JPH07103250A - Tripod type uniform speed universal joint - Google Patents

Tripod type uniform speed universal joint

Info

Publication number
JPH07103250A
JPH07103250A JP24469793A JP24469793A JPH07103250A JP H07103250 A JPH07103250 A JP H07103250A JP 24469793 A JP24469793 A JP 24469793A JP 24469793 A JP24469793 A JP 24469793A JP H07103250 A JPH07103250 A JP H07103250A
Authority
JP
Japan
Prior art keywords
shaft
outer ring
universal joint
track groove
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24469793A
Other languages
Japanese (ja)
Other versions
JP3305831B2 (en
Inventor
Tetsuo Kadota
哲郎 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP24469793A priority Critical patent/JP3305831B2/en
Publication of JPH07103250A publication Critical patent/JPH07103250A/en
Application granted granted Critical
Publication of JP3305831B2 publication Critical patent/JP3305831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To smooth the motion of a roller inside a track groove so as to suppress friction, vibration, heat generation, and noise even when an operating angle is taken against the track groove accepting a leg shaft and a guiding roller on the outer circumference of the leg shaft in a tripod type uniform speed universal joint. CONSTITUTION:In a track groove 12, which is arranged inside an outer ring 10 provided with the second shaft 11, an angle beta, which the center line of the track groove 12 makes with the shaft center X, and an angle alpha, which a leg shaft 19 arranged in a tripod member 14 installed in the inside makes with the shaft center X, satisfy such a formula as tanbeta=2tanalpha.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車等に使用され
るトリポード型等速自在継手に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tripod type constant velocity universal joint used in automobiles and the like.

【0002】[0002]

【従来の技術】トリポード型等速自在継手は、作動角及
びプランジング距離を大きく確保できるという利点から
前輪駆動式の自動車に多く用いられている。かかるトリ
ポード型等速自在継手の原理的な構造を有するものとし
て、例えば図6に示すものが知られている。図示のもの
は、外輪1の内面に軸方向の三本の円筒形トラック溝2
を形成し、その外輪1の内側に配置したトリポード部材
3に半径方向の脚軸4を突設し、各脚軸4の外側に球面
ローラ5を回転可能に、且つ軸方向にスライド可能に嵌
合し、その球面ローラ5を上記トラック溝2の両側のロ
ーラ案内面6に係合している。図7は軌道面の説明図、
図8は機構の概略斜視図である。
2. Description of the Related Art Tripod type constant velocity universal joints are often used in front-wheel drive type automobiles because of their advantages of ensuring a large working angle and plunging distance. As one having a principle structure of such a tripod type constant velocity universal joint, for example, one shown in FIG. 6 is known. The illustration shows three cylindrical track grooves 2 in the axial direction on the inner surface of the outer ring 1.
Forming a radial leg shaft 4 on the tripod member 3 disposed inside the outer ring 1, and fitting the spherical roller 5 on the outer side of each leg shaft 4 so as to be rotatable and axially slidable. The spherical rollers 5 are engaged with the roller guide surfaces 6 on both sides of the track groove 2. Figure 7 is an illustration of the orbital plane,
FIG. 8 is a schematic perspective view of the mechanism.

【0003】又、上記一般的な構造の例以外にも、例え
ば米国特許明細書第5、135、438号公報、特公平
2−32492号公報、あるいは実公平5−9534号
公報に開示されたものがある。
Further, in addition to the examples of the above-mentioned general structure, they are disclosed in, for example, US Pat. Nos. 5,135,438, JP-B-2-32492, and JP-B-5-9534. There is something.

【0004】上記米国特許公報による自在継手も基本的
な構造は前記一般的な公知例と同様であるが、特に脚軸
がこれを固定した第一軸の軸心と直角な面からわずかな
角度だけ正又は負の方向に傾いた面内にそれぞれ取付け
られ、この斜めに取付けた脚軸の中心線と直角に交わる
直線と第二のわずかな角度で交わる直線方向に沿って脚
軸に取付けた球面ローラが回転自在に転動し得るように
トラック溝が設けられている点が異なっている。
The basic structure of the universal joint according to the above-mentioned US Patent is the same as that of the above-mentioned general publicly known example, but in particular, the leg shaft has a slight angle from the plane perpendicular to the axial center of the first shaft fixing it. Mounted in a plane inclined in the positive or negative direction respectively, and mounted on the leg shaft along a straight line that intersects at a second slight angle with a straight line that intersects at right angles with the center line of this diagonally mounted leg shaft. The difference is that a track groove is provided so that the spherical roller can roll freely.

【0005】上記日本の特許公報に開示のものは、外輪
の内面に軸方向の三本のトラック溝を形成し、外輪の内
側に配置したトリポード部材には三本の円柱形脚軸を突
設し、各脚軸の外側に回転可能に嵌合したローラを上記
トラック溝の両側のローラ案内面間に配置して外輪とト
リポード部材間の回転運動を伝達するようにした等速自
在継手であり、特に前記トラック溝のローラ案内面を外
輪の軸芯とトラック溝中心を含む平面に平行な平面と
し、上記ローラを円筒形とし、その円筒ローラと脚軸と
の間に外径面の軸芯に対して内径面の軸芯が傾斜する傾
斜リングを回転自在に組込んでいる。
In the above-mentioned Japanese Patent Publication, three track grooves in the axial direction are formed on the inner surface of the outer ring, and three cylindrical leg shafts are provided on the tripod member arranged inside the outer ring. A constant velocity universal joint in which a roller rotatably fitted to the outside of each leg shaft is arranged between the roller guide surfaces on both sides of the track groove to transmit the rotational movement between the outer ring and the tripod member. In particular, the roller guide surface of the track groove is a plane parallel to the plane including the axis of the outer ring and the track groove center, the roller is cylindrical, and the axis of the outer diameter surface is between the cylindrical roller and the leg shaft. On the other hand, a tilted ring whose inner diameter surface is tilted is rotatably incorporated.

【0006】さらに、実用新案公報に開示のものは、外
輪の内面に軸方向の3本のトラック溝を形成し、外輪の
内側に配置したトリポード部材には3本の円柱形脚軸を
突設し、各脚軸の外側に回転可能に嵌合した球面ローラ
を上記トラック溝の両側のローラ案内面間に配置して外
輪とトリポード部材間の回転運動を伝達するようにした
等速自在継手であり、特に上記脚軸の軸芯と、上記トリ
ポード部材の軸芯を横切る垂直平面に対して傾けたもの
としている。
Further, in the utility model publication, three track grooves in the axial direction are formed on the inner surface of the outer ring, and the three tripod members arranged inside the outer ring are provided with three cylindrical leg shafts. A constant velocity universal joint in which a spherical roller rotatably fitted to the outside of each leg shaft is arranged between the roller guide surfaces on both sides of the track groove to transmit the rotational movement between the outer ring and the tripod member. In particular, the axis of the leg shaft is inclined with respect to the vertical plane that intersects the axis of the tripod member.

【0007】[0007]

【発明が解決しようとする課題】ところで、前述した第
一の公知例のものは、外輪1とトリポード部材3とが作
動角をとる状態で回転力を伝達する場合を考えると、各
球面ローラ5と円筒形トラック溝2のローラ案内面6と
は、図6及び図7に示すように互いに斜交する関係とな
り、球面ローラ5に正しい転がり運動をさせることがで
きない。即ち、球面ローラ5は図6の矢印(イ) で示す方
向に転がり移動しようとするのに対し、トラック溝2は
円筒形であって、外輪1の軸心に平行であるため、球面
ローラ5はトラック溝2に拘束されながら移動すること
になる。この結果、トラック溝2のローラ案内面6と球
面ローラ5相互間において、滑りが生じて発熱し、更に
この滑りが軸方向のスラスト力を誘起し、振動発生の原
因となる。
By the way, in the case of the first known example described above, considering the case where the rotational force is transmitted in a state where the outer ring 1 and the tripod member 3 make an operating angle, each spherical roller 5 is considered. The roller guide surface 6 of the cylindrical track groove 2 and the roller guide surface 6 of the cylindrical track groove 2 cross each other obliquely as shown in FIGS. 6 and 7, and the spherical roller 5 cannot be caused to perform a correct rolling motion. That is, the spherical roller 5 tries to roll in the direction shown by the arrow (a) in FIG. 6, while the track groove 2 is cylindrical and parallel to the axis of the outer ring 1, so the spherical roller 5 Will move while being restrained by the track groove 2. As a result, a slip occurs between the roller guide surface 6 of the track groove 2 and the spherical roller 5 to generate heat, and this slip induces a thrust force in the axial direction, which causes vibration.

【0008】上記第一の公知例以外の公報に開示された
等速自在継手では上記のような滑りによる発熱、振動あ
るいは騒音が発生するため、上述したような構成により
それぞれの問題を解決するためになされたものがある
が、上記問題を全て解決するにはなお不十分である。
In the constant velocity universal joints disclosed in the publications other than the above-mentioned first known example, heat generation, vibration or noise due to the above-mentioned slippage occurs, so that the respective problems are solved by the above-mentioned constitution. Some have been made, but are still insufficient to solve all the above problems.

【0009】さらに、第一の公知例以外の公報によるも
のは、原則として等速回転を伝達する等速自在継手では
あるが、特に第一軸と第二軸の作動角(折り曲げ角)を
大きくとった時に必ずしも等速性があらゆる回転位相角
において確保できるとは限らないという問題もある。
Further, although the publications other than the first known example are, in principle, constant velocity universal joints that transmit constant-velocity rotations, the working angle (bending angle) of the first shaft and the second shaft is particularly large. There is also a problem in that the constant velocity cannot always be ensured at all rotational phase angles when taken.

【0010】この発明は、上述した従来のトリポード型
等速自在継手に含まれる問題点に留意して、脚軸とその
外周の案内ローラを受入れるトラック溝に対しそれぞれ
の基準線とのなす角を所定の角度関係に設定して作動角
をとったときでも等速性を確保すると共にトラック溝内
での案内ローラの動きをスムースにして摩擦、振動、発
熱、騒音を有効に抑制し得る等速自在継手を提供するこ
とを課題とする。
In view of the problems involved in the above-mentioned conventional tripod type constant velocity universal joint, the present invention forms the angle between the track groove for receiving the leg shaft and the guide roller on the outer periphery thereof and the respective reference lines. Even when the working angle is set by setting a predetermined angular relationship, constant velocity is ensured, and the movement of the guide roller in the track groove is smoothed so that friction, vibration, heat generation and noise can be effectively suppressed. It is an object to provide a universal joint.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する手段
としてこの発明は、外輪の内面に軸方向の三本のトラッ
ク溝を形成し、外輪の内側に配置したトリポード部材に
は三本の脚軸を突設し、各脚軸の外側に回転可能に嵌合
したローラを上記トラック溝の両側のローラ案内面間に
配置して外輪とトリポード部材間の回転運動を伝達する
ようにしたトリポード型等速自在継手において、上記脚
軸をトリポード部材の軸心に直角な面と第一の傾斜角に
傾斜させ、この傾斜した脚軸と所定角度方向に外輪の案
内溝を設け、案内溝の中心軸がトリポード部材の軸心方
向となす第二の傾斜角の正接値が第一の傾斜角の正接値
の2倍となるようにしたのである。
As a means for solving the above problems, the present invention has three track grooves in the axial direction formed on the inner surface of an outer ring, and a tripod member arranged inside the outer ring has three legs. A tripod type in which a shaft is provided in a projecting manner and rollers rotatably fitted to the outside of each leg shaft are arranged between the roller guide surfaces on both sides of the track groove to transmit the rotational movement between the outer ring and the tripod member. In a constant velocity universal joint, the leg shaft is inclined at a first inclination angle with respect to a plane perpendicular to the axis of the tripod member, and a guide groove for the outer ring is provided in a predetermined angle direction with the inclined leg shaft, and the center of the guide groove is formed. The tangent value of the second inclination angle formed by the axis and the axial direction of the tripod member is twice the tangent value of the first inclination angle.

【0012】[0012]

【作用】上記の構成としたこの発明の等速自在継手で
は、上記第一の傾斜角をα、第二の傾斜角をβとすると
tanβ=2tanαの関係が成立する。この場合、図
3に示すように、αが正であればβも正、αが負であれ
ばβも負の方向にとる。
In the constant velocity universal joint of the present invention configured as described above, the relationship of tan β = 2 tan α is established, where α is the first inclination angle and β is the second inclination angle. In this case, as shown in FIG. 3, if α is positive, β is positive, and if α is negative, β is negative.

【0013】このような脚軸のなす角と案内溝の中心軸
のなす角の間に一定の角度関係が成立するとき、脚軸に
嵌合するローラが案内溝内で移動するときにローラ案内
面との間で作用する摩擦力が最も小さくなり、発熱や振
動、騒音が有効に抑制されて極めてスムースに回転力が
伝達される。
When a certain angular relationship is established between the angle formed by the leg shaft and the angle formed by the central axis of the guide groove, when the roller fitted to the leg shaft moves in the guide groove, the roller guide is formed. The frictional force acting on the surface is minimized, heat generation, vibration, and noise are effectively suppressed, and the rotational force is transmitted extremely smoothly.

【0014】上記傾斜角α、βに上式の関係が成立する
ようにするのは次の理由による。
The reason why the above relationship is established between the inclination angles α and β is as follows.

【0015】トリポード部材の軸が図4のように傾斜し
たトリポード型自在継手の外輪の案内溝の具備すべき条
件を次のようにして求める。自在継手の座標糸と使用す
る記号を次のように設定する。座標の原点はトリポード
部材の3本の脚軸の交点とする。折り曲げ角0°のとき
のシャフトの方向をy軸とする。x軸は水平方向、z軸
は鉛直方向に取る(図5の(a)参照)。自在継手の折
り曲げはシャフトをzy平面で、つまり、x軸のまわり
に回転させるものとする。したがって外輪の中心軸は、
常にy軸と平行に保たれることになる。自在継手の回転
は始め、トリポード部材の3本の軸のうちの一本をyz
平面のz>0の部分に置いておき、そこから測る。
The conditions which the guide groove of the outer ring of the tripod type universal joint in which the axis of the tripod member is inclined as shown in FIG. 4 should be determined as follows. Set the coordinate thread of the universal joint and the symbol to be used as follows. The origin of the coordinates is the intersection of the three leg axes of the tripod member. The y-axis is the direction of the shaft when the bending angle is 0 °. The x-axis is horizontal and the z-axis is vertical (see FIG. 5A). The bending of the universal joint shall rotate the shaft in the zy plane, ie around the x-axis. Therefore, the central axis of the outer ring is
It will always be kept parallel to the y-axis. Rotation of the universal joint begins and one of the three axes of the tripod member is yz
Put it on the part of z> 0 on the plane and measure from there.

【0016】α:トリポード部材の軸の傾き角 β:外輪の案内溝の傾き角 θ:自在継手の回転角 φ:自在継手の折り曲げ角 γ:外輪の案内溝中心線のP.C.R (s.t):外輪の中心のx、z座標 I:原点 l.m.n:外輪の案内溝の中心線 P.R.Q:トリポード部材の軸と、l、m、nの交点 上記案内溝の条件を次の手順で進める。Α: Inclination angle of shaft of tripod member β: Inclination angle of guide groove of outer ring θ: Rotation angle of universal joint φ: Bending angle of universal joint γ: P. of center line of guide groove of outer ring C. R (s.t): x, z coordinates of the center of the outer ring I: origin l. m. n: Center line of outer race guide groove P. R. Q: Intersection of the axis of the tripod member and l, m, n The conditions of the guide groove are advanced in the following procedure.

【0017】(1)回転角0°、折り曲げ角0°のとき
の、トリポード部材の3本の軸の式を求める。
(1) Formulas of three axes of the tripod member at a rotation angle of 0 ° and a bending angle of 0 ° are obtained.

【0018】(2)回転角0°、折り曲げ角0°のとき
の、外輪の案内溝の3本の中心線の式を求める。
(2) Formulas for the three center lines of the guide groove of the outer ring when the rotation angle is 0 ° and the bending angle is 0 ° are obtained.

【0019】(3)回転角θ°、折り曲げ角φ°のとき
の、トリポード部材の3本の軸の式を求める。
(3) Formulas for the three axes of the tripod member when the rotation angle is θ ° and the bending angle is φ ° are calculated.

【0020】(4)回転角θ°、折り曲げ角φ°のとき
の、外輪の案内溝の3本の中心線の式を求める(実際に
は、θ回転し、x軸方向にs、z軸方向にt平行移動し
たもの)。
(4) The formulas of the three center lines of the guide groove of the outer ring when the rotation angle is θ ° and the bending angle is φ ° are obtained (actually, the θ rotation is performed and the s and z axes are set in the x axis direction). Translated in the direction t).

【0021】(5)s、tに関する関係式を3つ求め
る。
(5) Three relational expressions relating to s and t are obtained.

【0022】(6)s、tを不定にさせないための条件
を求める。
(6) A condition for not making s and t indefinite is obtained.

【0023】直線IPの式は図5の(b)を参照する
と、 x=0 z=(1/tan α)・y (1) tanα=gと置けば x=0 y−gz=0 (2) 直線IRは、直線IPをy軸まわりに2π/3回転した
ものであるから(図5の(a)参照) 座標変換 x=(1/2)・(−x' +√3z') z=(1/2)・(−√3x' −z') (3) を(2)に代入して得られる。なお、上記√3の記号は
以下全て数字3のルートの意味で使用する。プライムを
取って整理すると x−√3z=0 √3gx+2y+gz=0 (4) 同様に直線IQは、直線IPをy軸まわりに、−2π/
3回転したものであるから、座標変換 x=(1/2)・(−x' −√3z') z=(1/2)・(√3x' −z') (5) を(2)に代入して得られる。それは式(4)の√3の
前の符号を反転したものであるから x+√3=0 −√3gx+2y+gz=0 (6) 直線lの式は図5の(c)を参照すると、 x=0 z=−(tanβ) y+r (7) tanβ=hと置けば x=0 hy+z=r (8) 直線mは、lをy軸まわりに2π/3回転したものであ
るから、 x−√3z=0 −√3x+2hy−z=2r (9) 直線nは、lをy軸まわりに−2π/3回転したもので
あるから、 x+√3z=0 √3x+2hy−z=2r (10) (3)自在継手のシャフトが角度φ折れた状態で角度θ
回転した任意の状態での直線IPを表す式を求めるため
に、直線IPをy軸のまわりにθ、x軸のまわりにφ回
転する。式(2)に座標変換
As for the formula of the straight line IP, referring to FIG. 5 (b), if x = 0 z = (1 / tan α) · y (1) tan α = g, then x = 0 y-gz = 0 (2 ) The straight line IR is obtained by rotating the straight line IP by 2π / 3 around the y axis (see (a) of FIG. 5). Coordinate transformation x = (1/2) · (−x ′ + √3z ′) z = (1/2) * (-√3x'-z ') (3) is substituted for (2). The symbol √3 will be used hereinafter to mean the route of the numeral 3. When taking primes and arranging them, x−√3z = 0 √3gx + 2y + gz = 0 (4) Similarly, the straight line IQ is −2π / about the straight line IP around the y axis.
Since it is rotated three times, the coordinate conversion x = (1/2) · (−x′−√3z ′) z = (1/2) · (√3x′−z ′) (5) is converted into (2) It is obtained by substituting into Since it is an inversion of the sign before √3 in the formula (4), x + √3 = 0−√3gx + 2y + gz = 0 (6) The formula of the straight line l is as shown in (c) of FIG. z =-(tan β) y + r (7) If tan β = h, x = 0 hy + z = r (8) Since the straight line m is obtained by rotating 1 around the y axis by 2π / 3, x−√3z = 0-√3x + 2hy-z = 2r (9) Since the straight line n is obtained by rotating l by -2π / 3 around the y-axis, x + √3z = 0 √3x + 2hy-z = 2r (10) (3) Free Angle θ when the joint shaft is broken
In order to obtain an expression representing the straight line IP in an arbitrary rotated state, the straight line IP is rotated by θ around the y axis and φ around the x axis. Coordinate conversion to equation (2)

【0024】[0024]

【数1】 [Equation 1]

【0025】を行う。sinθ=a、cosθ=b、s
inφ=c、cosφ=dと置けば、上の変換は x=bx' −acy' +adz' y=dy' +cz' (11) z=−ax' −bcy' +bdz' x、y、zについては(2)式の関係があるから、これ
に代入してプライムをとると、次式の関係が得られる。
Perform sin θ = a, cos θ = b, s
If we put inφ = c and cosφ = d, the above transformation is x = bx ′ −acy ′ + adz ′ y = dy ′ + cz ′ (11) z = −ax ′ −bcy ′ + bdz ′ For x, y and z, Since there is a relation of the equation (2), when substituting it and taking a prime, the relation of the following equation is obtained.

【0026】 bx−acy+adz=0 agx+ (d+bcg) y+ (c−bdg) z=0 (12) 直線IRに対して同様の変換をすると、 ( √3a +b)x+(-ac+√3bc)y+ (ad−√3bd)z=0 (-ag+√3bg)x+(-√3acg +2d−bcg)y+ (√3adg +2c+bdg)z=0 (13) 直線IQに同様の変換をすると式(13)の√3の符号を
反転すれば (-√3a +b)x+(-ac−√3bc)y+ (ad+√3bd)z=0 (-ag−√3bg)x+( √3acg +2d−bcg)y+(-√3adg +2c+bdg)z=0 (14) (4)直線lをy軸まわりにθ回転し、x軸方向にs、
z軸方向にt平行移動する。式(7)に座標変換 x= b(x' −s)+a (z' −t) z=−a(x' −s) +b (z' −t) (15) を施せば bx+az=bs+at −ax+hy+bz=−as+bt+r (16) 直線mに対して同様の変換を行うと、 ( √3a +b)x+(a−√3b)z = (√3a +b)s+(a−√3b)t (a−√3b)x+2hy +(-√3a−b)z=(a−√3b)s+(-√3a−b)t+2r (17) 直線nに同様の変換を行うと、 (-√3a +b)x+(a+√3b)z =(-√3a +b)s+(a+√3b)t (a+√3b)x+2hy + (√3a−b)z=(a+√3b)s+ (√3a−b)t+2r (18) (5)以上で直線IP、IR、IQ及びl、m、nが求
められたので、これらから点P、Q、Rの座標を求め
る。
Bx-acy + adz = 0 agx + (d + bcg) y + (c-bdg) z = 0 (12) When the same conversion is performed on the straight line IR, (√3a + b) x + (-ac + √3bc) y + (ad −√3bd) z = 0 (-ag + √3bg) x + (-√3acg + 2d-bcg) y + (√3adg + 2c + bdg) z = 0 (13) If the same conversion is performed on the straight line IQ, If the sign is reversed, (-√3a + b) x + (-ac-√3bc) y + (ad + √3bd) z = 0 (-ag-√3bg) x + (√3acg + 2d-bcg) y + (-√3adg + 2c + bdg) z = 0 (14) (4) Rotate the straight line l by θ around the y-axis and move s in the x-axis direction.
Translates t in the z-axis direction. If the coordinate transformation x = b (x'-s) + a (z'-t) z = -a (x'-s) + b (z'-t) (15) is applied to the equation (7), bx + az = bs + at- ax + hy + bz = −as + bt + r (16) When the same conversion is performed on the straight line m, (√3a + b) x + (a−√3b) z = (√3a + b) s + (a−√3b) t (a−√) 3b) x + 2hy + (-√3a-b) z = (a-√3b) s + (-√3a-b) t + 2r (17) When the same conversion is applied to the straight line n, (-√3a + b) x + (a + √3b) z = (-√3a + b) s + (a + √3b) t (a + √3b) x + 2hy + (√3a-b) z = (a + √3b) s + (√3a-b) t + 2r (18) ( 5) Since the straight lines IP, IR, IQ and l, m, n have been obtained in the above, the coordinates of the points P, Q, R are obtained from them.

【0027】点(12)と(16)の第一式の3つの式から
点Pの座標を求める。
The coordinates of the point P are obtained from the three expressions of the first expressions of the points (12) and (16).

【0028】[0028]

【数2】 [Equation 2]

【0029】式(19)は、当然式(16)の第二式を満た
さなければならない。そこで(19)を式(16)の第二式
に代入し、整理すると、 (-b2ch+bdgh+bd+cg)s+(a−abch+adgh)t=(abd+acg −ab)r (20) が得られる。これでs同上tの関係式が1つ得られた。
Equation (19) must naturally satisfy the second equation of equation (16). Then, substituting (19) into the second equation of equation (16) and rearranging, we obtain (-b 2 ch + bdgh + bd + cg) s + (a-abch + adgh) t = (abd + acg-ab) r (20). By this, one relational expression of s same as above t was obtained.

【0030】式(13)と式(17)の第一式の3つの式か
ら点Rの座標を求める。
The coordinates of the point R are obtained from the three equations of equations (13) and (17).

【0031】式が煩雑になるのを避けるためa−√3b
=A、√3a+b=Bと置きかえると、(13) は、 Bx −Acy+Adz=0 −Agx+(2d −Bcg)y+ (2c +Bdg)z=0 (21) (17)は Bx −Az =Bs +At Ax +2hy−Bz =As −Bt +2r (22) (21)と(22)の第一式から
To avoid complicated expressions, a-√3b
= A, √3a + b = B, (13) is Bx-Acy + Adz = 0-Agx + (2d-Bcg) y + (2c + Bdg) z = 0 (21) (17) is Bx-Az = Bs + AtAx + 2hy-Bz = As -Bt + 2r (22) From the first equation of (21) and (22)

【0032】[0032]

【数3】 [Equation 3]

【0033】式(23)を(22)の第二式に代入し整理する
と、 (-B2ch-2Bdgh-2Bd+4cg)s+(-ABch-2Adgh-2A)t=(ABd-2Acg-AB)r (24) これがsとtに関する2番目の関係式である。同様に、
式(14)と(18)においてa+√3b=E、−√3a+b=Fと
おけば Fx −Ecy+Edz=0 −Egx+ (2d −Fcg)y+ (2c +Fdy)z=0 (25) Fx +Ez =Fs +Et Ex +2hy−Fz =Es −Ft +r が得られ、これらはそれぞれ式(21)と(22)と相似である
から、点Qから得られる3番目のsとtの関係式は、 (-F2ch −2Fdhg −2Fd +4cg)s+(-EFch−2Edhg −2E)t =(EFd −2Ecg−EF) r (26) である。
Substituting equation (23) into the second equation of (22) and rearranging, (-B 2 ch-2Bdgh-2Bd + 4cg) s + (-ABch-2Adgh-2A) t = (ABd-2Acg-AB ) r (24) This is the second relational expression regarding s and t. Similarly,
In equations (14) and (18), if a + √3b = E and −√3a + b = F, then Fx −Ecy + Edz = 0−Egx + (2d−Fcg) y + (2c + Fdy) z = 0 (25) Fx + Ez = Fs + Et Ex + 2hy-Fz = Es -Ft + r, which are similar to the equations (21) and (22), respectively, the third relational expression of s and t obtained from the point Q is (-F 2 ch -2Fdhg -2Fd + 4cg) s + (- a EFch-2Edhg -2E) t = ( EFd -2Ecg-EF) r (26).

【0034】(6)s、tに関して3つの関係式がある
ので、s、tが不定にならないようにするための必要条
件は3つの式が一次従属であることである。その条件を
求める手始めとして、(24)と(26)の両辺の和を作る。
A、B、E、Fを元にもどして {-(3a2+b2)ch −2bdgh−2bd+4cg}s + (2abch−2adgh−2a)t =−2(abd+acg −ab)r (27) が得られる。(27)の右辺は(20)の右辺の倍の大きさで、
符号が逆になっているだけである。そこで(27)+2(20)
を計算すると {-(3a2+b2)ch −2bdgh−2bd+4cg+2(-b2ch+bd
gh+bd+cg) }s+{2abch−2adgh−2a +2(a−abc
h+adgh) }t =0 となり、結局 (−ch+2cg)s=0 が得られる。従って、式(20)、(24)、(26)が一次従属と
なるには h=2g でなければならない。これから、tanβ=2tanα
が得られる。
(6) Since there are three relational expressions with respect to s and t, the necessary condition for preventing s and t from becoming indefinite is that the three expressions are first-order dependent. As a starting point for obtaining the condition, the sum of both sides of (24) and (26) is made.
Returning A, B, E and F, {-(3a 2 + b 2 ) ch -2bdgh-2bd + 4cg} s + (2abch-2adgh-2a) t = -2 (abd + acg -ab) r (27) is obtained. To be The right side of (27) is twice the size of the right side of (20),
Only the signs are reversed. Then (27) + 2 (20)
Is calculated as {-(3a 2 + b 2 ) ch -2bdgh-2bd + 4cg +2 (-b 2 ch + bd
gh + bd + cg)} s + {2abch-2adgh-2a + 2 (a-abc
h + adgh)} t = 0, and eventually (-ch + 2cg) s = 0 is obtained. Therefore, h = 2g must be satisfied for the equations (20), (24), and (26) to be linearly dependent. From this, tanβ = 2tanα
Is obtained.

【0035】[0035]

【実施例】以下この発明の実施例について図面を参照し
て説明する。図1は実施例のトリポード型等速継手を示
す主要断面図である。図示の等速継手において、外輪1
0は従来と同様に、閉塞端に第2軸11が一体に設けら
れ、又内周面に軸方向の3本のトラック溝12が中心軸
の周りに120°の間隔をおいて形成されている。各ト
ラック溝12は、両側に2つのローラ案内面13を有
し、トラック溝の中心線は中心軸に対し所定の小角度傾
斜するように設けられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a main sectional view showing a tripod type constant velocity joint of the embodiment. In the illustrated constant velocity joint, the outer ring 1
In the same manner as in the conventional case, the second shaft 11 is integrally provided at the closed end, and three track grooves 12 in the axial direction are formed on the inner peripheral surface at intervals of 120 ° around the central axis. There is. Each track groove 12 has two roller guide surfaces 13 on both sides, and the center line of the track groove is provided so as to be inclined at a predetermined small angle with respect to the center axis.

【0036】上記外輪10の内部に挿入されるトリポー
ド部材14は、第1軸15の一端に形成したセレーショ
ン16に係合されると共に、段部17とクリップ18と
の間で抜け止め状態に保持される。このトリポード部材
14は、3本の円柱状脚軸19を有し、各脚軸19は中
心軸に直角な平面に対し第一の角度αで斜めに設けられ
ている。各脚軸19には外周面が球面状のローラ20が
回転自在に嵌合され、クリップ21で抜け止めされてい
る。19aは脚軸基部である。
The tripod member 14 inserted into the outer ring 10 is engaged with the serration 16 formed at one end of the first shaft 15 and is held in a retaining state between the step portion 17 and the clip 18. To be done. The tripod member 14 has three columnar leg shafts 19, and each leg shaft 19 is obliquely provided at a first angle α with respect to a plane perpendicular to the central axis. A roller 20 having a spherical outer peripheral surface is rotatably fitted to each leg shaft 19 and is prevented from coming off by a clip 21. Reference numeral 19a is a pedestal base.

【0037】そして、上記球面状のローラ20が嵌入さ
れるトラック溝12のローラ案内面13は、球面状のロ
ーラ20に対応する曲面として形成される。又、上記脚
部19の第一の角度αに対して前記トラック溝の中心線
の第二の角度をβとすると、 tanβ=2tanα の関係が成立するようにα、βは決められる。
The roller guide surface 13 of the track groove 12 into which the spherical roller 20 is fitted is formed as a curved surface corresponding to the spherical roller 20. Further, if the second angle of the center line of the track groove is β with respect to the first angle α of the leg portion 19, α and β are determined so that the relationship of tan β = 2tan α is established.

【0038】図2は図1の場合に対してα、βを反対向
きに設定した例を示す。上記以外は図1の場合と全て同
じ構成である。図3にα、βの関係を理解し易いように
表示している。
FIG. 2 shows an example in which α and β are set in opposite directions to those in the case of FIG. Except for the above, the configuration is the same as in the case of FIG. The relationship between α and β is shown in FIG. 3 for easy understanding.

【0039】次に、上記実施例の作用について説明す
る。第2軸11と第1軸15間の作動角が0度の場合、
両者間の回転は、トラック溝12のローラ案内面13と
これに係合するローラ20を介して伝達される。この場
合、両者の相対的運動に伴うプランジングが生じると、
ローラ20が回転し、トラック溝12のローラ案内面1
3に沿って転動する。このとき、ローラ20の外周面は
ローラ案内面13と点接触しながら移動するが、その移
動はトラック溝12の中心線に平行に移動する。この中
心線と脚軸19は、上記の関係にある角度α、βの傾き
があっても直角に近い配置が保たれており、転動による
摩擦力は十分抑制され、極めてスムーズに移動し、振動
や発熱をほとんど生じない。第1軸15と第2軸11と
が等速回転することは勿論である。
Next, the operation of the above embodiment will be described. When the operating angle between the second shaft 11 and the first shaft 15 is 0 degree,
The rotation between the two is transmitted via the roller guide surface 13 of the track groove 12 and the roller 20 engaged with the roller guide surface 13. In this case, if plunging occurs due to the relative movement of the two,
The roller 20 rotates, and the roller guide surface 1 of the track groove 12
Roll along 3 At this time, the outer peripheral surface of the roller 20 moves while making point contact with the roller guide surface 13, and the movement moves parallel to the center line of the track groove 12. The center line and the leg shaft 19 are maintained at a position close to a right angle even if there are inclinations of the angles α and β in the above relationship, the frictional force due to rolling is sufficiently suppressed, and the movement is extremely smooth. Almost no vibration or heat generation. Of course, the first shaft 15 and the second shaft 11 rotate at a constant speed.

【0040】第1軸15と第2軸11の間に作動角φが
生じた場合も、脚軸19は軸心Xの周りを回転すると共
に、その回転時に外輪10に対してトラック溝12内で
摺動運動が生じる。その摺動運動は図中の脚軸19の中
心線とトラック溝12の中心線との交点を中心としてト
ラック溝12内を前後に往復動するもので、その際ロー
ラ20が転動する。
Even when the operating angle φ is generated between the first shaft 15 and the second shaft 11, the leg shaft 19 rotates around the axis X, and at the time of rotation, the leg shaft 19 is positioned in the track groove 12 relative to the outer ring 10. Sliding motion occurs. The sliding motion reciprocates back and forth in the track groove 12 around the intersection of the center line of the leg shaft 19 and the center line of the track groove 12 in the figure, and the roller 20 rolls at that time.

【0041】このローラ20の転動は作動角0のときの
プランジングによる転動と同様であり、この転動を繰り
返すことになるが、前述のようにトラック溝12の中心
線が上記のように角度α、βについて合理的な一定の関
係で斜めに設けられているから、摩擦力が小さく、振動
や発熱、騒音などが小さい。これは、任意の作動角φ、
任意の角度θで自在継手が回転した状態でも、脚軸19
とトラック溝12の中心線の交点が必ず無理のない状態
で存在し、この交点の移動に対応してローラ20とロー
ラ案内面13との点接触点が生じるからである。
The rolling of the roller 20 is the same as the rolling by plunging when the operating angle is 0, and this rolling is repeated, but as described above, the center line of the track groove 12 is as described above. Since the angles α and β are obliquely provided in a rational constant relationship, the frictional force is small, and the vibration, heat generation, and noise are small. This is an arbitrary working angle φ,
Even if the universal joint rotates at an arbitrary angle θ, the leg shaft 19
This is because the intersection of the center line of the track groove 12 and the center line of the track groove 12 always exists in a reasonable state, and a point contact point between the roller 20 and the roller guide surface 13 is generated corresponding to the movement of this intersection.

【0042】[0042]

【効果】以上詳細に説明したように、この発明の等速自
在継手は脚軸のなす第1の傾斜角αと案内溝の中心軸が
なす第2の傾斜角βとの間にtanβ=2tanαの関
係が成立するように構成したから、任意の作動角φ、回
転角度θの状態でも脚軸と案内溝の中心軸の交点が幾何
学形状上必ず存在し、脚軸に嵌合されたローラの案内溝
内での移動軌跡が上式の関係式を満足するためその移動
は、上記の関係式を満足しない従来の等速自在継手に比
較すると当然極めてスムースとなり、転動に伴う摩擦抵
抗や振動、発熱、騒音の種々の問題が最小限に抑制さ
れ、かつ大きな作動角度であっても等速性を失わないな
どほぼ理想に近い等速自在継手が得られるという利点が
ある。
As described in detail above, in the constant velocity universal joint of the present invention, tanβ = 2tanα between the first inclination angle α formed by the leg shaft and the second inclination angle β formed by the central axis of the guide groove. Since the relationship is established, the intersection of the central axis of the leg shaft and the guide groove always exists in the geometrical shape even when the working angle φ and the rotation angle θ are arbitrary, and the roller fitted to the leg shaft is Since the movement locus in the guide groove of the above satisfies the above relational expression, its movement is naturally much smoother than the conventional constant velocity universal joint that does not satisfy the above relational expression, and the frictional resistance due to rolling and There are advantages that various problems such as vibration, heat generation, and noise are suppressed to a minimum, and a constant velocity universal joint that is almost ideal is obtained, such as maintaining constant velocity even at a large operating angle.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一実施例の等速自在継手の主要断面図FIG. 1 is a main sectional view of a constant velocity universal joint according to a first embodiment.

【図2】第二実施例の等速自在継手の主要断面図FIG. 2 is a main sectional view of a constant velocity universal joint according to a second embodiment.

【図3】傾斜角α、βの説明図FIG. 3 is an explanatory diagram of inclination angles α and β.

【図4】等速自在継手の脚軸の傾きの説明図FIG. 4 is an explanatory view of the inclination of the leg shaft of the constant velocity universal joint.

【図5】直角座標と脚軸IP、IR、IQ、案内溝の中
心線lの関係の説明図
FIG. 5 is an explanatory diagram of a relationship between rectangular coordinates, leg axes IP, IR, IQ, and a center line 1 of a guide groove.

【図6】従来例の等速自在継手の主要断面図FIG. 6 is a main sectional view of a conventional constant velocity universal joint.

【図7】同上の転動面の概略図FIG. 7 is a schematic view of the rolling surface of the above.

【図8】同上の機能図[Fig. 8] Functional diagram of the above

【符号の説明】[Explanation of symbols]

10 外輪 11 第2軸 12 トラック溝(案内溝) 13 ローラ案内面 14 トリポード部材 15 第1軸 16 セレーション 17 段部 18 クリップ 19 脚軸 20 ローラ 10 Outer ring 11 Second shaft 12 Track groove (guide groove) 13 Roller guide surface 14 Tripod member 15 First shaft 16 Serration 17 Step portion 18 Clip 19 Leg shaft 20 Roller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外輪の内面に軸方向の三本のトラック溝
を形成し、外輪の内側に配置したトリポード部材には三
本の脚軸を突設し、各脚軸の外側に回転可能に嵌合した
ローラを上記トラック溝の両側のローラ案内面間に配置
して外輪とトリポード部材間の回転運動を伝達するよう
にしたトリポード型等速自在継手において、上記脚軸を
トリポード部材の軸心に直角な面と第一の傾斜角に傾斜
させ、この傾斜した脚軸と所定角度方向に外輪の案内溝
を設け、案内溝の中心軸がトリポード部材の軸心方向と
なす第二の傾斜角の正接値が第一の傾斜角の正接値の2
倍となるようにしたことを特徴とするトリポード型等速
自在継手。
1. An outer ring is formed with three axial track grooves, and a tripod member arranged inside the outer ring is provided with three leg shafts so as to be rotatable outside each leg shaft. In a tripod type constant velocity universal joint in which the fitted rollers are arranged between the roller guide surfaces on both sides of the track groove to transmit the rotational movement between the outer ring and the tripod member, the leg shaft is the axis of the tripod member. To the surface perpendicular to the first inclination angle, and the guide groove of the outer ring is provided in a predetermined angle direction with the inclined leg shaft, and the second inclination angle formed by the central axis of the guide groove and the axial direction of the tripod member. The tangent value of is 2 of the tangent value of the first tilt angle
A tripod type constant velocity universal joint characterized by being doubled.
JP24469793A 1993-09-30 1993-09-30 Tripod type constant velocity universal joint Expired - Fee Related JP3305831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24469793A JP3305831B2 (en) 1993-09-30 1993-09-30 Tripod type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24469793A JP3305831B2 (en) 1993-09-30 1993-09-30 Tripod type constant velocity universal joint

Publications (2)

Publication Number Publication Date
JPH07103250A true JPH07103250A (en) 1995-04-18
JP3305831B2 JP3305831B2 (en) 2002-07-24

Family

ID=17122592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24469793A Expired - Fee Related JP3305831B2 (en) 1993-09-30 1993-09-30 Tripod type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP3305831B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19681477C2 (en) * 1995-07-04 2002-02-07 Gkn Automotive Gmbh Tripodegleichlaufdrehgelenke
WO2006077947A1 (en) * 2005-01-20 2006-07-27 Honda Motor Co., Ltd. Constant velocity joint
JP2006226525A (en) * 2005-01-20 2006-08-31 Honda Motor Co Ltd Constant velocity universal joint
WO2007122673A1 (en) * 2006-04-12 2007-11-01 Takeda Lace Co., Ltd. Warp knitted lace fabric for brassiere
CN103486147A (en) * 2013-09-26 2014-01-01 青岛科技大学 Vibration damping and inclined tripod sliding constant velocity universal joint

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19681477C2 (en) * 1995-07-04 2002-02-07 Gkn Automotive Gmbh Tripodegleichlaufdrehgelenke
WO2006077947A1 (en) * 2005-01-20 2006-07-27 Honda Motor Co., Ltd. Constant velocity joint
JP2006226525A (en) * 2005-01-20 2006-08-31 Honda Motor Co Ltd Constant velocity universal joint
US7695371B2 (en) 2005-01-20 2010-04-13 Honda Motor Co., Ltd. Constant velocity joint
JP4654130B2 (en) * 2005-01-20 2011-03-16 本田技研工業株式会社 Constant velocity joint
WO2007122673A1 (en) * 2006-04-12 2007-11-01 Takeda Lace Co., Ltd. Warp knitted lace fabric for brassiere
CN103486147A (en) * 2013-09-26 2014-01-01 青岛科技大学 Vibration damping and inclined tripod sliding constant velocity universal joint

Also Published As

Publication number Publication date
JP3305831B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP4781591B2 (en) Tripod type constant velocity joint
JP2709432B2 (en) Tripod type universal joint
JPS62233522A (en) Equal velocity universal joint
JPH07103250A (en) Tripod type uniform speed universal joint
JP6497077B2 (en) Sliding constant velocity joint
JP6545489B2 (en) Tripod type constant velocity universal joint
JP4015822B2 (en) Constant velocity universal joint
JPS61266830A (en) Synchromesh universal joint
JPH0113850Y2 (en)
KR900000651B1 (en) Homokinetic tripod joint
JP4147179B2 (en) Constant velocity universal joint
US6837794B1 (en) Tripod type constant velocity universal joint
JP2000039028A (en) Slide type constant velocity joint
JP2565675Y2 (en) Constant velocity joint
JPH0212326Y2 (en)
JP3949870B2 (en) Constant velocity universal joint
JP2000291677A (en) Tripod constant velocity universal joint
JP2001140895A (en) Rolling element
JPS63318318A (en) Tripod type isochronous joint using cylindrical roller
JPH059534Y2 (en)
JPH0752973Y2 (en) Constant velocity universal joint
JPS6350492Y2 (en)
JPH0331856Y2 (en)
JPH064103Y2 (en) Constant velocity universal joint
JPH09273566A (en) Tripod type constant velocity joint

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090510

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090510

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees