JPH07103482A - Ceramic glow plug - Google Patents

Ceramic glow plug

Info

Publication number
JPH07103482A
JPH07103482A JP25164393A JP25164393A JPH07103482A JP H07103482 A JPH07103482 A JP H07103482A JP 25164393 A JP25164393 A JP 25164393A JP 25164393 A JP25164393 A JP 25164393A JP H07103482 A JPH07103482 A JP H07103482A
Authority
JP
Japan
Prior art keywords
ceramic
ceramic heater
corrosion
electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25164393A
Other languages
Japanese (ja)
Other versions
JP3589684B2 (en
Inventor
Akihiko Kameshima
昭彦 亀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP25164393A priority Critical patent/JP3589684B2/en
Publication of JPH07103482A publication Critical patent/JPH07103482A/en
Application granted granted Critical
Publication of JP3589684B2 publication Critical patent/JP3589684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To prevent an exposure of a heat generating body caused by corrosion wear of an insulated body by embedding a heat generating body and an electrode in an insulating ceramic insulation body and by specifying a coarseness of an edge side surface of a ceramic heater of a projecting section from a holding means. CONSTITUTION:A ceramic heater 2 has a composition wherein in a top edge inner section of an insulating ceramic insulation body 12, a heat generating body 11 and a pair of electrodes 13, 14 which are electrically connected to this body are embedded. At a side face 2a of a ceramic heater 2 wherein an edge section 14a of an electrode 14 is exposed a Ni-plating is executed and a fixture by brazing is so executed that a ceramic hollow pipe 3 encloses a ceramic heater 2. Besides, on an edge section 2b of a ceramic heater 2 wherein an edge section 13a of the electrode 13 is exposed, a Niplating is executed. And, a mean coarseness at a middle point of a section that is exposed from a hollow pipe 3 of the ceramic heater 2 is made to be 10mum and less. By this, a corrosion progress of the insulation body of the insulating ceramic can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばディーゼルエン
ジンなどの内燃機関に始動補助装置として用いられてい
るセラミックグロープラグに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic glow plug used as a starting aid device in an internal combustion engine such as a diesel engine.

【0002】[0002]

【従来の技術】従来より、ディーゼルエンジンなどに始
動補助装置として用いられているセラミックグロープラ
グは、大きく分けて2種類が提案されている。1つは、
発熱体としてコイル状のタングステン線を用い、発熱体
に対して電極を電気的に結合し、絶縁性セラミック体に
埋設したセラミックヒータを具えたものである。もう1
つは、発熱体として、導電性セラミックまたは、金属と
絶縁物等の粉末を混合したものを用い、発熱体に対して
電極を電気的に結合し、絶縁性セラミック絶縁体に埋設
したセラミックヒータを具えたものである。
2. Description of the Related Art Conventionally, two types of ceramic glow plugs, which have been used as starting aids for diesel engines and the like, have been roughly classified. One is
A coil heater is used as a heating element, an electrode is electrically coupled to the heating element, and a ceramic heater embedded in an insulating ceramic body is provided. Another one
One is to use a conductive ceramic or a mixture of metal and powder such as an insulator as the heating element, and to electrically connect the electrode to the heating element and to embed a ceramic heater embedded in the insulating ceramic insulator. It is equipped with.

【0003】上記2種類のセラミックヒータのうち、発
熱体としてタングステン線を用いたセラミックヒータ
は、タングステン線と絶縁性セラミックの線膨張係数の
差による熱応力のため、内燃機関に装着して使用時にセ
ラミックヒータが破損する場合があり、特開昭59−8
4025号公報に示されるように、コイル状のタングス
テン線の外接円の径とセラミックヒータの外径の比を規
定しているものがある。しかし、発熱体として導電性セ
ラミックまたは、金属と絶縁物等の粉末を混合したもの
を用いたものは、使用材料の選定により、絶縁性セラミ
ックとの線膨張係数の合わせ込みが可能であり、熱応力
に対して大きな配慮をはらう必要がない。
Among the above-mentioned two types of ceramic heaters, the ceramic heater using a tungsten wire as a heating element has a thermal stress due to a difference in linear expansion coefficient between the tungsten wire and the insulative ceramic, and is therefore mounted in an internal combustion engine when used. In some cases, the ceramic heater may be damaged.
As disclosed in Japanese Patent No. 4025, there is one that defines the ratio of the diameter of the circumscribed circle of the coiled tungsten wire to the outer diameter of the ceramic heater. However, when a conductive ceramic or a mixture of powder of metal and insulator is used as the heating element, it is possible to match the linear expansion coefficient with the insulating ceramic by selecting the material used. There is no need to pay much attention to stress.

【0004】上記のセラミックヒータの絶縁性セラミッ
ク絶縁体は窒化珪素等の非酸化物セラミックを主成分と
している。しかしながら、近年のセラミックグロープラ
グに対する長寿命化の動向により、エンジン内ガスによ
る腐食雰囲気下で、高温及び冷熱の繰り返しの長時間使
用に伴い、絶縁性セラミックが腐食を受け、順次消失す
る不具合が見受けられるようになってきている。例え
ば、導電部材として、導電性セラミックまたは、金属と
絶縁物の粉末を混合したものを用いたセラミックヒータ
に於いては、エンジンでの長時間の使用で導電部材が露
出する不具合が見受けられることがある。導電部材は絶
縁性セラミック絶縁体に比べ、耐熱耐食性に劣るため、
表面に露出すると、燃焼ガスによる腐食(酸化)を受
け、最悪の場合には抵抗値が上昇し、ついには機能しな
くなってしまう恐れがある。その対策として、特開昭6
3−297925号公報に示されるように、セラミック
ヒータの表面にアルミナのコーティング層を形成したも
のが提案されている。しかし、特開昭63−29792
5号公報にも示されているが、セラミックヒータの絶縁
性セラミック絶縁体は、一般に窒化珪素からなり、アル
ミナとの線膨張係数の差が大きく、エンジンの高出力化
の中で燃焼温度が上昇している近年では、線膨張係数の
差による熱応力の一層の上昇のため、アルミナのコーテ
ィング層にクラックが発生し、ついには脱落してしまう
こともある。そのため、早急にセラミックヒータの絶縁
性セラミック絶縁体の腐食を低減する技術が必要であ
る。
The insulating ceramic insulator of the above-mentioned ceramic heater is mainly composed of a non-oxide ceramic such as silicon nitride. However, due to the trend toward longer life of ceramic glow plugs in recent years, there is a problem that insulating ceramics are corroded and gradually disappear due to repeated use of high temperature and cold heat in a corrosive atmosphere due to gas in the engine. Is becoming available. For example, in the case of a ceramic heater using a conductive ceramic or a mixture of metal and an insulating powder as the conductive member, there is a problem that the conductive member is exposed after long-time use in the engine. is there. Compared to insulating ceramic insulators, conductive members are inferior in heat and corrosion resistance, so
If it is exposed to the surface, it may be corroded (oxidized) by the combustion gas, and in the worst case, the resistance value may increase and eventually it may not function. As a countermeasure, JP-A-6
As disclosed in Japanese Patent Laid-Open No. 3-297925, there is proposed a ceramic heater having an alumina coating layer formed on the surface thereof. However, JP-A-63-29792
As also disclosed in Japanese Patent Publication No. 5, the insulating ceramic insulator of the ceramic heater is generally made of silicon nitride and has a large difference in coefficient of linear expansion from that of alumina, so that the combustion temperature increases as the engine output increases. In recent years, due to a further increase in thermal stress due to the difference in linear expansion coefficient, cracks may occur in the alumina coating layer and eventually fall off. Therefore, there is an urgent need for a technique for reducing the corrosion of the insulating ceramic insulator of the ceramic heater.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑み、長時間の使用においても、絶縁性セラミック絶
縁体の腐食消失によって発熱体が露出しない耐久性の高
いセラミックヒータを備えたセラミックグロープラグを
提供するものである。
In view of the above problems, the present invention provides a ceramic having a highly durable ceramic heater in which the heating element is not exposed even when used for a long time due to corrosion disappearance of the insulating ceramic insulator. It provides a glow plug.

【0006】[0006]

【課題を解決するための手段】そこで、保持手段と、該
保持手段から一部が突出して保持されるセラミックヒー
タと、該セラミックヒータに外部電源からの電力を供給
する手段を備えてなるセラミックグロープラグに於い
て、前記セラミックヒータが、発熱体と、発熱体に結合
された電極と、非酸化物からなる絶縁性セラミック絶縁
体とから構成され、しかも前記発熱体と前記電極が前記
絶縁性セラミックに埋設された構造を有すると共に、前
記保持手段から突出した部分の前記セラミックヒータの
先端側の一部分若しくは突出した部分の全部分の表面粗
度が、十点平均表面粗さで10μm以下であることを特
徴とする前記セラミックヒータを具えた前記セラミック
グローブプラグとすることにより前述の課題を解決する
ものである。
A ceramic glow having a holding means, a ceramic heater partly protruding from the holding means and a means for supplying electric power from an external power source to the ceramic heater is provided. In the plug, the ceramic heater includes a heating element, an electrode coupled to the heating element, and an insulating ceramic insulator made of a non-oxide, and the heating element and the electrode are the insulating ceramic. And the surface roughness of a part of the part protruding from the holding means on the tip side of the ceramic heater or the whole part of the protruding part is 10 μm or less in ten-point average surface roughness. The above-mentioned problem is solved by using the ceramic glove plug including the ceramic heater.

【0007】[0007]

【作用】上記の如く構成したことにより、深さの深い表
面傷を除去できた。その結果、より大きな応力集中によ
ってより腐食が進行し易い状況を作り出していた原因を
除去できたことから、絶縁性セラミック絶縁体の腐食進
行を抑制できる。
By virtue of the above-mentioned constitution, deep surface scratches can be removed. As a result, it is possible to eliminate the cause of the situation in which corrosion is more likely to proceed due to a larger stress concentration, and thus it is possible to suppress the progress of corrosion of the insulating ceramic insulator.

【0008】[0008]

【発明の効果】上述の如き作用により、絶縁性セラミッ
ク絶縁体の腐食進行が抑制されたために、前記絶縁性セ
ラミック絶縁体の腐食消失が抑制される。それにより、
発熱体の露出しない耐久性の高いセラミックヒータを具
えたセラミックプラグを提供できる。
As described above, the progress of corrosion of the insulative ceramic insulator is suppressed by the above-described action, and thus corrosion disappearance of the insulative ceramic insulator is suppressed. Thereby,
It is possible to provide a ceramic plug including a highly durable ceramic heater that does not expose the heating element.

【0009】[0009]

【実施例】【Example】

(第1実施例)発明者は、腐食の進行について種々検討
するうちにセラミックヒータの表面粗さと腐食の進行の
関係に重要性を見出し鋭意研究した。研究の結果、絶縁
性セラミック絶縁体の表面の腐食消失は、特に、燃料噴
霧にさらされる部分で多いが、燃料噴霧にさらされる部
分も均一に絶縁性セラミック絶縁体が腐食消失するので
はなく、表面の非常に小さな凹部での腐食消失が多いと
いう特徴を明らかにできた。又、さらに凹部の深さの影
響を検討した結果、凹部の深さが深いほど、腐食消失が
多いことが判明した。この凹部の深さと腐食消失の関係
を考察するに、導電部材として例えば導電性セラミック
または、金属と絶縁物等の粉末を混合したものを用いた
ものは、使用材料の選定により、線膨張係数の合わせ込
みが比較的容易であるとはいえ、常温から高温までの全
使用温度域での完全な線膨張係数の合わせ込みは困難で
ある。従って、高温及び冷熱の繰り返し環境下で、値は
小さいが線膨張係数の差によってる熱応力が発生する。
又、前記凹部が切り欠き部に相当し、凹部の底に応力集
中がおこり、腐食が進行し易い状況にあったと考えられ
る。従って、凹部の深いものは大きな切り欠きとなり、
応力集中がより大きく、より腐食が進行し易いと考えら
れる。
(First Example) The present inventor conducted extensive studies while finding out the importance of the relationship between the surface roughness of a ceramic heater and the progress of corrosion while making various studies on the progress of corrosion. As a result of the research, the corrosion loss on the surface of the insulating ceramic insulator is particularly large in the part exposed to the fuel spray, but the insulating ceramic insulator is not uniformly corroded and disappeared in the part exposed to the fuel spray, It was possible to clarify the feature that corrosion disappeared frequently in very small recesses on the surface. Further, as a result of further studying the influence of the depth of the recesses, it has been found that the deeper the recesses are, the more corrosion disappears. To consider the relationship between the depth of the recess and the disappearance of corrosion, for example, a conductive member that uses a mixture of conductive ceramics or a powder of metal and an insulating material, the linear expansion coefficient of Although matching is relatively easy, it is difficult to match the complete linear expansion coefficient in the entire operating temperature range from room temperature to high temperature. Therefore, under repeated environments of high temperature and cold heat, thermal stress occurs due to the difference in linear expansion coefficient, although the value is small.
Further, it is considered that the concave portion corresponds to the cutout portion, stress concentration occurs at the bottom of the concave portion, and corrosion is likely to proceed. Therefore, deep recesses become large notches,
It is considered that the stress concentration is larger and the corrosion is more likely to proceed.

【0010】しかしながら、セラミックヒータの表面を
凹凸無い表面粗さ0μmにすることは不可能であるた
め、以上の考察を踏まえて、エンジンでの使用において
凹部での応力集中による腐食が進行しにくい表面の微小
な凹凸の大きさ、即ち、表面粗さの影響を検討するため
に種々なる試作物を作製した。以下、本発明を図に示す
実施例に基づいて説明する。
However, since it is impossible to make the surface of the ceramic heater have a surface roughness of 0 μm without unevenness, in view of the above consideration, the surface where corrosion due to stress concentration in the recesses does not easily progress in use in an engine. Various prototypes were prepared in order to study the influence of the size of the minute unevenness, that is, the surface roughness. Hereinafter, the present invention will be described based on the embodiments shown in the drawings.

【0011】図1は本発明の保持手段をなす中空パイプ
3に保持されたセラミックヒータ2の実施例を示す断面
図である。前記セラミックヒータ2は円形断面を有する
棒状の窒化珪素を主成分とする絶縁性セラミック絶縁体
12の先端内部に、U字形状をなす導電部材よりなる発
熱体11と、該発熱体11に電気的に結合されたタング
ステンよりなる一対の電極13、14とが埋設されて構
成されている。前記電極14の端部14aが露出する前
記セラミックヒータ2の側面2aにはニッケルメッキが
施されており、又、前記セラミックヒータ2を保持する
ために金属の前記中空パイプ3が前記セラミックヒータ
2を包含するようにロウ付け固定されている。さらに電
極13の端部13aが露出する前記セラミックヒータ2
の端部2bにはニッケルメッキが施されており、コイル
状の金属線5がロウ付け固定されている。
FIG. 1 is a sectional view showing an embodiment of a ceramic heater 2 held by a hollow pipe 3 which constitutes a holding means of the present invention. The ceramic heater 2 has a rod-shaped insulating ceramic insulator 12 having a circular cross section as a main component, and a heating element 11 made of a U-shaped conductive member inside the tip of the insulating ceramic insulator 12. The heating element 11 is electrically connected to the heating element 11. And a pair of electrodes 13 and 14 made of tungsten and bonded to each other. The side surface 2a of the ceramic heater 2 from which the end portion 14a of the electrode 14 is exposed is nickel-plated, and the metal hollow pipe 3 holds the ceramic heater 2 to hold the ceramic heater 2. It is fixed by brazing so as to include it. Further, the ceramic heater 2 in which the end portion 13a of the electrode 13 is exposed
The end portion 2b of the is plated with nickel, and the coiled metal wire 5 is fixed by brazing.

【0012】図2は本発明のセラミックヒータ2をセラ
ミックグロープラグ1に組付けた例を示す断面図であ
る。前記中空パイプ3の外周に、エンジンへの取付けネ
ジ4aを有する筒状の保持手段をなす金属ハウジング4
の一端がロウ付けによって接合されている。そして、コ
イル状の前記金属線5の一端は中軸6に溶接されてお
り、前記中軸6の端子ネジ部6aを介して図示しない電
源と電気的に導通連続されている。なお、前記中軸6と
戦記ハウジング4の間はガラスシール7および絶縁ブッ
シュ8により絶縁され、ナット9を締付けて固定されて
いる。このような構成にすることにより、図示してない
電源から前記中軸6、前記金属線5、前記電極13、前
記発熱体11、前記電極14、前記中空パイプ3、前記
ハウジング4を介して、図示しないエンジンブロックへ
電気的にアースされて電力供給手段を構成している。
FIG. 2 is a sectional view showing an example in which the ceramic heater 2 of the present invention is assembled to the ceramic glow plug 1. On the outer periphery of the hollow pipe 3, a metal housing 4 forming a cylindrical holding means having a mounting screw 4a for an engine.
One end of each is joined by brazing. One end of the coil-shaped metal wire 5 is welded to the center shaft 6 and is electrically continuous with a power source (not shown) via the terminal screw portion 6a of the center shaft 6. A glass seal 7 and an insulating bush 8 insulate the space between the center shaft 6 and the record housing 4, and a nut 9 is tightened and fixed. With such a configuration, a power source (not shown), the metal wire 5, the electrode 13, the heating element 11, the electrode 14, the hollow pipe 3, and the housing 4 are used for the illustration. The engine block is electrically grounded to form a power supply means.

【0013】ここで、前記セラミックヒータ2の前記中
空パイプ3から裸出している部分の十点平均表面粗さ
を、2.5μmから25μmまで種々なるものを作製し
た(表面粗さはJIS B 0601に従う)。以下、
本発明の効果を表す試験結果について示す。先ず、凹部
の深さと腐食の進行状況について前記絶縁性セラミック
絶縁体12を窒化珪素を主成分とした前記セラミックヒ
ータ2の前記セラミックグロープラグ1にて試験した。
試験は、2000ccディーゼルエンジンで、高温腐食
および、凹部での熱応力が発生しやすいよう冷熱試験を
行った。条件は前記セラミックグロープラグ1の通電を
OFFの状態で、高温条件としてW.O.T4000r
pmで2分、低温条件としてアイドリングで2分を1サ
イクルとして、300サイクル(20時間)運転した。
その後、前記セラミックヒータ2を取り出し、樹脂に埋
め込み断面観察した。その例を図3に示す。図3より、
表面は全面腐食しているが、特に、凹部の深い部分の腐
食が顕著であることが分かる。凸部の先端部も若干腐食
が大きいが、燃焼の熱影響によりホットスポットになり
やすいためであると考えられるが、凸部は表面粗さに関
係無く腐食が進んでいる。
Here, various ten-point average surface roughness of the portion of the ceramic heater 2 which is exposed from the hollow pipe 3 from 2.5 μm to 25 μm was prepared (the surface roughness is JIS B 0601). According to). Less than,
The test results showing the effect of the present invention will be shown. First, the insulating ceramic insulator 12 was tested with the ceramic glow plug 1 of the ceramic heater 2 containing silicon nitride as a main component for the depth of the recess and the progress of corrosion.
The test was a 2000 cc diesel engine, and a cold heat test was performed so that high temperature corrosion and thermal stress in the recesses were likely to occur. The conditions are as follows: a high temperature condition of W. O. T4000r
Operation was performed for 300 cycles (20 hours), with 2 minutes at pm and 2 minutes at low temperature as idling as one cycle.
After that, the ceramic heater 2 was taken out and embedded in a resin to observe a cross section. An example thereof is shown in FIG. From Figure 3,
Although the entire surface is corroded, it can be seen that particularly the corrosion of the deep part of the recess is remarkable. Although the tip of the convex portion is also slightly corroded, it is considered that this is because hot spots are likely to be formed due to the thermal effect of combustion, but the convex portion is corroded regardless of the surface roughness.

【0014】以上の試験結果をもとに、表面粗さと耐久
性の関係について試験した。試験は、4〜25μm表面
粗さを有し、又、前記絶縁性セラミック絶縁体12とし
て窒化珪素を主成分にしたφ3.5mmの前記セラミッ
クヒータ2にて実施した。又、近年要求される車両寿命
20万Km相当分の厳しい熱負荷を与えるため、上記図
3と同じ条件で7500サイクル(500時間)運転し
た。試験後、前記セラミックヒータ2の最も腐食消失の
多い部分の径を測定し、その半径の差を腐食消失量とし
て求めた。前記セラミックヒータ2の最も腐食消失の多
い部分はエンジンからの熱負荷が大きい先端側の1/2
の部分に集中していた。金属パイプ側は金属パイプへの
熱伝導のため先端側に比べ温度が低く腐食も先端側より
軽微である。その結果を図4に示す。図4より、表面粗
さが約10μm以下のものは最大0.4mm程度の腐食
消失量であるが、約10μm以上になると腐食消失量が
増大することが分かる。本試験結果を考察するに、表面
粗さが小さく、線膨張係数差による熱応力の凹部での応
力集中が小さいものでも、エンジンでの高温および冷熱
の繰り返し下において、最大0.4mm程度の腐食消失
が認められ、これは、前記セラミックヒータ2の表面状
態に関係無く、窒化珪素を主成分にしたセラミックヒー
タの耐熱耐久性であると考えられる。表面粗さが約10
μm以上の腐食消失量は、前記セラミックヒータ12の
耐熱耐久性による腐食消失量以上になるが、これは、前
記セラミックヒータの耐熱耐久性による腐食消失量0.
4mmの他に、エンジンでの高温および冷熱の繰り返し
下において、線膨張係数差による熱応力の凹部の切り欠
き効果により応力集中が起こり、凹部の深い部分で腐食
の進行速度が速く、腐食と消失を繰り返すため、長時間
の使用後も腐食層を除いた実質の表面粗さは大きく変化
しないものと考えられる。
Based on the above test results, the relationship between surface roughness and durability was tested. The test was carried out with the ceramic heater 2 having a surface roughness of 4 to 25 μm and having φ3.5 mm containing silicon nitride as a main component as the insulating ceramic insulator 12. In addition, in order to apply a severe heat load equivalent to 200,000 km of the vehicle life required in recent years, 7500 cycles (500 hours) of operation were performed under the same conditions as in FIG. After the test, the diameter of the portion of the ceramic heater 2 where corrosion was most lost was measured, and the difference in radius was determined as the amount of corrosion lost. The most corrosive part of the ceramic heater 2 is half of the tip side where the heat load from the engine is large.
Was concentrated on the part. The temperature of the metal pipe side is lower than that of the tip side because of heat conduction to the metal pipe, and the corrosion is less than that of the tip side. The result is shown in FIG. It can be seen from FIG. 4 that when the surface roughness is about 10 μm or less, the maximum corrosion loss is about 0.4 mm, but when it is about 10 μm or more, the corrosion loss increases. Considering the results of this test, even if the surface roughness is small and the thermal stress due to the difference in linear expansion coefficient is small in the stress concentration in the recesses, corrosion of up to about 0.4 mm under repeated high temperature and cold heat in the engine Disappearance was recognized, which is considered to be the heat resistance durability of the ceramic heater containing silicon nitride as a main component, regardless of the surface state of the ceramic heater 2. Surface roughness is about 10
The amount of corrosion disappearance of .mu.m or more is equal to or more than the amount of corrosion disappearance due to the heat resistance durability of the ceramic heater 12.
In addition to 4 mm, stress concentration occurs due to the notch effect of the thermal stress due to the difference in linear expansion coefficient due to the difference in linear expansion coefficient when the engine is repeatedly subjected to high temperature and cold heat, and the corrosion progresses rapidly in the deep part of the recess, causing corrosion and disappearance. Therefore, it is considered that the substantial surface roughness excluding the corrosion layer does not change significantly even after long-term use.

【0015】以上、図4の結果により、前記セラミック
ヒータ2の十点平均表面粗さを10μm以下にし、か
つ、導電部材の埋設深さを0.4mm以上にすることに
よって前記絶縁性セラミック絶縁体12の腐食消失によ
る発熱体の露出を防止できる。これにより、長寿命なセ
ラミックグロープラグを提供することができる。尚、前
記絶縁性セラミック絶縁体12を窒化珪素を主成分とし
たセラミックとしたが、酸化腐食する非酸化物セラミッ
クであっても同様に効奏する。
From the results shown in FIG. 4, the ten-point average surface roughness of the ceramic heater 2 is 10 μm or less, and the burying depth of the conductive member is 0.4 mm or more. It is possible to prevent the heating element from being exposed due to the disappearance of the corrosion of 12. This makes it possible to provide a long-life ceramic glow plug. Although the insulating ceramic insulator 12 is a ceramic containing silicon nitride as a main component, the same effect can be obtained even if it is a non-oxide ceramic that oxidizes and corrodes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミックヒータの実施例を示す断面
図である。
FIG. 1 is a cross-sectional view showing an embodiment of a ceramic heater of the present invention.

【図2】本発明のセラミックヒータを用いたセラミック
グロープラグの実施例を示す断面図である。
FIG. 2 is a sectional view showing an embodiment of a ceramic glow plug using the ceramic heater of the present invention.

【図3】セラミックヒータの腐食状態を示す拡大模式図
である。
FIG. 3 is an enlarged schematic view showing a corrosion state of a ceramic heater.

【図4】エンジン試験後の腐食消失量を表した図であ
る。
FIG. 4 is a diagram showing a corrosion disappearance amount after an engine test.

【符号の説明】[Explanation of symbols]

1 セラミックグロープラグ 2 セラミックヒータ 2a セラミックヒータ側面 2b セラミックヒータ端部 2c セラミックヒータ突出部 3 中空パイプ 4 ハウジング 4a 取付けネジ部 5 金属線 6 中軸 6a 端子ネジ部 7 ガラスシール 8 絶縁ブッシュ 9 ナット 11 発熱体 12 絶縁性セラミック絶縁体 13 電極 13a 電極端部 14 電極 14a 電極端部 3,4 保持手段 3,4,5,6,13,13a,14,14a 電力供
給手段
1 Ceramic Glow Plug 2 Ceramic Heater 2a Ceramic Heater Side 2b Ceramic Heater End 2c Ceramic Heater Projection 3 Hollow Pipe 4 Housing 4a Mounting Screw 5 Metal Wire 6 Center Shaft 6a Terminal Screw 7 Glass Seal 8 Insulation Bushing 9 Nut 11 Heating Element 12 Insulating Ceramic Insulator 13 Electrode 13a Electrode End 14 Electrode 14a Electrode End 3,4 Holding Means 3, 4, 5, 6, 13, 13a, 14, 14a Power Supply Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 保持手段と、該保持手段から一部が突出
して保持されるセラミックヒータと、該セラミックヒー
タに外部電源からの電力を供給する手段を備えてなるセ
ラミックグロープラグに於いて、 前記セラミックヒータが、発熱体と、発熱体に結合され
た電極と、非酸化物からなる絶縁性セラミック絶縁体と
から構成され、しかも前記発熱体と前記電極が前記絶縁
性セラミック絶縁体に埋設された構造を有すると共に、
前記保持手段から突出した部分の前記セラミックヒータ
の先端側の一部分若しくは突出した部分の全部分の表面
粗度が、十点平均表面粗さで10μm以下であることを
特徴とする前記セラミックヒータを具えた前記セラミッ
クグロープラグ。
1. A ceramic glow plug comprising a holding means, a ceramic heater part of which is projected and held from the holding means, and a means for supplying electric power from an external power source to the ceramic heater, wherein: The ceramic heater is composed of a heating element, an electrode coupled to the heating element, and an insulating ceramic insulator made of a non-oxide, and the heating element and the electrode are embedded in the insulating ceramic insulator. Having a structure,
The ceramic heater is characterized in that the surface roughness of a part of the part protruding from the holding means on the tip side of the ceramic heater or the whole part of the protruding part is 10 μm or less in ten-point average surface roughness. The above-mentioned ceramic glow plug.
JP25164393A 1993-10-07 1993-10-07 Ceramic glow plug Expired - Fee Related JP3589684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25164393A JP3589684B2 (en) 1993-10-07 1993-10-07 Ceramic glow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25164393A JP3589684B2 (en) 1993-10-07 1993-10-07 Ceramic glow plug

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003085714A Division JP3838212B2 (en) 2003-03-26 2003-03-26 Ceramic glow plug

Publications (2)

Publication Number Publication Date
JPH07103482A true JPH07103482A (en) 1995-04-18
JP3589684B2 JP3589684B2 (en) 2004-11-17

Family

ID=17225879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25164393A Expired - Fee Related JP3589684B2 (en) 1993-10-07 1993-10-07 Ceramic glow plug

Country Status (1)

Country Link
JP (1) JP3589684B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011923A1 (en) * 1999-08-09 2001-02-15 Ibiden Co., Ltd. Ceramic heater
WO2001011922A1 (en) * 1999-08-09 2001-02-15 Ibiden Co., Ltd. Ceramic heater
JP2001132949A (en) * 1999-10-29 2001-05-18 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
CN1067144C (en) * 1997-03-31 2001-06-13 日本特殊陶业株式会社 Ceramic heater
US6835916B2 (en) 1999-08-09 2004-12-28 Ibiden, Co., Ltd Ceramic heater
US6916559B2 (en) 1997-02-26 2005-07-12 Kyocera Corporation Ceramic material resistant to halogen plasma and member utilizing the same
KR100588004B1 (en) * 1999-07-02 2006-06-08 베루 악티엔게젤샤프트 Ceramic heating rod, glow plug containing the ceramic heating rod, and process for their manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916559B2 (en) 1997-02-26 2005-07-12 Kyocera Corporation Ceramic material resistant to halogen plasma and member utilizing the same
CN1067144C (en) * 1997-03-31 2001-06-13 日本特殊陶业株式会社 Ceramic heater
KR100588004B1 (en) * 1999-07-02 2006-06-08 베루 악티엔게젤샤프트 Ceramic heating rod, glow plug containing the ceramic heating rod, and process for their manufacture
WO2001011923A1 (en) * 1999-08-09 2001-02-15 Ibiden Co., Ltd. Ceramic heater
WO2001011922A1 (en) * 1999-08-09 2001-02-15 Ibiden Co., Ltd. Ceramic heater
US6465763B1 (en) 1999-08-09 2002-10-15 Ibiden Co., Ltd. Ceramic heater
US6710307B2 (en) 1999-08-09 2004-03-23 Ibiden Co., Ltd. Ceramic heater
US6835916B2 (en) 1999-08-09 2004-12-28 Ibiden, Co., Ltd Ceramic heater
US6861620B2 (en) 1999-08-09 2005-03-01 Ibiden Co., Ltd. Ceramic heater
JP2001132949A (en) * 1999-10-29 2001-05-18 Ngk Spark Plug Co Ltd Ceramic heater and glow plug

Also Published As

Publication number Publication date
JP3589684B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US4682008A (en) Self-temperature control type glow plug
KR19980080845A (en) Ceramic Heaters
US5502351A (en) Spark plug having horizontal discharge gap
CA1238829A (en) Glow plug having a conductive film heater
HU224369B1 (en) Ceramic sheathed element glow plug and method production of its
JP3589684B2 (en) Ceramic glow plug
JPH08504938A (en) Glow plug
JP2016522386A (en) Sheath type glow plug with heating element made of inner contact type ceramic and method for manufacturing the same
JP3351573B2 (en) Ceramic heating element
JP3838212B2 (en) Ceramic glow plug
US4620511A (en) Glow plug having a conductive film heater
JP3269253B2 (en) Ceramic heater
JP2003240240A (en) Glow plug
JPS58106325A (en) Directly-heat type preheating plug for internal- combustion engine
JPS63273728A (en) Glow plug
JP3651008B2 (en) Ceramic glow plug
JP3551032B2 (en) Glow plug
JPH0450488B2 (en)
JP4480294B2 (en) Spark plug mounting structure and spark plug
JP2561709Y2 (en) Spark plug
JPH0445730B2 (en)
JPS6144227A (en) Glow plug for diesel engine
JPH04113121A (en) Glow plug
JPS6144221A (en) Glow plug for diesel engine
JPS6144226A (en) Glow plug for diesel engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030204

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees