JPH07103638B2 - Reinforced reinforced concrete column structure - Google Patents

Reinforced reinforced concrete column structure

Info

Publication number
JPH07103638B2
JPH07103638B2 JP1217793A JP21779389A JPH07103638B2 JP H07103638 B2 JPH07103638 B2 JP H07103638B2 JP 1217793 A JP1217793 A JP 1217793A JP 21779389 A JP21779389 A JP 21779389A JP H07103638 B2 JPH07103638 B2 JP H07103638B2
Authority
JP
Japan
Prior art keywords
reinforced
steel pipe
reinforced concrete
column
concrete column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1217793A
Other languages
Japanese (ja)
Other versions
JPH0381443A (en
Inventor
政英 富井
Original Assignee
政英 富井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 政英 富井 filed Critical 政英 富井
Priority to JP1217793A priority Critical patent/JPH07103638B2/en
Publication of JPH0381443A publication Critical patent/JPH0381443A/en
Publication of JPH07103638B2 publication Critical patent/JPH07103638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は補強鉄筋コンクリート柱構造に関するもので
ある。さらに詳しくは、高層建築、耐震建築、さらには
短柱の横補強およびせん断補強に有用な鋼管拘束による
補強鉄筋コンクリート柱構造に関するものである。
TECHNICAL FIELD The present invention relates to a reinforced concrete column structure for reinforcement. More specifically, the present invention relates to a high-rise building, an earthquake-resistant building, and a reinforced concrete column structure with a steel pipe restraint useful for lateral reinforcement and shear reinforcement of short columns.

(従来の技術とその課題) 従来より鉄筋コンクリート柱の補強工法として、鉄筋コ
ンクリート柱の外部を円筒鋼管、あるいは平板角形鋼管
によって拘束する方法が知られている。
(Prior art and its problem) As a conventional reinforcing method for a reinforced concrete column, a method of restraining the outside of the reinforced concrete column with a cylindrical steel pipe or a flat plate rectangular steel pipe has been known.

この補強工法による構造は、鉄筋コンクリート柱のコン
クリートの脱落を防止し、コンクリートの圧潰および鉄
筋の座屈を拘束して柱の耐力を増強するという効果を有
しており、鉄筋コンクリートの補強法として注目されて
いるものである。
The structure by this reinforcement method has the effect of preventing the concrete from falling out of the reinforced concrete column, restraining the crushing of the concrete and the buckling of the reinforcing bar to enhance the proof strength of the column, and it has attracted attention as a reinforcing method for reinforced concrete. It is what

しかしながら、これら従来考えられている鋼管拘束鉄筋
コンクリート柱構造の場合には、依然として解決すべき
課題が残されていた。その課題の主要なものとしては、
断面が方形の鉄筋コンクリート柱の場合は、拘束作用が
充分でなく、また、曲げ耐力が小さいという欠点があっ
た。
However, in the case of these steel pipe restrained reinforced concrete column structures which have been conventionally considered, there still remain problems to be solved. The main issues are:
In the case of a reinforced concrete column having a rectangular cross section, there are drawbacks that the restraining action is insufficient and the bending strength is small.

たとえば平板角形鋼管の場合には、管壁の面外曲げで拘
束するため、主筋比が高いと、付着割裂ひび割れや、大
きなひずみが生じる圧縮縁コンクリートの圧潰および圧
縮鉄筋の座屈を充分に拘束できず、柱の耐力が低下する
ことが避けられなかった。このため、主筋量が多い柱を
拘束するには、厚肉の鋼管が必要になることから、現実
の施工法としては経済的なものとはならない。
For example, in the case of flat plate rectangular steel pipe, since it is constrained by out-of-plane bending of the pipe wall, if the main bar ratio is high, bond splitting cracks and crushing of compressed edge concrete and buckling of compressed rebars that cause large strain are sufficiently restricted. It was not possible, and it was unavoidable that the proof stress of the column would decrease. For this reason, a thick steel pipe is required to restrain the column having a large amount of main reinforcement, which is not economical as an actual construction method.

また柱を円柱とし、円筒鋼管で補強した場合には、柱と
梁の接合部の構造および施工がめんどうである。
Further, when the column is a column and is reinforced with a cylindrical steel pipe, the structure and construction of the joint between the column and the beam are troublesome.

また、従来の拘束構造は、いずれも鋼管が軸方向応力を
負担しているために、早期の降伏を起こして拘束効果お
よびせん断補強効果を充分に発揮できなかった。
Further, in all of the conventional restraint structures, since the steel pipe bears the axial stress, the yielding occurs early and the restraining effect and the shear reinforcing effect cannot be sufficiently exhibited.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、これまでに考えられている鋼管拘束による補強鉄
筋コンクリート柱構造の欠点を改善し、拘束性に優れ、
コンクリート柱の圧縮耐力の向上、さらには大きな曲げ
耐力およびせん断耐力をも発揮するとともに、せん断耐
力に達した後も極めて靱性に富む挙動を示すことのでき
る、超高層建築にも有用な新しい鋼管拘束補強鉄筋コン
クリート柱構造を提供することを目的としている。
This invention has been made in view of the circumstances as described above, and improves the drawbacks of the reinforced concrete columnar structure of the reinforced concrete by the steel pipe restraint considered so far, and has excellent restraint properties,
A new steel pipe constraint useful for super high-rise buildings, which not only exhibits improved compressive strength of concrete columns, but also exerts large bending strength and shear strength, and can exhibit extremely tough behavior even after reaching shear strength. It is intended to provide a reinforced reinforced concrete column structure.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、鉄筋コ
ンクリート柱の表面部が、断面方形の、折板または波板
鋼管によって外部拘束されていることを特徴とする補強
鉄筋コンクリート柱構造を提供する。
(Means for Solving the Problems) As a means for solving the above problems, the present invention is characterized in that the surface portion of a reinforced concrete column is externally restrained by a folded plate or corrugated steel pipe having a rectangular cross section. Provide reinforced reinforced concrete column structure.

この発明の鉄筋コンクリート構造の一例を示したものが
第1図である。この第1図に示したように、この発明の
構造では、表面を折板とした断面方形の鋼管(1)によ
って鉄筋コンクリート柱(2)を外部拘束している。主
筋(3)の配置については従来と同様に適宜とすればよ
く、所要の耐力を得るための形状、大きさ、主筋の配置
を適宜に決めることができる。
FIG. 1 shows an example of the reinforced concrete structure of the present invention. As shown in FIG. 1, in the structure of the present invention, the reinforced concrete column (2) is externally restrained by the steel pipe (1) having a rectangular cross section with the surface being a folded plate. The arrangement of the main bars (3) may be set appropriately as in the conventional case, and the shape, size and arrangement of the main bars for obtaining the required proof stress can be set appropriately.

折板鋼管(1)の折板の角度(α)、その厚み(t)に
ついても適宜に設計できることはいうまでもない。その
角度(α)については、40〜65°程度を目安とすること
もできる。
It goes without saying that the angle (α) of the folded plate of the folded plate steel pipe (1) and the thickness (t) thereof can be appropriately designed. About the angle (α), about 40 to 65 ° can be used as a guide.

また、第2図は別の例を示したものである。この場合に
は、第1図の例とは相違して、隣接する辺縁(A)
(B)が、後退と突出の関係にあり、柱のどの断面につ
いても、鋼管の周長および断面積が等しく、コンクリー
トの断面積もほぼ等しくなるという特徴がある。このた
め、断面の位置の違いによる各種の耐力の差が少く、柱
としての大きな耐力を発揮できる。
Further, FIG. 2 shows another example. In this case, unlike the example shown in FIG. 1, adjacent edges (A)
(B) has a relationship of receding and projecting, and has a characteristic that the circumferential length and the cross-sectional area of the steel pipe are the same and the cross-sectional area of the concrete is almost the same for any cross-section of the column. Therefore, there is little difference in the proof stresses due to the difference in the position of the cross section, and a large proof stress as a column can be exhibited.

この第2図のものを折板の展開図の例として示したもの
が第3図である。一枚の平板を折曲げることで、鉄筋コ
ンクリート柱の半周を拘束する形の部材が得られること
がわかる。
FIG. 3 shows the example of FIG. 2 as an exploded view of the folded plate. It can be seen that by bending one flat plate, a member having a shape that restrains half the circumference of a reinforced concrete column can be obtained.

具体的実験によって折板鋼管拘束の優れた特性を説明す
る。
The excellent characteristics of the folded plate steel pipe restraint will be explained by a concrete experiment.

試験体としては、第1図に示した平板鋼管の形状に対応
するものとした。次の数字は無次元化した特性値として
示している。
The test piece corresponds to the shape of the flat steel pipe shown in FIG. The following numbers are shown as dimensionless characteristic values.

(外径)D=185、 α=45° (厚さ)t=3、(長さ)l=340、 重量 0.67 面曲げ剛性 8.57 折板鋼管は、L−30×30×tより製作し、アングルは溶
接した。その後、焼鈍している。焼鈍後の降伏点応力度
は3100kg/cm2であった。
(Outer diameter) D = 185, α = 45 ° (Thickness) t = 3, (Length) l = 340, Weight 0.67 Face bending rigidity 8.57 Folded plate steel pipe is made from L-30 × 30 × t, The angle was welded. Then, it is annealed. The yield stress after annealing was 3100 kg / cm 2 .

使用したセメントは普通ポルトランドセメントで、細骨
材は粒径2.5mm以下の海砂、粗骨材は粒径10mm以下の川
砂利を用いた。鉄筋はD13(aσy=3560kg/cm2)の異形
鉄筋を用いた。
The cement used was ordinary Portland cement, the fine aggregate was sea sand with a grain size of 2.5 mm or less, and the coarse aggregate was river gravel with a grain size of 10 mm or less. As the reinforcing bar, a deformed reinforcing bar of D13 ( a σy = 3560 kg / cm 2 ) was used.

(1)中心圧縮試験 1端固定他端ピンの材端条件で、500ton試験機を使用し
て中心圧縮力を載荷した。
(1) Center compression test A center compression force was applied using a 500 ton tester under the material end condition of the one end fixed other end pin.

材端においてはコンクリートだけを圧縮した。柱中央断
面のコンクリートの材軸方向ひずみ度(測定長60mm)
は、柱中心に埋設した測定用パイプで測定した。, 柱全長の軸方向の縮み量は4個の変位計を用いて測定し
た。
At the end of the material, only concrete was compressed. Axial strain degree of concrete in the center section of the column (measurement length 60 mm)
Was measured with a measuring pipe embedded in the center of the column. The amount of axial contraction of the entire column length was measured using four displacement gauges.

第4図a)、b)に示したように、柱中央部のコンクリ
ートの軸方向ひずみ度cεと軸力Nとの関係において
は、折板の場合の鋼管の鋼材量は、平板の場合の約60%
であるにもかかわらず、折板鋼管補強柱の最大耐力(19
2ton)の方が、平板補強の耐力(190ton)よりも大き
い。また、耐力低下をはじめる点のひずみ度は、折板の
場合には平板の場合の約3倍になっている。
As shown in Fig. 4 a) and b), regarding the relationship between the axial strain degree c ε and the axial force N of the concrete in the central part of the column, the steel amount of the steel pipe in the case of the folded plate is the case of the flat plate. About 60%
Despite this, the maximum yield strength (19
2ton) is larger than the proof strength (190ton) of flat plate reinforcement. In addition, the degree of strain at the point where the proof stress begins to decrease is about three times that of the flat plate in the case of the folded plate.

(2)一定軸力下における曲げせん断試験 柱に逆対称の変形を加える。載荷は、変位振幅を部材角
で±0.005radずつ±0.03radまで増加させ、同一振幅で
3サイクルずつ、計18サイクルの繰り返しを、変位制御
で行った。その後、部材角振幅0.06radの大変位で1サ
イクルの載荷を行った。
(2) Bending shear test under constant axial force A column is subjected to antisymmetric deformation. For loading, the displacement amplitude was increased by ± 0.005 rad at each member angle to ± 0.03 rad, and three cycles were performed at the same amplitude, and a total of 18 cycles were repeated by displacement control. After that, loading was performed for one cycle with a large displacement of the member angular amplitude of 0.06 rad.

主筋量が多い場合(Pg=6.64%)、部材角が0.02radよ
り大きくなると耐力が低下し始めるが、復元力特性の劣
化はそれほど顕著ではない。主筋量の少ない柱(Pg=3.
32%)の場合には、折板鋼管は柱端部において降伏する
が、柱中央部では最後まで弾性範囲で挙動した。
When the amount of main bars is large (Pg = 6.64%), the proof stress begins to decrease when the member angle exceeds 0.02rad, but the deterioration of the restoring force characteristics is not so remarkable. A pillar with a small amount of main muscle (Pg = 3.
In the case of 32%), the folded steel pipe yielded at the end of the column, but at the center of the column, it behaved in the elastic range until the end.

最近の日本の鉄筋コンクリート構造の設計では、大地震
時における部材変形の制限について、部材角の変形で、
0.02radの変形性能があればよいと考えられていること
から、この試験体の持つ復元力特性は充分に満足できる
ものであった。
In the recent design of reinforced concrete structures in Japan, regarding the restriction of member deformation at the time of a large earthquake, the deformation of the member angle
Since it is considered that the deformation performance of 0.02 rad is sufficient, the restoring force characteristic of this test piece was sufficiently satisfactory.

第5図および第6図は、第1図および第2図に対応する
この発明の別の例を示したものである。
5 and 6 show another example of the present invention corresponding to FIGS. 1 and 2.

この例においては、折板の代わりに波板を用いている。
この波板の場合には、プレスロールによる成型も容易で
あり、蛇腹鋼管を、隅角部において直交する波板を相互
に溶接することで簡単に製造するか、円筒鋼管に内圧を
与えて一体的にプレス加工することにより製造すること
ができる。また、折板の場合のような、鋭角的折り曲げ
頂部がないため、応力集中も回避しやすいという特徴を
有している。波板鋼管(4)の隣接する表面の波板頂部
(5)は、第5図では一致し、第6図ではずれている。
これらの波形鋼管で補強された鉄筋コンクリート柱につ
いても、中心圧縮試験および一定軸力または変動軸力下
における曲げせん断試験を行い、折板鋼管で補強した場
合とほぼ同等な補強効果を認めることができた。
In this example, a corrugated plate is used instead of the folded plate.
In the case of this corrugated plate, it is easy to mold it with a press roll, and either the corrugated steel pipe can be easily manufactured by welding the corrugated plates that are orthogonal to each other at the corners, or by applying internal pressure to the cylindrical steel pipe to integrate it. It can be manufactured by mechanically pressing. Further, unlike the case of a folded plate, there is no sharply bent top portion, so that stress concentration can be easily avoided. The corrugated plate tops (5) on the adjacent surfaces of the corrugated steel pipe (4) are coincident in FIG. 5 and deviated in FIG.
With regard to reinforced concrete columns reinforced with these corrugated steel pipes, a central compression test and a bending shear test under constant axial force or fluctuating axial force were performed, and it was confirmed that the reinforcing effect was almost the same as that when reinforced with folded plate steel pipes. It was

以上の説明から明らかなように、この発明の構造におい
ては、次のような顕著な効果が実現される。
As is apparent from the above description, the following remarkable effects are realized in the structure of the present invention.

1)鉄筋コンクリート柱の強力拘束効果に優れ、内部コ
ンクリート強度が大きく向上する。そのため多数の主筋
を入れることが可能となる。
1) The strength of the reinforced concrete columns is excellently restrained, and the internal concrete strength is greatly improved. Therefore, it becomes possible to put many main points.

2)強い曲げ耐力およびせん断耐力が発揮される。2) High flexural strength and shear strength are exhibited.

3)内部コンクリートのすべてを強度的に利することが
できる。
3) All of the internal concrete can be used for strength.

4)せん断耐力に達した後も、極めて靱性に富む挙動を
示す。
4) Even after reaching shear strength, it exhibits extremely tough behavior.

5)鋼管がコンクリート打設の枠体にもなる。5) The steel pipe also serves as a concrete pouring frame.

以上の効果は、これまでに考えられている鋼管補強構造
では実現されないものである。
The above effects cannot be realized by the steel pipe reinforcement structure considered so far.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の構造例を示した一部断面開示の正
面図である。第2図は、他の例を示した斜視図であり、
第3図は、この例の折板の部分展開図である。 第4図はa)b)、中心圧縮試験の結果を示した軸方向
ひずみ度と耐力との相関図である。 第5図および第6図は、波板を用いたこの発明の別の例
を示した斜視図である。 1…折板鋼管 2…鉄筋コンクリート柱 3…主筋 4…波板鋼管 5…波板頂部
FIG. 1 is a front view of a partial cross-sectional disclosure showing a structural example of the present invention. FIG. 2 is a perspective view showing another example,
FIG. 3 is a partially developed view of the folded plate of this example. FIG. 4 is a) b), which is a correlation diagram between axial strain and proof stress showing the results of the central compression test. 5 and 6 are perspective views showing another example of the present invention using a corrugated plate. 1 ... Folded plate steel pipe 2 ... Reinforced concrete column 3 ... Main bar 4 ... Corrugated steel pipe 5 ... Corrugated plate top

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄筋コンクリート柱の表面部が、断面方形
の、折板または波板鋼管によって外部拘束されているこ
とを特徴とする補強鉄筋コンクリート柱構造。
1. A reinforced reinforced concrete column structure, characterized in that the surface portion of the reinforced concrete column is externally restrained by a bent plate or corrugated steel pipe having a rectangular cross section.
JP1217793A 1989-08-24 1989-08-24 Reinforced reinforced concrete column structure Expired - Fee Related JPH07103638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217793A JPH07103638B2 (en) 1989-08-24 1989-08-24 Reinforced reinforced concrete column structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217793A JPH07103638B2 (en) 1989-08-24 1989-08-24 Reinforced reinforced concrete column structure

Publications (2)

Publication Number Publication Date
JPH0381443A JPH0381443A (en) 1991-04-05
JPH07103638B2 true JPH07103638B2 (en) 1995-11-08

Family

ID=16709818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217793A Expired - Fee Related JPH07103638B2 (en) 1989-08-24 1989-08-24 Reinforced reinforced concrete column structure

Country Status (1)

Country Link
JP (1) JPH07103638B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106711A (en) * 1988-04-25 1992-04-21 Kyocera Corporation Electrophotographic sensitive member
JP2006070448A (en) * 2004-08-31 2006-03-16 Toso Co Ltd Operating cord end of shading device
CN106592418B (en) * 2016-11-10 2018-09-07 深圳市尚智工程技术咨询有限公司 A kind of flexible pier
CN107044083A (en) * 2017-05-25 2017-08-15 哈尔滨工业大学 A kind of double-wall corrugated steel pipe reinforced concrete hollow pier post

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151220U (en) * 1982-04-06 1983-10-11 有限会社新技研 Steel material for closed type columns

Also Published As

Publication number Publication date
JPH0381443A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
Ge et al. Strength of concrete-filled thin-walled steel box columns: experiment
Galano et al. Seismic behavior of short coupling beams with different reinforcement layouts
Yang et al. Cyclic flexural tests of hybrid steel–precast concrete beams with simple connection elements
Alameddine et al. High-strength RC connections subjected to inelastic cyclic loading
Chen et al. Behavior of L-shaped concrete-filled steel stub columns under axial loading: Experiment
Beck et al. Fundemental pure torsional properties of concrete filled circular steel tubes
Megget Cyclic behaviour of exterior reinforced concrete beam-column joints
Guan et al. Experimental evaluation of precast concrete beam-column connections with high-strength steel rebars
Rajagopal et al. Seismic behavior of exterior beam-column joint using mechanical anchorage under reversal loading: An experimental study
JPH07103638B2 (en) Reinforced reinforced concrete column structure
Hwang et al. Shear strength degradation model for performance-based design of interior beam-column joints
CN109868938B (en) Post-tensioned unbonded co-tensioned prestressed concrete composite beam and design and construction method thereof
Otani et al. Strain rate effect on performance of reinforced concrete members
Xiao et al. Experimental study on the seismic response of braced reinforced concrete frame with irregular columns
Xiao et al. Seismic behavior of cast-in-place and precast recycled aggregate concrete frames: A comparative study
JP2008157002A5 (en)
JP2008157002A (en) Universal apparatus for reinforcing bar cover
Ranf et al. Effects of displacement history on failure of lightly confined bridge columns
JP2981151B2 (en) Reinforced concrete pile
Greifenhagen et al. Static-cyclic tests on reinforced concrete shear walls with low reinforcement ratios
Rao et al. Strength characteristics of stone masonry
McMullen et al. Experimental study of prestressed concrete under combined torsion, bending, and shear
Tokunaga et al. Experimental study on edge confinement of reinforced concrete core walls
Govindan et al. 07.32: The flexural strength behavior of profiled steel sheet–with hot rolled plate panel system with bolted connection
Parra-Montesinos et al. Seismic behavior of low-rise walls constructed with strain-hardening fiber reinforced cement composites

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees