部材に穴を設け、差圧検出センサからの出力
信号を増幅する増幅器と、前記穴との接合に、メタルフ
ローを用いたことを特徴とする差圧伝送器。
8. The differential pressure transmitter according to claim 7, wherein a hole is formed in a pressure receiving member constituting the differential pressure transmitter so as to be coaxial with the seal fitting, and an output signal from the differential pressure detection sensor is provided. A differential pressure transmitter characterized in that a metal flow is used for joining the amplifier for amplification and the hole.
【請求項9】請求項第1項の差圧伝送器において、 前記第一,第二及び第三のダイアフラムが接合する前記
差圧伝送器の受圧部材を単一部材で構成した差圧伝送器
の結合を、メタルフローにより行ったことを特徴とする
差圧伝送器。
9. The differential pressure transmitter according to claim 1, wherein the pressure receiving member of the differential pressure transmitter to which the first, second and third diaphragms are joined is formed of a single member. The differential pressure transmitter is characterized in that the coupling is performed by a metal flow.
【請求項10】請求項第1項の差圧伝送器において、 前記第一の受圧室を形成する前記差圧伝送器の受圧部材
により、前記第一の測定流体の圧力を前記第一のダイア
フラムに導圧する第一の測定流体受圧室を構成し、かつ
前記第二の受圧室を形成する前記差圧伝送器の受圧部材
により、前記第二の測定流体の圧力を前記第二のダイア
フラムに導圧する第二の測定流体受圧室を構成する時
に、各々密閉部材を接合して構成する方法として、メタ
ルフローを用いたことを特徴とする差圧伝送器。
10. The differential pressure transmitter according to claim 1, wherein a pressure receiving member of the differential pressure transmitter which forms the first pressure receiving chamber controls the pressure of the first measurement fluid to the first diaphragm. The pressure of the second measurement fluid is guided to the second diaphragm by the pressure receiving member of the differential pressure transmitter that constitutes the first measurement fluid pressure receiving chamber that guides the pressure to the second diaphragm. A differential pressure transmitter characterized in that a metal flow is used as a method of joining and sealing members when forming the second measurement fluid pressure receiving chamber to be pressed.
JP25137893A 1993-10-07 1993-10-07 Differential pressure transmitter Pending JPH07103841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25137893A JPH07103841A (en) 1993-10-07 1993-10-07 Differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25137893A JPH07103841A (en) 1993-10-07 1993-10-07 Differential pressure transmitter

Publications (1)

Publication Number Publication Date
JPH07103841A true JPH07103841A (en) 1995-04-21

Family

ID=17221948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25137893A Pending JPH07103841A (en) 1993-10-07 1993-10-07 Differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPH07103841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876087A (en) * 1987-03-17 1989-10-24 International Flavors & Fragrances Inc. Use of N,N-diethyl-m-toluamide and/or the ethyl ester of 2-methyl-3-pentenoic acid as mosquito attractants
US4880625A (en) * 1987-03-17 1989-11-14 International Flavors & Fragrances Use of N,N-diethyl-m-toluamide and/or the ethyl ester of 2-methyl-3-pentenoic acid as insect attractants
CN108645560A (en) * 2018-06-15 2018-10-12 江苏德尔森传感器科技有限公司 Precision differential pressure sensing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876087A (en) * 1987-03-17 1989-10-24 International Flavors & Fragrances Inc. Use of N,N-diethyl-m-toluamide and/or the ethyl ester of 2-methyl-3-pentenoic acid as mosquito attractants
US4880625A (en) * 1987-03-17 1989-11-14 International Flavors & Fragrances Use of N,N-diethyl-m-toluamide and/or the ethyl ester of 2-methyl-3-pentenoic acid as insect attractants
CN108645560A (en) * 2018-06-15 2018-10-12 江苏德尔森传感器科技有限公司 Precision differential pressure sensing device

Similar Documents

Publication Publication Date Title
EP2132546B1 (en) Welded header for pressure transmitter
US7258018B2 (en) High accuracy, high temperature, redundant media protected differential transducers
TWI306503B (en) Pressure sensor device and method
US4675643A (en) Pressure transducer utilizing a transduction element
US6186009B1 (en) Semiconductor pressure sensor for sensing fluid pressure
WO1990001153A1 (en) Pressure sensor, its production method and hydraulic apparatus equipped with the pressure sensor
JPH0546489B2 (en)
WO2018173433A1 (en) Differential pressure sensor chip, differential pressure transmitter, and differential pressure sensor chip manufacturing method
JPH07103841A (en) Differential pressure transmitter
JP3607420B2 (en) Dry type pressure detector
CN111207879B (en) Silicon-sapphire single-core differential pressure sensor
JPH10148593A (en) Pressure sensor and capacitance-type pressure sensor chip
JP3123314B2 (en) Differential pressure transmitter
JPH10197316A (en) Density correction-type liquid level detecting device
JP2002013994A (en) Pressure sensor
JPH04267566A (en) Semiconductor pressure sensor for high pressure
JP3199103B2 (en) Differential pressure measuring device
JP3220346B2 (en) Pressure sensor and method of manufacturing the same
JP2512220B2 (en) Multi-function sensor
JPS6147370B2 (en)
JP2016200593A (en) Pressure measuring device and method of manufacturing the device
JPH10185735A (en) Pressure sensor module
JP2001091392A (en) Differential pressure transmitter
JP2984420B2 (en) Differential pressure sensor
JPH11132887A (en) Pressure sensor