JPH07103544B2 - Structure of seismic isolation area - Google Patents

Structure of seismic isolation area

Info

Publication number
JPH07103544B2
JPH07103544B2 JP63284202A JP28420288A JPH07103544B2 JP H07103544 B2 JPH07103544 B2 JP H07103544B2 JP 63284202 A JP63284202 A JP 63284202A JP 28420288 A JP28420288 A JP 28420288A JP H07103544 B2 JPH07103544 B2 JP H07103544B2
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation area
layer
area
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63284202A
Other languages
Japanese (ja)
Other versions
JPH02132218A (en
Inventor
明美 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP63284202A priority Critical patent/JPH07103544B2/en
Publication of JPH02132218A publication Critical patent/JPH02132218A/en
Publication of JPH07103544B2 publication Critical patent/JPH07103544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は埋立地あるいは砂層、粘土層等からなり地下
水位が高く地震時に液状化の危険性があり、ゆれも大き
くなり易い地域の免震区域の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] This invention is a seismic isolation system for landfills or areas with sand layers, clay layers, etc. Regarding the structure of the area.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

海岸埋立地は、例えば東京湾岸の場合は、軟弱層が厚
く、支持層は60〜70mと深く、軟弱層上に形成した砂を
主とした埋立層には地震時、軟弱層で増幅された地震波
が入り込み、液状化現象が発生し易い。また、軟弱層が
深い埋立地では沈下が起こり易く、地震のゆれが大きく
被害が増大する傾向があった。
For example, in the case of Tokyo Bay, the coastal landfill has a thick soft layer and a deep support layer of 60 to 70 m. The landfill layer mainly composed of sand formed on the soft layer was amplified by the soft layer during an earthquake. Liquefaction phenomenon easily occurs due to seismic waves entering. In addition, subsidence is likely to occur in landfills where the soft layer is deep, and the shaking of the earthquake is large, and damage tends to increase.

砂層、粘土層が交互にあり地下水位が高い地盤は粘土層
が圧密沈下する傾向があり、砂層は地震時に液状化する
危険性が高かった。
Clay layers tended to consolidate on the ground where sand layers and clay layers were alternating and the groundwater level was high, and the sand layers had a high risk of liquefaction during an earthquake.

この発明は上記問題点に着目しなされたものである。そ
の目的は地盤の液状化現象が起こらず、地震時のゆれが
小さく、かつ、地盤の沈下を制御することができる免震
区域の構造を提案するにある。
The present invention has been made in view of the above problems. The purpose is to propose the structure of the seismic isolation area where the ground liquefaction phenomenon does not occur, the shaking during the earthquake is small, and the ground subsidence can be controlled.

〔課題を解決するための手段および実施例〕[Means and Examples for Solving the Problems]

この発明になる免震区域の構造は、地表から所定の深さ
に達する環状に連続した地中壁を設け地盤内を区切った
免震区域であって、前記地中壁は気泡を実質的に含有し
ない不透水性弾性体層で形成され、区域内の地下水位は
排水井から排水し低水位に維持されてなることを特徴と
する。
The structure of the seismic isolation area according to the present invention is a seismic isolation area in which a continuous underground wall that reaches a predetermined depth from the surface of the earth is provided to divide the inside of the ground, and the underground wall substantially contains bubbles. It is formed of an impermeable elastic layer that does not contain, and the groundwater level in the area is characterized by being drained from a drainage well and maintained at a low water level.

以下、図示する実施例により説明する。Hereinafter, description will be made with reference to the illustrated embodiment.

第1図は海岸埋立地に設けた免震区域を示すものであ
り、埋立地1は深さ60〜70mの支持層2、軟弱層3およ
びその上の砂を主体とした埋立層4から構成されてい
る。免震区域5は、埋立層4内に地表から深さ10mに達
する環状の連続地中壁6と底盤7とからなる桶形をなし
た厚さ1.5〜2.0mの不透水性弾性体層8を形成して区切
り設けてある。この免震区域内には所望の間隔を保ち排
水井9を設けて永久排水し地下水位10を低位に維持して
ある。
Figure 1 shows the seismic isolation area provided on the coastal landfill site. The landfill site 1 is composed of a support layer 2 with a depth of 60 to 70 m, a soft layer 3 and a landfill layer 4 composed mainly of sand on it. Has been done. The seismic isolation area 5 is a trough-shaped impermeable elastic layer 8 having a thickness of 1.5 to 2.0 m, which is composed of an annular continuous underground wall 6 reaching the depth of 10 m from the ground surface and a bottom plate 7 in the landfill layer 4. Are formed and separated. Within this seismic isolation area, drainage wells 9 are provided at desired intervals to permanently discharge water and maintain the groundwater level 10 at a low level.

不透水性弾性体層は、例えば水と反応してウレタン結合
するイソシアネート系プレポリマー組成物を埋立層4内
に注入しポリウレタン樹脂と周辺土壌との混合物を主体
とする気泡を実質的に含有しない、ゴム状の弾性をもっ
た不透水性の層を形成する。
The water-impermeable elastic layer is substantially free of air bubbles mainly composed of a mixture of a polyurethane resin and surrounding soil by injecting an isocyanate-based prepolymer composition that reacts with water to form a urethane bond into the landfill layer 4. , Forms an impermeable layer having rubber-like elasticity.

この構成からなる免震区域5は周囲が桶形の不透水性弾
性体層8で囲まれ、地下水位10が低位に維持されている
ので、圧密が容易に進行し、それ以上の沈下が起こらな
い。地震時には地下水位が低いので液状化する危険性が
なく、かつ周囲の不透水性弾性体層8のバッファー作用
により、ゆれが小さくなる。
The seismic isolation area 5 of this configuration is surrounded by a trough-shaped impermeable elastic layer 8 and the groundwater level 10 is maintained at a low level, so that consolidation easily proceeds and further subsidence occurs. Absent. At the time of an earthquake, the groundwater level is low, so there is no danger of liquefaction, and the buffer action of the surrounding impermeable elastic layer 8 reduces the fluctuation.

この免震区域5の下側の軟弱層3はすでに正規圧密状態
に到達しているならば、この免震区域の造成により、新
たな圧密沈下の発生の恐れはない。しかも、この区域5
には、地下水の排水量に見合った重量および掘削排土重
量に相当する浮力が作用するため、構造物11を構築した
場合、その重量が浮力以下の場合は圧密沈下は起こら
ず、それ以上の重量の場合は、それに対応する圧密沈下
が発生する。
If the soft layer 3 below the seismic isolation area 5 has already reached the normal consolidation state, there is no possibility of new consolidation settlement due to the construction of this seismic isolation area. Moreover, this area 5
Since the buoyancy corresponding to the weight of groundwater and the weight of excavated soil acts on the structure, when the structure 11 is constructed, if the weight is less than the buoyancy, consolidation settlement does not occur, and more weight is applied. In the case of, the corresponding consolidation settlement occurs.

第2図は砂層12と粘土層13が互層をなし、地下水位10が
高い地盤に造成した免震区域5である。この免震区域5
は下層の粘土層13に先端が貫入する厚さ1.5〜2.0mの不
透水性弾性体層8で連結地中壁6を形成して区切り設け
てある。この区域5内には所定の間隔で排水井9を設け
て永久排水し地下水位10を低位に維持してある。
Fig. 2 shows the seismic isolation area 5 constructed on the ground where the sand layer 12 and the clay layer 13 are alternating and the groundwater level 10 is high. This seismic isolation area 5
Is formed by forming a connecting underground wall 6 with a water impermeable elastic body layer 8 having a thickness of 1.5 to 2.0 m, the tip of which penetrates into the lower clay layer 13. In this area 5, drainage wells 9 are provided at predetermined intervals to permanently discharge water and maintain the groundwater level 10 at a low level.

この構成からなる免震区域5は圧密沈下が急激に進行し
て安定化し、同時に区域全体は周囲地盤から浮力を受け
る。地震時には地下水位10が低位にあるので液状化する
恐れがなく、周囲の不透水性弾性体層がダンパーの作用
をするので制震効果を発揮する。
In the seismic isolated area 5 having this structure, consolidation settlement rapidly progresses and is stabilized, and at the same time, the entire area receives buoyancy from the surrounding ground. At the time of an earthquake, the groundwater level 10 is low, so there is no risk of liquefaction, and the surrounding impermeable elastic layer acts as a damper to exert a damping effect.

この免震区域5の下層の地盤中には周辺地盤の地下水位
に対応する間隙水圧が分布している。従って、区域5内
の地下水の排水量および掘削土重量以上の構造物11の増
加重量があった場合には、それに対応する圧密沈下をす
るが、それ以上の沈下は発生しない。
In the lower ground of the seismic isolation area 5, pore water pressure corresponding to the groundwater level of the surrounding ground is distributed. Therefore, when the weight of the structure 11 increases beyond the drainage amount of groundwater and the weight of excavated soil in the area 5, the consolidation settlement corresponding to the increase is performed, but no further settlement occurs.

なお、当初排水時に免震区域5は一時的に乾燥収縮し、
収縮量がすべて地盤沈下として現れず、内側への収縮と
なって現れることになる。内側への収縮は周辺地盤の沈
下としてあらわれるので施工時点ではこれらを考慮して
排水する必要がある。
In addition, at the time of initial drainage, seismic isolation area 5 will temporarily dry and shrink,
All shrinkage does not appear as ground subsidence, but rather as inward shrinkage. Since the inward contraction appears as the subsidence of the surrounding ground, it is necessary to consider these during drainage at the time of construction.

〔作用および発明の効果〕[Operation and effect of the invention]

この免震区域の構造は以上の構成からなり、周囲が不透
水性弾性体で囲まれ、地下水位が低位に維持されている
ので、地盤は圧密化され、液状化の危険性がなく、地震
時のゆれも小さくなる。地中壁を構成する不透水性弾性
体は気泡を含有しないので、地下水位が高い、深い地中
においても、気泡の潰れ等による寸法の変化、あるいは
耐水性や弾性等の劣化が起らず、地下水により浮き上が
り等の障害も起こり難い。また、構築した構造物は、あ
る程度以上になると、その重量に対応した量の沈下が起
こるが、その沈下量は計算できる量であり、沈下後安定
するので問題とならない。この構造は埋立地全体のよう
な広域的なものでなく、道路等で囲まれたある程度の広
い地区を造成の対象とする。従って、重点的に免震区域
を造成でき、地下水位の低下を区域外に及ぼし、区域外
の地盤沈下をもたらす恐れもない。
The structure of this seismic isolation area consists of the above-mentioned structure, the surrounding is surrounded by the impermeable elastic body, and the groundwater level is maintained at a low level, the ground is consolidated, there is no risk of liquefaction, and the earthquake The fluctuation of time also becomes smaller. Since the impermeable elastic body that constitutes the underground wall does not contain bubbles, even in deep underground where the groundwater level is high, there is no dimensional change due to collapse of bubbles or deterioration of water resistance or elasticity. Also, it is difficult for obstacles such as floating due to groundwater to occur. Further, when the constructed structure exceeds a certain level, the amount of subsidence corresponding to its weight occurs, but the amount of subsidence is a measurable amount and is stable after subsidence, which is not a problem. This structure does not cover a wide area like the entire landfill site, but rather covers a wide area surrounded by roads. Therefore, it is possible to construct the seismic isolation area with priority, reduce the groundwater level outside the area, and cause no subsidence outside the area.

【図面の簡単な説明】[Brief description of drawings]

図面は実施例の免震区域の構造を示す縦断面図であり、
第1図は埋立地、第2図は砂層と粘土層の互層地盤に造
成した免震区域である。 1……埋立地、2……支持層、3……軟弱層、4……埋
立層、5……免震区域、6……連続地中壁、7……底
盤、8……不透水性弾性体、9……排水井、10……地下
水位、11……構造物、12……砂層、13……粘土層。
The drawing is a longitudinal sectional view showing the structure of the seismic isolation area of the embodiment,
Figure 1 is a reclaimed land, and Figure 2 is a seismic isolation area constructed on alternating ground of sand and clay layers. 1 ... Landfill site, 2 ... Support layer, 3 ... Soft layer, 4 ... Landfill layer, 5 ... Seismic isolation area, 6 ... Continuous underground wall, 7 ... Bottom plate, 8 ... Impermeable Elastic body, 9 ... drainage well, 10 ... groundwater level, 11 ... structure, 12 ... sand layer, 13 ... clay layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】地表から所定の深さに達する環状に連続し
た地中壁を設け地盤内を区切った免震区域であって、前
記地中壁は気泡を実質的に含有しない不透水性弾性体層
で形成され、区域内の地下水位は排水井から排水し低水
位に維持されてなることを特徴とする免震区域の構造。
1. A seismic isolation area in which a continuous underground wall that extends to a predetermined depth from the surface of the earth is provided to divide the inside of the ground, and the underground wall does not substantially contain bubbles and is impermeable and elastic. Structure of seismic isolation area characterized by being formed by body layer, and groundwater level in the area is drained from the drainage well and maintained at a low water level.
JP63284202A 1988-11-10 1988-11-10 Structure of seismic isolation area Expired - Lifetime JPH07103544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284202A JPH07103544B2 (en) 1988-11-10 1988-11-10 Structure of seismic isolation area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284202A JPH07103544B2 (en) 1988-11-10 1988-11-10 Structure of seismic isolation area

Publications (2)

Publication Number Publication Date
JPH02132218A JPH02132218A (en) 1990-05-21
JPH07103544B2 true JPH07103544B2 (en) 1995-11-08

Family

ID=17675481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284202A Expired - Lifetime JPH07103544B2 (en) 1988-11-10 1988-11-10 Structure of seismic isolation area

Country Status (1)

Country Link
JP (1) JPH07103544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465393C (en) * 2006-12-05 2009-03-04 吕迎智 Automatic drainage device of underground proton device machine room

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946381B2 (en) * 2012-09-21 2016-07-06 日鐵住金建材株式会社 Liquefaction countermeasure method
JP6277755B2 (en) * 2014-02-07 2018-02-14 株式会社大林組 Ground improvement method and ground improvement system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233308A (en) * 1975-09-08 1977-03-14 Tokyo Gas Co Ltd Method of reinforcing water contained sand subsoil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465393C (en) * 2006-12-05 2009-03-04 吕迎智 Automatic drainage device of underground proton device machine room

Also Published As

Publication number Publication date
JPH02132218A (en) 1990-05-21

Similar Documents

Publication Publication Date Title
CA2250989C (en) Apparatus and method for liquefaction remediation of liquefiable soils
US5800090A (en) Apparatus and method for liquefaction remediation of liquefiable soils
US3626702A (en) Floating foundation and process therefor
US5106229A (en) In ground, rigid pools/structures; located in expansive clay soil
CN110359497A (en) A kind of existing construction of structures ground base high-performance broken stone pile anti-liquefying treatment method
US4242012A (en) Method for constructing a multiseason ice platform
JPH07103544B2 (en) Structure of seismic isolation area
JP3164988B2 (en) Underground water storage structure
KR20160142009A (en) Method for generating ground settlement and adjusting consolidation settlement using adjustment of ground water level in aquifer
JP2814898B2 (en) Underground storage facility
CN210766843U (en) Composite foundation structure for construction in karst area
JPS62215727A (en) Foundation work for structure
JP2612763B2 (en) Basic structure of structure
JP2556801B2 (en) How to prevent sand liquefaction and ground liquefaction
JPH08302661A (en) Mat constructing method for prevention of sand spout
JPH0536044Y2 (en)
JP3325924B2 (en) Structure of underground storage infiltration facility
JPH0649988B2 (en) Basics of landfill structure
SU1268669A1 (en) Earth-fill structure
SU1351997A1 (en) Method of compacting the body of sagging loess soil
JP3091858B2 (en) Ground liquefaction countermeasure structure under existing facility structure
JPH02136419A (en) Ground improvement of artificial island
Yamazaki et al. Application of a dynamic effective stress model at a reclaimed site during the Great Hanshin earthquake, 1995
JP4329054B2 (en) Frame support structure with clay-based waterstop
Arun Ancient building foundation systems in seismic areas