JPH0710334Y2 - Optical frequency shifter - Google Patents

Optical frequency shifter

Info

Publication number
JPH0710334Y2
JPH0710334Y2 JP1987066955U JP6695587U JPH0710334Y2 JP H0710334 Y2 JPH0710334 Y2 JP H0710334Y2 JP 1987066955 U JP1987066955 U JP 1987066955U JP 6695587 U JP6695587 U JP 6695587U JP H0710334 Y2 JPH0710334 Y2 JP H0710334Y2
Authority
JP
Japan
Prior art keywords
light wave
amplitude
liquid crystal
light
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987066955U
Other languages
Japanese (ja)
Other versions
JPS63173225U (en
Inventor
優 赤澤
栄▲吉▼ 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP1987066955U priority Critical patent/JPH0710334Y2/en
Publication of JPS63173225U publication Critical patent/JPS63173225U/ja
Application granted granted Critical
Publication of JPH0710334Y2 publication Critical patent/JPH0710334Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 この考案は光波を電気信号に変換することなく、光のま
まその周波数を推移する光周波数推移装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial application field" The present invention relates to an optical frequency shifting device that shifts the frequency of light as it is without converting the light wave into an electric signal.

「従来の技術」 周波数推移装置は第2図に示すように、角周波数がωの
入射光波cos(ωt)が光波分配器11により2条の光波
に分けられる。その片方の光波はπ/2移相器12で90度位
相推移される。このようにして互に90度位相がずれた第
1,第2光波が得られる。その第1光波、この例では光波
分配器11より直接出射した光波は第1振幅変調器13に入
射され、余弦波信号Acos(pt)により振幅変調される。
この第1振幅変調器13の出射光波は、 Acos(pt)cos(ωt) (1) と表わせる。一方、第2光波、つまりこの例ではπ/2移
相器12の出射光波は−sin(ωt)と表わせ、この光波
は第2振幅変調器14で正弦波信号Asin(pt)により振幅
変調される。この第2振幅変調器14の出射光波は −Asin(pt)sin(ωt) (2) と表わせる。これら第1,第2振幅変調器13,14よりの両
出射光波は光波結合器15で干渉結合される。この結果、
光波結合器15の出射光波は Acos(pt)cos(ωt)−Asin(pt)sin(ωt) =Acos〔(ω+p)t〕 (3) となり、入射光波cos(ωt)に対し、周波数がp/2πだ
け推移したものとなる。
"Prior Art" In the frequency shift device, as shown in FIG. 2, an incident light wave cos (ωt) having an angular frequency of ω is divided by a light wave distributor 11 into two light waves. One of the light waves is phase-shifted by 90 degrees in the π / 2 phase shifter 12. In this way, the first phase shifted 90 degrees from each other
1, the second light wave is obtained. The first light wave, which is the light wave directly emitted from the light wave distributor 11 in this example, enters the first amplitude modulator 13 and is amplitude-modulated by the cosine wave signal Acos (pt).
The outgoing light wave of the first amplitude modulator 13 can be expressed as Acos (pt) cos (ωt) (1). On the other hand, the second light wave, that is, the light wave emitted from the π / 2 phase shifter 12 in this example is represented by −sin (ωt), and this light wave is amplitude-modulated by the sine wave signal Asin (pt) by the second amplitude modulator 14. It The light wave emitted from the second amplitude modulator 14 can be expressed as −Asin (pt) sin (ωt) (2). Both outgoing light waves from the first and second amplitude modulators 13 and 14 are interference-coupled by a light wave combiner 15. As a result,
The light wave emitted from the light wave coupler 15 becomes Acos (pt) cos (ωt) −Asin (pt) sin (ωt) = Acos [(ω + p) t] (3), and the frequency is p with respect to the incident light wave cos (ωt). It will be changed by / 2π.

なお第2図において各光要素間は平行光により結合され
るか又は光導波路で結合されている。
In FIG. 2, the optical elements are connected by parallel light or optical waveguides.

第1,第2振幅変調器13,14に用いられている従来のもの
は第3図に示すように構成されていた。入射光波は偏光
子21により直線偏光の光波とされ、電気光学素子22に入
射される。電気光学素子22はこれに電界が印加されてい
ない場合は、検光子23をそのまま透過する。電気光学素
子22に電界が加えられると、その電界強度に応じて電気
光学素子22を透過する直線偏光の光波の偏光面が回転さ
れる。このため検光子23を透過する光量は、その入射光
波の偏光面と検光子23の光軸とのなす角をθ、検光子23
に入射する光量をIとすると、Icosθに比例する。従っ
て電気光学素子22に交流電界を印加すると、その交流電
界により振幅変調された出射光波が検光子23から得られ
る。
The conventional device used for the first and second amplitude modulators 13 and 14 has a structure as shown in FIG. The incident light wave is converted into a linearly polarized light wave by the polarizer 21 and is incident on the electro-optical element 22. The electro-optical element 22 passes through the analyzer 23 as it is when no electric field is applied to it. When an electric field is applied to the electro-optical element 22, the polarization plane of the linearly polarized light wave passing through the electro-optical element 22 is rotated according to the electric field strength. Therefore, the amount of light transmitted through the analyzer 23 is defined by the angle between the polarization plane of the incident light wave and the optical axis of the analyzer 23 being θ,
Let I be the amount of light incident on. Therefore, when an AC electric field is applied to the electro-optical element 22, an emitted light wave amplitude-modulated by the AC electric field is obtained from the analyzer 23.

「考案が解決しようとする問題点」 従来の振幅変調器に用いられている電気光学素子22の物
質は例えばタンタル酸リチウム(TiTaO3)の結晶であ
る。この結晶の半波長電圧、つまり偏光面を90°回転さ
せる電圧は2800Vであり、電極間隔を1mmとすると結晶の
長さは70mm必要である。このように従来の振幅変調器は
高電圧を必要とし、しかも大形になり、このためこれを
用いた光周波数推移装置も大形となり、かつ高電圧を必
要とする問題があった。
[Problems to be Solved by the Invention] The substance of the electro-optical element 22 used in the conventional amplitude modulator is, for example, a crystal of lithium tantalate (TiTaO 3 ). The half-wave voltage of this crystal, that is, the voltage for rotating the polarization plane by 90 ° is 2800 V, and the crystal length is 70 mm when the electrode interval is 1 mm. As described above, the conventional amplitude modulator requires a high voltage and becomes large in size, so that there is a problem that the optical frequency shifter using the same also becomes large in size and requires a high voltage.

「問題点を解決するための手段」 この考案によれば、入射光波を分配し、その二つの光波
間に90度の位相差を与え、更にそれらを第1,第2振幅変
調器で、Acos(pt),Asin(pt)の振幅変調を行い、そ
の被振幅変調出射光を光結合して、入射光波に対し、周
波数推移された出射光波を得る光周波数推移装置におい
て、特に、その第1,第2振幅変調器として液晶素子にて
構成されたものが用いられている。
[Means for Solving Problems] According to this invention, an incident light wave is distributed, a phase difference of 90 degrees is given between the two light waves, and the two light waves are further separated by the first and second amplitude modulators. (Pt), Asin (pt) amplitude modulation, the amplitude-modulated outgoing light is optically coupled to obtain an outgoing light wave whose frequency is shifted with respect to the incident light wave. As the second amplitude modulator, a liquid crystal element is used.

液晶素子にて構成された振幅変調器は小形に構成でき、
しかもその低い電圧で動作する。
The amplitude modulator composed of liquid crystal elements can be constructed in a small size,
Moreover, it operates at that low voltage.

「実施例」 この考案の光周波数推移装置の実施例を図面を参照して
説明する。この光周波数推移装置のブロック構成は第2
図に示したものと同一である。この考案においてはその
第1,第2振幅変調器13,14として液晶素子にて構成され
たものが用いられる。液晶素子にて構成された振幅変調
器は例えば第1図に示すように結晶セル31の両面に偏光
子32と検光子33とがそれぞれ配されている。入射光波は
偏光子32に入射され、直線偏光となって液晶セル31に入
射される。液晶セル31には例えば誘電異方性が正のネマ
チック液晶が封入されている。液晶分子の長軸方向が偏
光子32側と検光子33側とで90°ねじれ、これら間でその
ねじれが連続的に変化しているツイスト配列形のものと
する。偏光子32側において液晶分子の長軸方向は偏光子
32の偏光方向と一致している。
[Embodiment] An embodiment of the optical frequency shift device of the present invention will be described with reference to the drawings. The block configuration of this optical frequency shifting device is the second
It is the same as shown in the figure. In the present invention, liquid crystal elements are used as the first and second amplitude modulators 13 and 14. In the amplitude modulator composed of a liquid crystal element, for example, as shown in FIG. 1, a polarizer 32 and an analyzer 33 are arranged on both surfaces of a crystal cell 31, respectively. The incident light wave enters the polarizer 32, becomes linearly polarized light, and enters the liquid crystal cell 31. The liquid crystal cell 31 is filled with a nematic liquid crystal having a positive dielectric anisotropy, for example. It is assumed that the liquid crystal molecules are twisted in the major axis direction by 90 ° between the polarizer 32 side and the analyzer 33 side, and the twist is continuously changed between them. On the polarizer 32 side, the major axis direction of the liquid crystal molecules is the polarizer
It matches the 32 polarization directions.

液晶セル31に偏光子32を介して入射された直線偏光の偏
光方向は液晶セル31を通過中に液晶分子のねじれにそっ
て90°回転する(90°旋光という)。従って偏光子32と
検光子33との各光軸が互に直交されているため光は透過
する。
The polarization direction of the linearly polarized light incident on the liquid crystal cell 31 via the polarizer 32 is rotated by 90 ° along the twist of the liquid crystal molecules while passing through the liquid crystal cell 31 (referred to as 90 ° optical rotation). Therefore, since the optical axes of the polarizer 32 and the analyzer 33 are orthogonal to each other, light is transmitted.

液晶セル31内の対向透明電極(図示していない)間に電
圧を印加するとその電圧がしきい値電圧以上になると液
晶分子の長軸が電界方向に傾きはじめ、ある電圧以上に
なると液晶分子の長軸は一様に電界方向と平行に配列さ
れ、この状態では前記90°旋光が消失する。従って液晶
セルに電圧を印加する前は光は透過するが、電圧が印加
されると90°旋光が消失して光は透過しなくなる。つま
り液晶セル31に交流電圧Acos(pt)を印加すると、出射
光波の振幅はAcos(pt)で変化し、振幅変調出射光波が
得られる。
When a voltage is applied between opposing transparent electrodes (not shown) in the liquid crystal cell 31, the major axis of the liquid crystal molecules begins to tilt in the direction of the electric field when the voltage becomes equal to or higher than the threshold voltage, and the voltage of the liquid crystal molecule becomes greater than a certain voltage. The major axis is uniformly arranged in parallel with the electric field direction, and in this state, the 90 ° optical rotation disappears. Therefore, light is transmitted before the voltage is applied to the liquid crystal cell, but when the voltage is applied, the 90 ° optical rotation disappears and the light is not transmitted. That is, when the AC voltage Acos (pt) is applied to the liquid crystal cell 31, the amplitude of the emitted light wave changes by Acos (pt), and the amplitude-modulated emitted light wave is obtained.

液晶の厚さを10μm程度にすると、約8Vの電圧で90°旋
光を消失させることができる。
If the thickness of the liquid crystal is about 10 μm, 90 ° optical rotation can be eliminated with a voltage of about 8V.

「考案の効果」 以上述べたようにこの考案においては第1,第2振幅変調
器13,14として液晶セルにて構成されたものが用いられ
ているため、全体を小形に構成でき、印加電圧も小さい
もので済む。例えば液晶セルにて構成された振幅変調器
は厚さを5mm角以下とすることができ、入射面の大きさ
は入射光波のビーム径より大きければよく、5mm角以下
で十分である。印加電圧は10V以下で十分変調効果が得
られる。
“Effect of device” As described above, in this device, since the first and second amplitude modulators 13 and 14 that are configured by the liquid crystal cell are used, the entire device can be made compact and the applied voltage can be reduced. Is also small. For example, the amplitude modulator formed of a liquid crystal cell can have a thickness of 5 mm square or less, and the size of the incident surface may be larger than the beam diameter of the incident light wave, and 5 mm square or less is sufficient. A sufficient modulation effect can be obtained when the applied voltage is 10 V or less.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の光周波数推移装置に用いられる振幅
変調器の例を示す斜視図、第2図は光周波数推移装置を
示すプロック図、第3図は従来の光周波数推移装置に用
いられる振幅変調器を示すブロック図である。
FIG. 1 is a perspective view showing an example of an amplitude modulator used in the optical frequency shifting device of the present invention, FIG. 2 is a block diagram showing the optical frequency shifting device, and FIG. 3 is used in a conventional optical frequency shifting device. It is a block diagram which shows an amplitude modulator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】入射光波を光波分配器で二つの光波に分配
し、これら分配された二つの光波をπ/2移相器で90度相
対的に位相をずらした第1,第2光波とし、その第1光波
を第1振幅変調器で信号Acos(pt)により振幅変調し、
上記第2光波を第2振幅変調器で信号Asin(pt)により
振幅変調し、これら第1,第2振幅変調器の両出射光を光
波結合器で結合させて上記入射光波に対し周波数がP/
(2π)推移した出射光波を得る光周波数推移装置にお
いて、 上記第1,第2振幅変調器はそれぞれ、液晶素子にて構成
されていることを特徴とする光周波数推移装置。
1. An incident light wave is divided into two light waves by a light wave splitter, and these two divided light waves are made into first and second light waves with a phase shift of 90 degrees relative to each other by a π / 2 phase shifter. , The first light wave is amplitude-modulated by the signal Acos (pt) by the first amplitude modulator,
The second light wave is amplitude-modulated by the signal Asin (pt) by the second amplitude modulator, and the two outgoing lights of the first and second amplitude modulators are combined by the light wave combiner so that the frequency of the incident light wave is P /
An optical frequency shifting device for obtaining a (2π) shifted outgoing light wave, wherein each of the first and second amplitude modulators is composed of a liquid crystal element.
JP1987066955U 1987-05-01 1987-05-01 Optical frequency shifter Expired - Lifetime JPH0710334Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987066955U JPH0710334Y2 (en) 1987-05-01 1987-05-01 Optical frequency shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987066955U JPH0710334Y2 (en) 1987-05-01 1987-05-01 Optical frequency shifter

Publications (2)

Publication Number Publication Date
JPS63173225U JPS63173225U (en) 1988-11-10
JPH0710334Y2 true JPH0710334Y2 (en) 1995-03-08

Family

ID=30905429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987066955U Expired - Lifetime JPH0710334Y2 (en) 1987-05-01 1987-05-01 Optical frequency shifter

Country Status (1)

Country Link
JP (1) JPH0710334Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849917A (en) * 1981-09-03 1983-03-24 Yokogawa Hewlett Packard Ltd Optical switching device
JPS59113424A (en) * 1982-12-20 1984-06-30 Matsushita Electric Ind Co Ltd Light frequency converting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849917A (en) * 1981-09-03 1983-03-24 Yokogawa Hewlett Packard Ltd Optical switching device
JPS59113424A (en) * 1982-12-20 1984-06-30 Matsushita Electric Ind Co Ltd Light frequency converting element

Also Published As

Publication number Publication date
JPS63173225U (en) 1988-11-10

Similar Documents

Publication Publication Date Title
US5005952A (en) Polarization controller
US3272988A (en) Polarization modulation system for transmitting and receiving two independent signals over a single electromagnetic carrier
JPS58109859A (en) Voltage and electric field measuring device using light
KR880005479A (en) Liquid crystal display device
JP2004062178A (en) Polarization rotor, parallax barrier, display, and optical modulator
US4522468A (en) Information display device having a liquid crystal cell
JPH09133904A (en) Optical deflection switch
JPH0710334Y2 (en) Optical frequency shifter
JP2646558B2 (en) Optical polarization control element
JPH0283523A (en) Optical isolator
CN110231024B (en) Method and device for modulating phase of optical fiber Sagnac interferometer
GB1056575A (en) A modulator for a light beam
JPH01138529A (en) Liquid crystal display element
JPS5834429A (en) Polarizing element
JPH0460511A (en) Active optical isolator
JPS62269113A (en) Polarization control device
JPS62148923A (en) Polarization control device
JP2980996B2 (en) Light switch
JPH03243919A (en) Liquid crystal electrooptical element
JPH11125801A (en) Wavelength selection filter
JP2615022B2 (en) Optical waveguide and method of manufacturing the same
JP3651917B2 (en) Optical angle modulation-intensity modulation conversion method
JPH01142618A (en) Electrooptical device
JPH0430582Y2 (en)
JPS62159059A (en) Liquid crystal electric field sensor