JPH07103049A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPH07103049A
JPH07103049A JP5254037A JP25403793A JPH07103049A JP H07103049 A JPH07103049 A JP H07103049A JP 5254037 A JP5254037 A JP 5254037A JP 25403793 A JP25403793 A JP 25403793A JP H07103049 A JPH07103049 A JP H07103049A
Authority
JP
Japan
Prior art keywords
fuel injection
exhaust gas
combustion
valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5254037A
Other languages
Japanese (ja)
Other versions
JP3362317B2 (en
Inventor
Zenichirou Masushiro
善一郎 益城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17259366&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07103049(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25403793A priority Critical patent/JP3362317B2/en
Publication of JPH07103049A publication Critical patent/JPH07103049A/en
Application granted granted Critical
Publication of JP3362317B2 publication Critical patent/JP3362317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To completely prevent respectively a misfire from being generated and an NOX generating amount from increasing even when not realized-a desired recirculation rate due to an adjusting delay by actuating together two kinds of fuel injection valves when detected the adjusting delay of recirculated exhaust gas amount. CONSTITUTION:An internal combustion engine is provided with the first fuel injection valve 7 for attaining stratified combustion by directly injecting fuel into a combustion chamber 1 and the second fuel injection valve 10 for attaining uniform combustion by injecting fuel to an intake passage 3 in the downstream of a throttle valve 9. On the other hand, the intake passage 3 in the downstream of the throttle valve 9 communicates with an exhaust passage 5 in an exhaust gas recirculating passage 11, to arrange therein a control valve 12 for controlling a recirculating exhaust gas amount. Here in a control device 20, based on each detection signal from each sensor 21 to 23 for detecting an operating condition of the internal combustion engine, both the fuel injection valves 7, 10 are switched to be actuated. When an adjusting delay of the recirculating exhaust gas amount is detected at switching time, both the fuel injection valves 7, 10 are actuated together.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に、排気ガス再循環
装置を有すると共に、気筒内へ直接燃料を噴射する第1
燃料噴射弁と吸気通路に燃料を噴射する第2燃料噴射弁
とを機関運転状態に応じて切り換えて使用する内燃機関
における燃料噴射制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly has a first exhaust gas recirculation device for directly injecting fuel into a cylinder.
The present invention relates to a fuel injection control device in an internal combustion engine that uses a fuel injection valve and a second fuel injection valve that injects fuel into an intake passage by switching between them according to an engine operating state.

【0002】[0002]

【従来の技術】気筒内へ直接燃料を噴射する第1燃料噴
射弁と、吸気通路に燃料を噴射する第2燃料噴射弁とを
有し、所定機関負荷未満の低負荷側運転領域の時には第
1燃料噴射弁を使用して低燃費の成層燃焼を実現し、所
定機関負荷以上の高負荷側運転領域の時には第2燃料噴
射弁を使用して高出力が得られる均一燃焼を実現する内
燃機関が公知である。
2. Description of the Related Art A first fuel injection valve for directly injecting fuel into a cylinder and a second fuel injection valve for injecting fuel into an intake passage are provided. Internal combustion engine that realizes low fuel consumption stratified combustion by using 1 fuel injection valve and realizes uniform combustion by using the 2nd fuel injection valve when operating in the high load side above a predetermined engine load. Is known.

【0003】一方、排気ガス再循環は、主成分が不活性
ガスである排気ガスを燃焼室へ再循環させることによ
り、不活性ガスのもつ熱容量によって燃焼温度を低下さ
せ、NOxの発生量を低減させるものである。再循環さ
せる排気ガス量が多い程、前述のNOx低減効果が向上
すると共に、その分のポンピングロスの低減が可能であ
るために、気筒内で占める排気ガス量の割合(以下EG
R率として表す)は、できるだけ大きくすることが好ま
しい。しかし、排気ガス再循環は、一方で着火性及び燃
焼性の悪化を伴うために、機関負荷毎のEGR率は、確
実な着火性及び所望の出力が得られる範囲における最大
値が設定されている。このように設定されたEGR率
は、同一燃焼においては機関負荷が大きい程小さくなる
ようになっており、また成層燃焼と均一燃焼とを比較す
ると、前者の方が着火性が良好であるために、成層燃焼
時には同じ機関負荷における均一燃焼時よりEGR率が
大きくされている。実際のEGR率の制御は、排気ガス
再循環通路内に配置された制御弁の開度を制御すること
によって行われる。
On the other hand, in exhaust gas recirculation, exhaust gas, whose main component is inert gas, is recirculated to the combustion chamber to lower the combustion temperature due to the heat capacity of the inert gas and reduce the amount of NOx produced. It is what makes me. The greater the amount of exhaust gas to be recirculated, the more the NOx reduction effect described above is improved, and the pumping loss can be reduced accordingly. Therefore, the proportion of the exhaust gas amount in the cylinder (hereinafter referred to as EG
It is preferable that the R ratio) be as large as possible. However, since exhaust gas recirculation is accompanied by deterioration of ignitability and combustibility, the EGR rate for each engine load is set to the maximum value within a range where reliable ignitability and desired output are obtained. . The EGR rate set in this way becomes smaller as the engine load increases in the same combustion, and when comparing stratified combustion and uniform combustion, the former has better ignitability. The EGR rate during stratified combustion is higher than that during uniform combustion under the same engine load. The actual control of the EGR rate is performed by controlling the opening degree of the control valve arranged in the exhaust gas recirculation passage.

【0004】従って、前述のように成層燃焼と均一燃焼
が切り換えられる内燃機関において、この切り換え時に
は所望のEGR率を実現するために、制御弁の開度変化
はかなり大きなものとなる。しかし、制御弁が急激に開
閉されても再循環させる排気ガス量は直ぐには増減せ
ず、この間において所望のEGR率を実現することがで
きない。所望のEGR率を上回る場合には着火性の悪化
に伴い失火が発生する可能性があり、また下回る場合に
はNOxの発生量が増加する。
Therefore, in the internal combustion engine in which the stratified combustion and the uniform combustion are switched as described above, the opening of the control valve changes considerably in order to realize a desired EGR rate at this switching. However, even if the control valve is rapidly opened and closed, the amount of exhaust gas to be recirculated does not immediately increase or decrease, and the desired EGR rate cannot be realized during this period. If it exceeds the desired EGR rate, misfire may occur due to deterioration of ignitability, and if it falls below the desired EGR rate, the amount of NOx generated increases.

【0005】特開昭63−154816号公報には、成
層燃焼と均一燃焼の切り換え時において、所定時間、両
方の燃料噴射弁を併用するものが記載されている。これ
により、成層燃焼から均一燃焼に切り換えられる場合
に、所定時間は成層燃焼が併用されるために、許容EG
R率が高まり所望のEGR率を上回っても失火の発生を
防止することができ、また逆に均一燃焼から成層燃焼に
切り換えられる場合に、所定時間は均一燃焼が併用され
るために、燃焼室の周囲部に形成される混合気は成層燃
焼時の過リーンなものよりリッチ側となってNOxが発
生しにくくなり、再循環排気ガス量が同じでもNOxの
発生量を減少させることができる。
Japanese Unexamined Patent Publication No. 63-154816 discloses that both fuel injection valves are used for a predetermined time when switching between stratified combustion and uniform combustion. As a result, when the stratified charge combustion is switched to the uniform burner, the stratified charge combustion is also used for a predetermined time, so that the allowable EG
Even if the R rate rises and exceeds the desired EGR rate, the occurrence of misfire can be prevented. Conversely, when the homogeneous combustion is switched to the stratified combustion, the homogeneous combustion is used for a predetermined time. The air-fuel mixture formed in the peripheral portion of the exhaust gas becomes richer than the over-lean one during stratified combustion, and NOx is less likely to be generated, and the NOx generation amount can be reduced even if the recirculated exhaust gas amount is the same.

【0006】[0006]

【発明が解決しようとする課題】前述の従来技術におい
て、両方の燃料噴射弁を併用する期間は常時所定時間で
あるために、特に、機関負荷変化が成層燃焼と均一燃焼
の切り換え時の所定負荷を跨ぐ比較的大きなものである
と、所定時間経過後にも所望のEGR率が得られていな
い可能性があり、この時に依然として前述の問題が発生
する。
In the above-mentioned prior art, since the period of time in which both fuel injection valves are used together is always a predetermined time, the engine load change is particularly caused by a predetermined load when switching between stratified combustion and uniform combustion. If it is relatively large, the desired EGR rate may not be obtained even after the lapse of a predetermined time, and the above-mentioned problem still occurs at this time.

【0007】従って、本発明の目的は、排気ガス再循環
装置を有すると共に、気筒内へ直接燃料を噴射する第1
燃料噴射弁を使用しての成層燃焼及び吸気通路に燃料を
噴射する第2燃料噴射弁を使用しての均一燃焼を機関運
転状態に応じて切り換える内燃機関において、この切り
換え時に再循環排気ガスの増減遅れによって所望のEG
R率が実現されなくても、失火の発生及びNOxの発生
量の増加を完全に防止することができる燃料噴射制御装
置を提供することである。
Accordingly, an object of the present invention is to have an exhaust gas recirculation device and to inject fuel directly into a cylinder.
In an internal combustion engine that switches between stratified charge combustion using a fuel injection valve and uniform combustion using a second fuel injection valve that injects fuel into an intake passage in accordance with the engine operating state, recirculation exhaust gas Desired EG due to increase / decrease delay
It is an object of the present invention to provide a fuel injection control device capable of completely preventing the occurrence of misfire and the increase in the amount of NOx generated even if the R rate is not realized.

【0008】[0008]

【課題を解決するための手段】本発明による第一の内燃
機関の燃料噴射制御装置は、排気ガス再循環装置と、気
筒内へ直接燃料を噴射し成層燃焼を実現するための第1
燃料噴射弁と、吸気通路に燃料を噴射し均一燃焼を実現
するための第2燃料噴射弁と、前記排気ガス再循環装置
に設けられ、燃焼方法と機関運転状態とに応じた最適E
GR率が実現されるように再循環させる排気ガス量を制
御する制御弁とを有する内燃機関のための燃料噴射制御
装置であって、機関運転状態に応じて前記第1燃料噴射
弁と前記第2燃料噴射弁とを切り換えて燃料噴射を実行
させる第1燃料噴射制御手段と、燃料噴射の切り換え時
に前記制御弁を介しての再循環排気ガス量の増減遅れを
検出する検出手段と、前記検出手段により前記増減遅れ
が検出されている間は前記第1及び第2燃料噴射弁の両
方によって燃料噴射を実行させる第2燃料噴射制御手
段、とを具備することを特徴とする。
A first fuel injection control device for an internal combustion engine according to the present invention is an exhaust gas recirculation device and a first fuel injection control device for directly injecting fuel into a cylinder to realize stratified charge combustion.
A fuel injection valve, a second fuel injection valve for injecting fuel into the intake passage to achieve uniform combustion, and the exhaust gas recirculation device, which are provided in the exhaust gas recirculation device, and have an optimum E according to a combustion method and an engine operating state.
A fuel injection control device for an internal combustion engine, comprising: a control valve that controls an amount of exhaust gas to be recirculated so that a GR rate is realized, the first fuel injection valve and the first fuel injection valve according to an engine operating state. 2 first fuel injection control means for switching between two fuel injection valves to execute fuel injection, detection means for detecting an increase / decrease delay in the amount of recirculated exhaust gas via the control valve when switching fuel injection, and the above detection Second fuel injection control means for executing fuel injection by both of the first and second fuel injection valves while the increase / decrease delay is detected by the means.

【0009】また、本発明による第二の内燃機関の燃料
噴射制御装置は、排気ガス再循環装置と、気筒内へ直接
燃料を噴射し成層燃焼を実現するための第1燃料噴射弁
と、吸気通路に燃料を噴射し均一燃焼を実現するための
第2燃料噴射弁と、前記排気ガス再循環装置に設けら
れ、燃焼方法と機関運転状態とに応じた最適EGR率が
実現されるように再循環させる排気ガス量を制御する制
御弁とを有する内燃機関のための燃料噴射制御装置であ
って、機関運転状態に応じて前記第1燃料噴射弁と前記
第2燃料噴射弁とを切り換えて燃料噴射を実行させる第
1燃料噴射制御手段と、燃料噴射の切り換え時に前記制
御弁を介しての再循環排気ガス量の増減遅れを検出する
検出手段と、前記検出手段により前記増減遅れが検出さ
れている間は前記第1燃料噴射制御手段による燃料噴射
の切り換えを停止させる切り換え停止手段、とを具備す
ることを特徴とする。
A second fuel injection control device for an internal combustion engine according to the present invention is an exhaust gas recirculation device, a first fuel injection valve for injecting fuel directly into a cylinder to realize stratified charge combustion, and an intake air A second fuel injection valve for injecting fuel into the passage to achieve uniform combustion, and the exhaust gas recirculation device are provided in the exhaust gas recirculation device so as to realize an optimum EGR rate according to the combustion method and the engine operating condition. A fuel injection control device for an internal combustion engine, comprising: a control valve for controlling the amount of exhaust gas to be circulated; the fuel injection control device switching between the first fuel injection valve and the second fuel injection valve according to an engine operating state. First fuel injection control means for executing injection, detection means for detecting an increase / decrease delay in the amount of recirculated exhaust gas through the control valve when switching fuel injection, and the increase / decrease delay is detected by the detecting means. While the Switching stopping means for stopping the switching of the fuel injection by the fuel injection control means, characterized by including the capital.

【0010】[0010]

【作用】前述の第一の内燃機関の燃料噴射制御装置は、
排気ガス再循環装置と、気筒内へ直接燃料を噴射し成層
燃焼を実現するための第1燃料噴射弁と、吸気通路に燃
料を噴射し均一燃焼を実現するための第2燃料噴射弁
と、排気ガス再循環装置に設けられ、燃焼方法と機関運
転状態とに応じた最適EGR率が実現されるように再循
環させる排気ガス量を制御する制御弁とを有する内燃機
関のための燃料噴射制御装置において、第1燃料噴射制
御手段が機関運転状態に応じて第1燃料噴射弁と第2燃
料噴射弁とを切り換えて燃料噴射を実行させ、検出手段
が燃料噴射の切り換え時に制御弁を介しての再循環排気
ガス量の増減遅れを検出し、第2燃料噴射制御手段が検
出手段により再循環排気ガス量の増減遅れが検出されて
いる間は第1及び第2燃料噴射弁の両方によって燃料噴
射を実行させる。
The above-described first fuel injection control device for the internal combustion engine is
An exhaust gas recirculation device, a first fuel injection valve for injecting fuel directly into the cylinder to achieve stratified combustion, and a second fuel injection valve for injecting fuel into the intake passage to achieve uniform combustion, Fuel injection control for an internal combustion engine having a control valve provided in an exhaust gas recirculation device, the control valve controlling the amount of exhaust gas to be recirculated so that an optimum EGR rate according to a combustion method and an engine operating state is realized In the device, the first fuel injection control means switches the first fuel injection valve and the second fuel injection valve according to the engine operating state to execute fuel injection, and the detection means transmits the fuel injection via the control valve when switching the fuel injection. Of the recirculation exhaust gas amount is detected, and while the second fuel injection control means detects the increase or decrease delay of the recirculation exhaust gas amount by the detection means, the fuel is supplied by both the first and second fuel injection valves. Let the jet run.

【0011】また、前述の第二の内燃機関の燃料噴射制
御装置は、排気ガス再循環装置と、気筒内へ直接燃料を
噴射し成層燃焼を実現するための第1燃料噴射弁と、吸
気通路に燃料を噴射し均一燃焼を実現するための第2燃
料噴射弁と、排気ガス再循環装置に設けられ、燃焼方法
と機関運転状態とに応じた最適EGR率が実現されるよ
うに再循環させる排気ガス量を制御する制御弁とを有す
る内燃機関のための燃料噴射制御装置であって、第1燃
料噴射制御手段が機関運転状態に応じて第1燃料噴射弁
と第2燃料噴射弁とを切り換えて燃料噴射を実行させ、
検出手段が燃料噴射の切り換え時に制御弁を介しての再
循環排気ガス量の増減遅れを検出し、切り換え停止手段
が検出手段により再循環排気ガス量の増減遅れが検出さ
れている間は第1燃料噴射制御手段による燃料噴射の切
り換えを停止させる。
The above-described second fuel injection control device for an internal combustion engine is an exhaust gas recirculation device, a first fuel injection valve for directly injecting fuel into a cylinder to realize stratified charge combustion, and an intake passage. A second fuel injection valve for injecting fuel to achieve uniform combustion and an exhaust gas recirculation device, and recirculates so as to realize an optimal EGR rate according to the combustion method and engine operating conditions. A fuel injection control device for an internal combustion engine, comprising: a control valve for controlling an exhaust gas amount, wherein the first fuel injection control means sets the first fuel injection valve and the second fuel injection valve according to an engine operating state. Switch to execute fuel injection,
The detecting means detects the increase / decrease delay of the recirculated exhaust gas amount via the control valve at the time of switching the fuel injection, and the switching stop means is the first while the detecting means detects the increase / decrease delay of the recirculated exhaust gas amount. Switching of fuel injection by the fuel injection control means is stopped.

【0012】[0012]

【実施例】図1は、本発明による燃料噴射制御装置が設
けられた内燃機関の概略断面図である。同図において、
1は燃焼室、2はピストン、3は吸気弁4を介して燃焼
室1に通じる吸気通路、5は排気弁6を介して燃焼室1
に通じる排気通路である。7は燃焼室1内に直接燃料を
噴射するための第1燃料噴射弁である。また8は点火プ
ラグである。
1 is a schematic sectional view of an internal combustion engine provided with a fuel injection control device according to the present invention. In the figure,
1 is a combustion chamber, 2 is a piston, 3 is an intake passage communicating with the combustion chamber 1 via an intake valve 4, and 5 is a combustion chamber 1 via an exhaust valve 6.
It is an exhaust passage leading to. Reference numeral 7 is a first fuel injection valve for directly injecting fuel into the combustion chamber 1. 8 is a spark plug.

【0013】吸気通路3にはスロットル弁9が配置さ
れ、スロットル弁9の下流には吸気通路3に燃料を噴射
する第2燃料噴射弁10が設置されている。また、吸気
通路3のスロットル弁9下流と排気通路5とは、排気ガ
ス再循環通路11によって連通され、この排気ガス再循
環通路11内には、再循環させる排気ガス量を制御する
ための制御弁12が配置されている。13はこの制御弁
12を駆動するためのステップモータ等の駆動装置であ
る。
A throttle valve 9 is arranged in the intake passage 3, and a second fuel injection valve 10 for injecting fuel into the intake passage 3 is installed downstream of the throttle valve 9. Further, the throttle valve 9 downstream of the intake passage 3 and the exhaust passage 5 are connected by an exhaust gas recirculation passage 11, and a control for controlling the amount of exhaust gas to be recirculated in the exhaust gas recirculation passage 11. A valve 12 is arranged. Reference numeral 13 is a drive device such as a step motor for driving the control valve 12.

【0014】20は、第1燃料噴射弁7及び第2燃料噴
射弁10を介しての燃料噴射制御と、駆動装置13を介
しての制御弁12の開度制御とを担当する制御装置であ
り、機関負荷としてのアクセルペダルの踏み込み量を検
出するアクセルペダルストロークセンサ21、機関回転
数を検出するための回転センサ22、及び機関温度とし
ての冷却水温を検出するための冷却水温センサ23等の
機関運転状態を決定するためのセンサが接続されてい
る。
Reference numeral 20 is a control device which is in charge of fuel injection control through the first fuel injection valve 7 and the second fuel injection valve 10 and opening control of the control valve 12 through the drive device 13. An engine such as an accelerator pedal stroke sensor 21 for detecting the amount of depression of an accelerator pedal as an engine load, a rotation sensor 22 for detecting an engine speed, and a cooling water temperature sensor 23 for detecting a cooling water temperature as an engine temperature. A sensor is connected to determine the operating condition.

【0015】前述の内燃機関は、既に公知となっている
ように、所定負荷未満の時に第1燃料噴射弁を使用して
圧縮行程末期に燃料を噴射することで低燃費の成層燃焼
を実現させ、また所定負荷以上の時に第2燃料噴射弁を
使用して吸気行程以前又は吸気行程中に燃料を噴射する
ことで高出力が得られる均一燃焼を実現するものであ
る。
As already known, the above-mentioned internal combustion engine realizes stratified combustion with low fuel consumption by injecting fuel at the end of the compression stroke using the first fuel injection valve when the load is less than a predetermined value. Further, when the load is equal to or higher than a predetermined load, the second fuel injection valve is used to inject fuel before or during the intake stroke to realize uniform combustion with high output.

【0016】制御弁12の開度制御は、機関一回転毎に
アクセルペダルストロークセンサ21により検出される
機関負荷としてのアクセルペダルの踏み込み量Lを基に
図2に示すマップによって行われる。このマップは、各
機関負荷毎に、確実な着火性及び所望の出力が得られる
範囲における最大EGR率が実現されるような制御弁1
2の開度θが設定されている。従って、この開度θは、
同一燃焼においては機関負荷が大きい程小さくなるよう
に設定されており、また成層燃焼と均一燃焼とを比較す
ると、前者の方が着火性が良好であるために、所定負荷
L1未満の成層燃焼時には同じ機関負荷における均一燃
焼時よりEGR率を大きくすることが可能であり、開度
θは所定負荷L1で大きく変化するように設定されてい
る。
The opening of the control valve 12 is controlled by the map shown in FIG. 2 based on the accelerator pedal depression amount L as the engine load detected by the accelerator pedal stroke sensor 21 for each engine revolution. This map shows that for each engine load, the control valve 1 that realizes the maximum EGR rate in the range where reliable ignition performance and desired output are obtained.
The opening degree θ of 2 is set. Therefore, this opening θ is
It is set so that the larger the engine load is, the smaller it becomes in the same combustion. Further, comparing the stratified charge combustion and the uniform combustion, the former has better ignitability. The EGR rate can be made larger than that at the time of uniform combustion under the same engine load, and the opening degree θ is set so as to largely change at the predetermined load L1.

【0017】このような制御弁12の開度制御におい
て、同一燃焼が行われる機関負荷範囲内であれば、負荷
変化に対する制御弁12の開度変化は比較的小さく、制
御弁12の開度に応じた量の排気ガスを再循環させるこ
とができ、瞬間的に変化後の負荷における所望のEGR
率を実現することができる。しかし、成層燃焼と均一燃
焼とが切り換わる負荷L1を跨ぐ負荷変化が発生する
と、制御弁12の開度変化は非常に大きくなり、この時
には再循環させる排気ガス量が直ぐには所望量まで増減
せず、この間において所望のEGR率が実現できない。
In the control of the opening degree of the control valve 12 as described above, if the engine combustion load range is such that the same combustion is performed, the change in the opening degree of the control valve 12 with respect to the change in the load is relatively small, and the opening degree of the control valve 12 is changed. A corresponding amount of exhaust gas can be recirculated, and the desired EGR at the load after an instantaneous change can be obtained.
The rate can be realized. However, when a load change across the load L1 that switches between stratified combustion and uniform combustion occurs, the change in the opening of the control valve 12 becomes extremely large, and at this time, the amount of exhaust gas to be recirculated immediately increases or decreases to the desired amount. Therefore, the desired EGR rate cannot be realized during this period.

【0018】本実施例の燃料噴射制御装置は、図3に示
す第1フローチャートにより第1燃料噴射弁7及び第2
燃料噴射弁10による燃料噴射制御を行う。このフロー
チャートは機関一回転毎に実行されるものである。まず
ステップ101において、アクセルペダルストロークセ
ンサ21によって機関負荷としてのアクセルペダルの踏
み込み量Lが検出され、回転センサ22によって機関回
転数Nが検出され、また冷却水温センサ23によって機
関温度としての冷却水温Tが検出される。
The fuel injection control system of the present embodiment uses the first fuel injection valve 7 and the second fuel injection valve according to the first flow chart shown in FIG.
The fuel injection control by the fuel injection valve 10 is performed. This flow chart is executed every engine revolution. First, at step 101, the accelerator pedal stroke sensor 21 detects the depression amount L of the accelerator pedal as the engine load, the rotation sensor 22 detects the engine speed N, and the cooling water temperature sensor 23 measures the cooling water temperature T as the engine temperature. Is detected.

【0019】次にステップ102において、現在の負荷
Lが燃焼が切り換わる負荷L1以上であるかどうかが判
断される。この判断が肯定される時はステップ103に
進み、ステップ101において検出された現在の負荷
L、回転数N、及び機関温度Tを基に均一燃焼時の燃料
噴射量Q1が決定され、ステップ104に進む。
Next, at step 102, it is judged if the current load L is equal to or higher than the load L1 at which combustion is switched. When this determination is affirmative, the routine proceeds to step 103, where the fuel injection amount Q1 at the time of uniform combustion is determined based on the current load L, the rotational speed N, and the engine temperature T detected at step 101, and the routine proceeds to step 104. move on.

【0020】ステップ104において、フラグFが0で
あるかどうかが判断され、この判断が肯定される時は、
前回の処理における燃焼が均一燃焼であることを示して
おり、ステップ105に進み、今回も第2燃料噴射弁1
0を使用してステップ103において決定された燃料噴
射量Q1の燃料噴射が実行され、ステップ106におい
て、フラグFは0とされ終了する。
At step 104, it is judged whether the flag F is 0, and when this judgment is affirmed,
This indicates that the combustion in the previous processing is uniform combustion, and the routine proceeds to step 105, and this time also the second fuel injection valve 1
0 is used to execute the fuel injection of the fuel injection amount Q1 determined in step 103, and the flag F is set to 0 in step 106, and the process ends.

【0021】一方、ステップ102における判断が肯定
される時は、ステップ107に進み、ステップ101に
おいて検出された現在の負荷L、回転数N、及び機関温
度Tを基に成層燃焼時の燃料噴射量Q2が決定され、ス
テップ108に進む。ステップ108において、フラグ
Fが1であるかどうかが判断され、この判断が肯定され
る時は、前回の処理における燃焼が成層燃焼であること
を示しており、ステップ109に進み、今回も第1燃料
噴射弁7を使用してステップ107において決定された
燃料噴射量Q2の燃料噴射が実行され、ステップ110
において、フラグFは1とされ終了する。
On the other hand, when the determination at step 102 is affirmative, the routine proceeds to step 107, where the fuel injection amount at the time of stratified charge combustion is based on the present load L, rotation speed N, and engine temperature T detected at step 101. Q2 is determined and the process proceeds to step 108. In step 108, it is determined whether or not the flag F is 1, and when this determination is affirmative, it indicates that the combustion in the previous processing is stratified combustion, and the process proceeds to step 109, and this time also the first Fuel injection of the fuel injection amount Q2 determined in step 107 is executed using the fuel injection valve 7, and step 110
In, the flag F is set to 1 and the process ends.

【0022】また、ステップ104における判断が否定
される時、すなわち前回の燃焼が均一燃焼でない時に
は、ステップ111に進む。この時は、成層燃焼から均
一燃焼へ切り換わる時であり、前述したように再循環さ
せる排気ガスの減少遅れが発生し、図5に示すタイムチ
ャートのように点線で示す所望のEGR率Rに対して実
線で示す実際のEGR率R’はそれをしばらく上回る。
本フローチャートは、ステップ112において次式
(1)によって実際のEGR率R’を算出する。 R’=R’−(R’−R)*x1 … (1) ここで、左辺におけるR’は前回の実際のEGR率であ
り、当初は前回の成層燃焼におけるEGR率である。R
は今回の均一燃焼における所望のEGR率であり、x1
は本フローチャートの実行間隔におけるEGR率の減少
率である。
When the determination in step 104 is negative, that is, when the previous combustion is not uniform combustion, the routine proceeds to step 111. At this time, it is time to switch from stratified combustion to uniform combustion, and as described above, a decrease delay of the exhaust gas to be recirculated occurs, and the desired EGR rate R shown by the dotted line is obtained as shown in the time chart of FIG. On the other hand, the actual EGR rate R ′ shown by the solid line exceeds it for a while.
In this flowchart, in step 112, the actual EGR rate R ′ is calculated by the following equation (1). R ′ = R ′ − (R′−R) * x1 (1) Here, R ′ on the left side is the previous actual EGR rate, and is initially the EGR rate in the previous stratified charge combustion. R
Is the desired EGR rate in this uniform combustion, x1
Is the reduction rate of the EGR rate in the execution interval of this flowchart.

【0023】次にステップ113において、算出された
現在の実際のEGR率R’とこの時の所望のEGR率R
との差が0近傍の所定値A以下であるかどうかが判断さ
れ、当初この判断は否定されてステップ113に進み、
ステップ103において決定された燃料噴射量Q1が第
1燃料噴射弁7及び第2燃料噴射弁量の両方を使用して
各噴射時期で噴射され、ステップ114においてフラグ
Fは2とされ終了する。
Next, at step 113, the calculated current actual EGR rate R'and the desired EGR rate R at this time are calculated.
Is judged to be less than or equal to a predetermined value A near 0, and initially this judgment is denied and the routine proceeds to step 113.
The fuel injection amount Q1 determined in step 103 is injected at each injection timing using both the first fuel injection valve 7 and the second fuel injection valve amount, and the flag F is set to 2 in step 114, and the process ends.

【0024】次回の処理において、フラグFは2とされ
ているために、ステップ104における判断が否定さ
れ、再びステップ111以降の処理が繰り返され、ステ
ップ112における判断が肯定される時、すなわち、所
望のEGR率がほぼ実現された時は、ステップ105に
進み、第2燃料噴射弁10だけを使用する燃料噴射が実
行される。
In the next processing, since the flag F is set to 2, the determination in step 104 is denied, the processing of step 111 and subsequent steps is repeated, and the determination in step 112 is affirmed, that is, the desired When the EGR rate is substantially achieved, the routine proceeds to step 105, where fuel injection using only the second fuel injection valve 10 is executed.

【0025】このように、再循環排気ガスの減少遅れに
よって実際のEGR率が均一燃焼における所望のEGR
率を上回っている間は、第1燃料噴射弁7による燃料噴
射も実行され、成層燃焼が併用されるために、燃焼の許
容EGR率が高められて失火を防止することができる。
In this way, the actual EGR rate is equal to the desired EGR in uniform combustion due to the delay in the reduction of the recirculated exhaust gas.
While the fuel consumption is higher than the rate, the fuel injection by the first fuel injection valve 7 is also executed and the stratified charge combustion is also used, so that the allowable EGR rate of combustion is increased and misfire can be prevented.

【0026】一方、ステップ108における判断が否定
される時、すなわち前回の燃焼が成層燃焼でない時に
は、ステップ115に進む。この時は、均一燃焼から成
層燃焼へ切り換わる時であり、前述したように再循環さ
せる排気ガスの増加遅れが発生し、図6に示すタイムチ
ャートのように点線で示す所望のEGR率Rに対して実
線で示す実際のEGR率R’はそれをしばらく下回る。
本フローチャートは、ステップ110において次式
(2)によって実際のEGR率R’を算出する。 R’=R’+(R−R’)*x2 … (1) ここで、左辺におけるR’は前回の実際のEGR率であ
り、当初は前回の均一燃焼におけるEGR率である。R
は今回の成層燃焼における所望のEGR率であり、x2
は本フローチャートの実行間隔におけるEGR率の増加
率である。
On the other hand, when the determination in step 108 is negative, that is, when the previous combustion is not stratified combustion, the routine proceeds to step 115. At this time, it is the time when the uniform combustion is switched to the stratified combustion, and the increase in the exhaust gas to be recirculated is delayed as described above, and the desired EGR rate R shown by the dotted line is obtained as shown in the time chart of FIG. On the other hand, the actual EGR rate R ′ shown by the solid line is lower than that for a while.
In this flowchart, in step 110, the actual EGR rate R ′ is calculated by the following equation (2). R ′ = R ′ + (R−R ′) * x2 (1) Here, R ′ on the left side is the previous actual EGR rate, and is initially the EGR rate in the previous uniform combustion. R
Is the desired EGR rate in this stratified combustion, x2
Is the increase rate of the EGR rate in the execution interval of this flowchart.

【0027】次にステップ117において、この時の所
望のEGR率Rと算出された現在の実際のEGR率R’
との差が0近傍の所定値A以下であるかどうかが判断さ
れ、当初この判断は否定されてステップ117に進み、
ステップ107において決定された燃料噴射量Q2が第
1燃料噴射弁7及び第2燃料噴射弁量の両方を使用して
各噴射時期で噴射され、ステップ118においてフラグ
Fは2とされ終了する。
Next, at step 117, the desired EGR rate R at this time and the calculated current actual EGR rate R '
Is judged to be equal to or smaller than a predetermined value A near 0, and initially this judgment is denied and the routine proceeds to step 117.
The fuel injection amount Q2 determined in step 107 is injected at each injection timing using both the first fuel injection valve 7 and the second fuel injection valve amount, and the flag F is set to 2 in step 118 and the process ends.

【0028】次回の処理において、フラグFは2とされ
ているために、ステップ108における判断が否定さ
れ、再びステップ115以降の処理が繰り返され、ステ
ップ110における判断が肯定される時、すなわち、所
望のEGR率がほぼ実現された時は、ステップ109に
進み、第1燃料噴射弁7だけを使用する燃料噴射が実行
される。
In the next processing, since the flag F is set to 2, the determination in step 108 is denied, the processing in step 115 and subsequent steps is repeated, and when the determination in step 110 is affirmed, that is, the desired When the EGR rate is substantially achieved, the routine proceeds to step 109, where fuel injection using only the first fuel injection valve 7 is executed.

【0029】このように、再循環排気ガスの増加遅れに
よって実際のEGR率が成層燃焼における所望のEGR
率を下回っている間は、第2燃料噴射弁10よる燃料噴
射も実行され、均一燃焼が併用されるために、燃焼室1
の周囲部に形成される混合気は成層燃焼時の過リーンな
ものよりリッチ側となってNOxが発生しにくくなり、
所望量の排気ガスが再循環されなくてもNOxの発生量
を減少させることができる。
In this way, the actual EGR rate is changed to the desired EGR in the stratified charge combustion due to the increase in the recirculated exhaust gas.
While the rate is below the rate, fuel injection by the second fuel injection valve 10 is also executed, and uniform combustion is also used, so that the combustion chamber 1
The air-fuel mixture formed in the surrounding area becomes richer than the over-lean one during stratified combustion, and NOx is less likely to be generated.
The amount of NOx generated can be reduced without recirculating a desired amount of exhaust gas.

【0030】また図4に示す第2フローチャートは、第
1燃料噴射弁7及び第2燃料噴射弁10による燃料噴射
制御のためのもう一つのフローチャートである。前述の
第1フローチャートとの違いについてのみ説明する。
The second flow chart shown in FIG. 4 is another flow chart for fuel injection control by the first fuel injection valve 7 and the second fuel injection valve 10. Only the differences from the above-mentioned first flowchart will be described.

【0031】本フローチャートでは、ステップ204に
おいて、フラグFが0であるかどうかが判断され、この
判断が否定される時、すなわち前回の燃焼が均一燃焼で
ない時には、ステップ211に進んで前述同様に実際の
EGR率R’を算出し、前述同様なステップ212にお
ける判断が否定される時には、ステップ207以降の処
理を実行する。すなわち、ステップ207において決定
された現在の機関運転状態の成層燃焼時の燃料噴射量Q
2を第1燃料噴射弁7を使用して噴射する。
In this flowchart, in step 204, it is judged whether or not the flag F is 0, and when this judgment is negative, that is, when the previous combustion is not uniform combustion, the routine proceeds to step 211, where it is the same as described above. The EGR rate R ′ is calculated, and when the determination in step 212 similar to the above is denied, the processing from step 207 onward is executed. That is, the fuel injection amount Q during stratified combustion in the current engine operating state determined in step 207
2 is injected using the first fuel injection valve 7.

【0032】このように、再循環排気ガスの減少遅れに
よって実際のEGR率が均一燃焼における所望のEGR
率を上回っている間は、第1燃料噴射弁7により燃料を
噴射して成層燃焼を実行し、すなわち前述の図5に対応
する図7に示すように所望のEGR率が実現されるまで
は燃焼を切り換えないために、許容EGR率が高められ
て失火を防止することができる。
As described above, the actual EGR rate is equal to the desired EGR in uniform combustion due to the delay in the reduction of the recirculated exhaust gas.
While the ratio is higher than the above, the fuel is injected by the first fuel injection valve 7 to execute the stratified charge combustion, that is, until the desired EGR ratio is realized as shown in FIG. 7 corresponding to FIG. 5 described above. Since the combustion is not switched, the allowable EGR rate is increased and misfire can be prevented.

【0033】一方、ステップ208において、フラグF
が1であるかどうかが判断され、この判断が否定される
時、すなわち前回の燃焼が成層燃焼でない時には、ステ
ップ215に進んで前述同様に実際のEGR率R’を算
出し、前述同様なステップ216における判断が否定さ
れる時には、ステップ203以降の処理を実行する。す
なわち、ステップ203において決定された現在の機関
運転状態の均一燃焼時の燃料噴射量Q1を第2燃料噴射
弁10を使用して噴射する。
On the other hand, in step 208, the flag F
Is judged to be 1, and when this judgment is denied, that is, when the previous combustion is not stratified combustion, the routine proceeds to step 215, where the actual EGR rate R ′ is calculated in the same manner as described above, and the same steps as described above are executed. When the determination in 216 is denied, the processing from step 203 onward is executed. That is, the second fuel injection valve 10 is used to inject the fuel injection amount Q1 at the time of uniform combustion in the current engine operating state determined in step 203.

【0034】このように、再循環排気ガスの増加遅れに
よって実際のEGR率が成層燃焼における所望のEGR
率を下回っている間は、第2燃料噴射弁10により燃料
を噴射して均一燃焼を実行し、すなわち前述の図6に対
応する図8に示すように所望のEGR率が実現されるま
では燃焼を切り換えないために、燃焼室1の周囲部に形
成される混合気は成層燃焼時の過リーンなものよりリッ
チ側となってNOxが発生しにくくなり、NOxの発生
量を減少させることができる。
In this way, the actual EGR rate is changed to the desired EGR in the stratified charge combustion due to the increase in the recirculated exhaust gas.
While the rate is below the range, the second fuel injection valve 10 injects fuel to perform uniform combustion, that is, until the desired EGR rate is realized as shown in FIG. 8 corresponding to FIG. 6 described above. Since the combustion is not switched, the air-fuel mixture formed in the peripheral portion of the combustion chamber 1 becomes richer than the over-lean one at the time of stratified combustion, so that NOx is less likely to be generated and the amount of NOx generated can be reduced. it can.

【0035】前述の第1フローチャートにおけるステッ
プ113での燃料噴射において、第1燃料噴射弁7によ
って噴射される燃料量は、所定量を上限として実際のE
GR率R’と所望のEGR率との差が小さくなる程少な
くするように制御されており、第2燃料噴射10によっ
て噴射される燃料量は、ステップ103において決定さ
れる燃料噴射量Q1からこの分が減量される。また、ス
テップ117における第2燃料噴射弁10によって噴射
される燃料量も同様に徐々に減量するように制御され、
第1燃料噴射弁7によって噴射される燃料量は、ステッ
プ107において決定される燃料噴射量Q2からこの分
が減量される。それにより実際のEGR率に適合する燃
焼を実現することができる。
In the fuel injection in step 113 in the above-mentioned first flow chart, the amount of fuel injected by the first fuel injection valve 7 is actually E with a predetermined amount as the upper limit.
The smaller the difference between the GR rate R'and the desired EGR rate is, the smaller the control is performed, and the amount of fuel injected by the second fuel injection 10 is calculated from the fuel injection amount Q1 determined in step 103. The amount is reduced. Further, the amount of fuel injected by the second fuel injection valve 10 in step 117 is also controlled so as to be gradually reduced,
The amount of fuel injected by the first fuel injection valve 7 is reduced from the fuel injection amount Q2 determined in step 107. As a result, combustion that matches the actual EGR rate can be realized.

【0036】しかし、本発明はこのような燃料噴射量制
御に限定されず、例えば、ステップ117における第2
燃料噴射弁10によって噴射される燃料量を、前述同
様、所定量を上限として実際のEGR率R’と所望のE
GR率との差が小さくなる程少なくするように制御する
と共に、第1燃料噴射弁7によって噴射される燃料量を
ステップ107において決定される燃料噴射量Q2を減
量することなく噴射するようにすることで、燃焼室の周
囲部に形成される混合気をさらにリッチ側にすることが
でき、それにより、この時に発生するNOxをさらに低
減することが可能となる。
However, the present invention is not limited to such fuel injection amount control, and, for example, the second injection in step 117 is performed.
Similarly to the above, the fuel amount injected by the fuel injection valve 10 is set to a predetermined amount as an upper limit, and the actual EGR rate R'and the desired E
The smaller the difference from the GR rate, the smaller the control, and the smaller the fuel injection amount Q2 determined in step 107, and the smaller the fuel injection amount Q2 determined in step 107. As a result, the air-fuel mixture formed in the peripheral portion of the combustion chamber can be made richer, whereby NOx generated at this time can be further reduced.

【0037】[0037]

【発明の効果】このように、本発明による第一の内燃機
関の燃料噴射制御装置によれば、排気ガス再循環装置
と、気筒内へ直接燃料を噴射し成層燃焼を実現するため
の第1燃料噴射弁と、吸気通路に燃料を噴射し均一燃焼
を実現するための第2燃料噴射弁と、排気ガス再循環装
置に設けられ、燃焼方法と機関運転状態とに応じた最適
EGR率が実現されるように再循環させる排気ガス量を
制御する制御弁とを有する内燃機関のための燃料噴射制
御装置において、第1燃料噴射制御手段が機関運転状態
に応じて第1燃料噴射弁と第2燃料噴射弁とを切り換え
て燃料噴射を実行させ、検出手段が燃料噴射の切り換え
時に制御弁を介しての再循環排気ガス量の増減遅れを検
出し、第2燃料噴射制御手段が検出手段により再循環排
気ガス量の増減遅れが検出されている間は第1及び第2
燃料噴射弁の両方によって燃料噴射を実行させために、
再循環排気ガス量の増減遅れによって所望のEGR率が
実現されず、実際のEGR率がそれを上回る場合には成
層燃焼を併用して燃焼の許容EGR率を高めて失火を防
止し、下回る場合には均一燃焼を併用して燃焼室の周囲
部に形成される混合気を成層燃焼時よりリッチ側とする
ことで、NOxが発生しにくくなるためにNOxの発生
量の増加を防止することができる。
As described above, according to the first fuel injection control apparatus for the internal combustion engine of the present invention, the exhaust gas recirculation apparatus and the first fuel injection control apparatus for directly injecting fuel into the cylinder to realize the stratified charge combustion are provided. A fuel injection valve, a second fuel injection valve for injecting fuel into the intake passage to achieve uniform combustion, and an exhaust gas recirculation device, which are provided in the exhaust gas recirculation device to realize an optimum EGR rate according to the combustion method and engine operating conditions. In the fuel injection control apparatus for the internal combustion engine, the first fuel injection control means includes the first fuel injection valve and the second fuel injection valve according to the engine operating state. The fuel injection valve is switched to perform fuel injection, the detection means detects a delay in the increase / decrease in the amount of recirculated exhaust gas via the control valve at the time of switching the fuel injection, and the second fuel injection control means causes the detection means to re-detect. Delay in increase / decrease in circulating exhaust gas amount The while it is detected first and second
In order to perform fuel injection by both fuel injection valves,
When the desired EGR rate is not realized due to the increase or decrease in the amount of recirculated exhaust gas, and the actual EGR rate exceeds that, in combination with stratified combustion, the allowable EGR rate of combustion is increased to prevent misfire, and when it falls below In order to prevent an increase in the amount of NOx generated, it is possible to prevent NOx from being generated easily by making the air-fuel mixture formed in the peripheral portion of the combustion chamber richer than that in the stratified charge combustion in combination with uniform combustion. it can.

【0038】また、本発明による第二の内燃機関の燃料
噴射制御装置によれば、排気ガス再循環装置と、気筒内
へ直接燃料を噴射し成層燃焼を実現するための第1燃料
噴射弁と、吸気通路に燃料を噴射し均一燃焼を実現する
ための第2燃料噴射弁と、排気ガス再循環装置に設けら
れ、燃焼方法と機関運転状態とに応じた最適EGR率が
実現されるように再循環させる排気ガス量を制御する制
御弁とを有する内燃機関のための燃料噴射制御装置であ
って、第1燃料噴射制御手段が機関運転状態に応じて第
1燃料噴射弁と第2燃料噴射弁とを切り換えて燃料噴射
を実行させ、検出手段が燃料噴射の切り換え時に制御弁
を介しての再循環排気ガス量の増減遅れを検出し、第3
燃料噴射制御手段が検出手段により再循環排気ガス量の
増減遅れが検出されている間は第1燃料噴射制御手段に
よる燃料噴射の切り換えを停止させるために、再循環排
気ガス量の増減遅れによって所望のEGR率が実現され
ず、実際のEGR率がそれを上回る場合には成層燃焼を
持続させて前述同様失火を防止し、下回る場合には均一
燃焼を持続させて前述同様NOxの発生量の増加を防止
することができる。
According to the second fuel injection control device for the internal combustion engine of the present invention, the exhaust gas recirculation device and the first fuel injection valve for directly injecting fuel into the cylinder to realize stratified charge combustion. A second fuel injection valve for injecting fuel into the intake passage to achieve uniform combustion and an exhaust gas recirculation device are provided so that an optimum EGR rate according to a combustion method and an engine operating state is realized. A fuel injection control device for an internal combustion engine having a control valve for controlling the amount of exhaust gas to be recirculated, wherein the first fuel injection control means has a first fuel injection valve and a second fuel injection according to an engine operating state. The valve is switched to perform fuel injection, and the detection means detects the increase / decrease delay in the amount of recirculated exhaust gas via the control valve when switching the fuel injection, and
While the fuel injection control means detects the increase / decrease delay of the recirculated exhaust gas amount by the detecting means, the fuel injection control means stops the switching of the fuel injection by the first fuel injection control means. If the actual EGR rate is not achieved and the actual EGR rate exceeds it, stratified charge combustion is continued to prevent misfire as described above, and if lower than that, uniform combustion is sustained to increase NOx generation rate as described above. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料噴射制御装置が設けられた内
燃機関の概略断面図である。
FIG. 1 is a schematic sectional view of an internal combustion engine provided with a fuel injection control device according to the present invention.

【図2】制御弁の開度制御のためのマップである。FIG. 2 is a map for controlling the opening of a control valve.

【図3】燃料噴射制御のための第1フローチャートであ
る。
FIG. 3 is a first flowchart for fuel injection control.

【図4】燃料噴射制御のための第2フローチャートであ
る。
FIG. 4 is a second flowchart for fuel injection control.

【図5】成層燃焼から均一燃焼へ切り換わる時のEGR
率変化のタイムチャートである。
FIG. 5: EGR when switching from stratified combustion to uniform combustion
It is a time chart of rate change.

【図6】均一燃焼から成層燃焼へ切り換わる時のEGR
率変化のタイムチャートである。
FIG. 6 EGR when switching from uniform combustion to stratified combustion
It is a time chart of rate change.

【図7】図5と同様なタイムチャートである。FIG. 7 is a time chart similar to FIG.

【図8】図6と同様なタイムチャートである。FIG. 8 is a time chart similar to FIG.

【符号の説明】[Explanation of symbols]

1…燃焼室 2…ピストン 3…吸気通路 5…排気通路 7…第1燃料噴射弁 8…点火プラグ 9…スロットル弁 10…第2燃料噴射弁 11…排気ガス再循環通路 12…制御弁 1 ... Combustion chamber 2 ... Piston 3 ... Intake passage 5 ... Exhaust passage 7 ... First fuel injection valve 8 ... Spark plug 9 ... Throttle valve 10 ... Second fuel injection valve 11 ... Exhaust gas recirculation passage 12 ... Control valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排気ガス再循環装置と、気筒内へ直接燃
料を噴射し成層燃焼を実現するための第1燃料噴射弁
と、吸気通路に燃料を噴射し均一燃焼を実現するための
第2燃料噴射弁と、前記排気ガス再循環装置に設けら
れ、燃焼方法と機関運転状態とに応じた最適EGR率が
実現されるように再循環させる排気ガス量を制御する制
御弁とを有する内燃機関のための燃料噴射制御装置であ
って、機関運転状態に応じて前記第1燃料噴射弁と前記
第2燃料噴射弁とを切り換えて燃料噴射を実行させる第
1燃料噴射制御手段と、燃料噴射の切り換え時に前記制
御弁を介しての再循環排気ガス量の増減遅れを検出する
検出手段と、前記検出手段により前記増減遅れが検出さ
れている間は前記第1及び第2燃料噴射弁の両方によっ
て燃料噴射を実行させる第2燃料噴射制御手段、とを具
備することを特徴とする内燃機関の燃料噴射制御装置。
1. An exhaust gas recirculation device, a first fuel injection valve for injecting fuel directly into a cylinder to realize stratified combustion, and a second fuel injection valve for injecting fuel into an intake passage to achieve uniform combustion. Internal combustion engine having a fuel injection valve and a control valve provided in the exhaust gas recirculation device for controlling the amount of exhaust gas to be recirculated so that an optimum EGR rate according to a combustion method and an engine operating state is realized. And a first fuel injection control means for executing fuel injection by switching between the first fuel injection valve and the second fuel injection valve according to an engine operating state. By means of both the detection means for detecting the increase / decrease delay of the recirculated exhaust gas amount through the control valve at the time of switching, and the first and second fuel injection valves while the increase / decrease delay is detected by the detection means. Run fuel injection A fuel injection control device for an internal combustion engine, comprising: a second fuel injection control means;
【請求項2】 排気ガス再循環装置と、気筒内へ直接燃
料を噴射し成層燃焼を実現するための第1燃料噴射弁
と、吸気通路に燃料を噴射し均一燃焼を実現するための
第2燃料噴射弁と、前記排気ガス再循環装置に設けら
れ、燃焼方法と機関運転状態とに応じた最適EGR率が
実現されるように再循環させる排気ガス量を制御する制
御弁とを有する内燃機関のための燃料噴射制御装置であ
って、機関運転状態に応じて前記第1燃料噴射弁と前記
第2燃料噴射弁とを切り換えて燃料噴射を実行させる第
1燃料噴射制御手段と、燃料噴射の切り換え時に前記制
御弁を介しての再循環排気ガス量の増減遅れを検出する
検出手段と、前記検出手段により前記増減遅れが検出さ
れている間は前記第1燃料噴射制御手段による燃料噴射
の切り換えを停止させる切り換え停止手段、とを具備す
ることを特徴とする内燃機関の燃料噴射制御装置。
2. An exhaust gas recirculation device, a first fuel injection valve for injecting fuel directly into a cylinder to realize stratified combustion, and a second fuel injection valve for injecting fuel into an intake passage to achieve uniform combustion. Internal combustion engine having a fuel injection valve and a control valve provided in the exhaust gas recirculation device for controlling the amount of exhaust gas to be recirculated so that an optimum EGR rate according to a combustion method and an engine operating state is realized. And a first fuel injection control means for executing fuel injection by switching between the first fuel injection valve and the second fuel injection valve according to an engine operating state. Detection means for detecting an increase / decrease delay in the amount of recirculated exhaust gas through the control valve at the time of switching, and switching of fuel injection by the first fuel injection control means while the increase / decrease delay is detected by the detecting means. To stop A fuel injection control device for an internal combustion engine, comprising: switching stop means.
JP25403793A 1993-10-12 1993-10-12 Fuel injection control device for internal combustion engine Expired - Lifetime JP3362317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25403793A JP3362317B2 (en) 1993-10-12 1993-10-12 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25403793A JP3362317B2 (en) 1993-10-12 1993-10-12 Fuel injection control device for internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002221661A Division JP3900036B2 (en) 2002-07-30 2002-07-30 Fuel injection timing switching control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07103049A true JPH07103049A (en) 1995-04-18
JP3362317B2 JP3362317B2 (en) 2003-01-07

Family

ID=17259366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25403793A Expired - Lifetime JP3362317B2 (en) 1993-10-12 1993-10-12 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3362317B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124127A1 (en) * 2004-06-15 2005-12-29 Toyota Jidosha Kabushiki Kaisha A control device for a purge system of a dual injector fuel system for an internal combustion engine
US7467617B2 (en) 2004-03-15 2008-12-23 Toyota Jidosha Kabushiki Kaisha Fuel injection apparatus and fuel injection control method for internal combustion engine
WO2014018351A1 (en) * 2012-07-27 2014-01-30 Caterpillar Inc. Reactivity controlled compression ignition engine with exhaust gas recirculation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7467617B2 (en) 2004-03-15 2008-12-23 Toyota Jidosha Kabushiki Kaisha Fuel injection apparatus and fuel injection control method for internal combustion engine
WO2005124127A1 (en) * 2004-06-15 2005-12-29 Toyota Jidosha Kabushiki Kaisha A control device for a purge system of a dual injector fuel system for an internal combustion engine
US7234447B2 (en) 2004-06-15 2007-06-26 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
US7273043B2 (en) 2004-06-15 2007-09-25 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
WO2014018351A1 (en) * 2012-07-27 2014-01-30 Caterpillar Inc. Reactivity controlled compression ignition engine with exhaust gas recirculation
US8991358B2 (en) 2012-07-27 2015-03-31 Caterpillar Inc. Reactivity controlled compression ignition engine with exhaust gas recirculation

Also Published As

Publication number Publication date
JP3362317B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US6024069A (en) Controller for an internal combustion engine
US5950595A (en) Method and apparatus for controlling vacuum pressure in internal combustion engine
US8050846B2 (en) Apparatus and method for controlling engine
EP2044307B1 (en) Control apparatus and control method for direct injection spark ignition internal combustion engine
KR100310432B1 (en) Engine control system and control process
JPH08312398A (en) Idling speed controller for internal combustion engine
US10385791B2 (en) Engine control device
JPH09268942A (en) Control device for in-cylinder injection type internal combustion engine
US5975045A (en) Apparatus and method for controlling direct injection engines
JP3175601B2 (en) Air intake control system for lean burn engine
WO2018066328A1 (en) Internal combustion engine control device
US5848580A (en) Apparatus and method for controlling fuel injection in internal combustion engine
US6176220B1 (en) Combustion control device for internal combustion engine
KR100304231B1 (en) Intake control system for engine
JPH10176572A (en) Combustion control device for internal combustion engine
JPH1089122A (en) Control device for idling speed of laminated combustion engine
JP3362317B2 (en) Fuel injection control device for internal combustion engine
JPH10159642A (en) Knocking judging device for internal combustion engine
JPH09195839A (en) Apparatus for controlling combustion of internal combustion engine
JP3900036B2 (en) Fuel injection timing switching control method for internal combustion engine
JP2004124899A (en) Engine control equipment
JP2002138908A (en) Cylinder injection spark ignition type internal combustion engine
JP3279208B2 (en) Combustion control device for internal combustion engine
JP3613658B2 (en) Fuel injection control device for multi-cylinder internal combustion engine
JP2002339782A (en) Control device for spark ignition type direct-injection engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

EXPY Cancellation because of completion of term