JPH07102387A - Mechanism parts and formation of film thereon - Google Patents

Mechanism parts and formation of film thereon

Info

Publication number
JPH07102387A
JPH07102387A JP5245838A JP24583893A JPH07102387A JP H07102387 A JPH07102387 A JP H07102387A JP 5245838 A JP5245838 A JP 5245838A JP 24583893 A JP24583893 A JP 24583893A JP H07102387 A JPH07102387 A JP H07102387A
Authority
JP
Japan
Prior art keywords
electroless
underlayer
mechanical component
forming
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5245838A
Other languages
Japanese (ja)
Inventor
Hisaji Shinohara
久次 篠原
Shoichi Ote
正一 大手
Tadao Kitamura
忠雄 喜多村
Toshio Kobayashi
敏夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5245838A priority Critical patent/JPH07102387A/en
Priority to DE4434302A priority patent/DE4434302C2/en
Priority to CN94116588A priority patent/CN1101383A/en
Priority to KR1019940024926A priority patent/KR950012505A/en
Publication of JPH07102387A publication Critical patent/JPH07102387A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/02Details
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Contacts (AREA)
  • Manufacture Of Switches (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce mechanism parts capable of securely operating over a long period by successively laminating an electroless nickel plating substrate and a ceramic layer at least on either contact face of mechanism parts mechanically connected and mutually contacted rotatably and slidingly. CONSTITUTION:A substrate 21 is formed on parts 20 such as a roller and a pawl by electroless Ni-B plating treatment, and its hardness is increased by heat treatment. Next, a ceramic film 22 of TiC or the like is formed on the substrate 21 by a physical deposition method or the like. Thus, the mechanism parts sufficiently withstanding even if being used for a part subjected to high bearing pressure over a long period can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば、真空遮断器
の操作機構等の、特に機械的に連結され、互いに回動或
いは摺動接触する電気機器の機構部品およびこの機構部
品の接触面にセラミック皮膜層を形成する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical part of an electric device, such as an operating mechanism of a vacuum circuit breaker, which is mechanically coupled to each other and which makes rotary or sliding contact with each other, and a contact surface of the mechanical part. The present invention relates to a method of forming a ceramic coating layer.

【0002】[0002]

【従来の技術】例えば真空遮断器の操作機構は、レバ
ー、爪、ピン、ローラ、ロッドなどの部品で構成され
る。これらの部品はその連結部において互いに接触した
り回転或いは摺動接触するので、これらの部分に潤滑油
を塗布したり注入したりしてその耐磨耗性を上げてい
る。しかしながら、この方法は注油等のメンテナンスを
必要とする。このため、最近ではこれらの部分に耐磨耗
性の優れた材料、例えばTiC 、TiN 、TiCN等の皮膜(セ
ラミック膜)をコーティングして、メンテナンスを必要
とすることなく長期にわたる動作信頼性を確保すること
が提案されている(例えば、特開平3─8232号公
報)。しかし、このような皮膜(セラミック膜)は耐蝕
性の点においてやや劣る。例えば、このようにして処理
された機構部品を、塩水噴霧試験を施したところ試験後
数時間にして点状赤錆が全面にわたって発生することが
確認されている。この原因は皮膜に存在する微細な透孔
や割れにあるものと考えられている。このため、機構部
品のコーティング部分にニッケルやクロムをメッキして
下地層を形成し、その上に前記の皮膜を形成することも
提案されている(例えば、特開平4─73833号公
報)。
2. Description of the Related Art For example, an operating mechanism of a vacuum circuit breaker includes parts such as a lever, a claw, a pin, a roller and a rod. Since these parts come into contact with each other or rotate or slide at their connecting portions, lubricating oil is applied to these parts by applying or injecting lubricating oil. However, this method requires maintenance such as lubrication. For this reason, these parts have recently been coated with materials with excellent wear resistance, such as TiC, TiN, and TiCN films (ceramic films) to ensure long-term operational reliability without requiring maintenance. It has been proposed (for example, Japanese Patent Laid-Open No. 3-8232). However, such a film (ceramic film) is slightly inferior in terms of corrosion resistance. For example, it has been confirmed that a mechanical spray treated in this way is subjected to a salt spray test, and spotted red rust is generated over the entire surface within a few hours after the test. It is believed that this is due to the fine holes and cracks present in the film. For this reason, it has been proposed to form a base layer by plating nickel or chrome on the coating portion of the mechanical component, and to form the above-mentioned coating thereon (for example, Japanese Patent Laid-Open No. 4-73833).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うにして形成された機構部品では、下地層が通常のニッ
ケルメッキ層またはクロムメッキ層により形成されてい
るので、例えばニッケルメッキの場合その硬度がHv2
00程度と低く、長期にわたる使用に際して接触部の面
圧が高いところでは下地層が割れてしまうという問題が
ある。下地層の割れは、長期の使用に際してその部分に
水分が浸透して錆の発生する原因となる。
However, in the mechanical component thus formed, since the underlayer is formed by a normal nickel plating layer or a chromium plating layer, for example, in the case of nickel plating, the hardness thereof is Hv2.
It is as low as about 00, and there is a problem that the base layer is cracked in a place where the surface pressure of the contact portion is high during long-term use. The cracking of the underlayer causes moisture to penetrate into the portion during long-term use and causes rust.

【0004】この発明の目的は、このような接触部の面
圧が高いところで使用しても、下地層の割れ等が生ずる
ことなく、従って錆の発生することなく、長期にわたっ
て確実に動作することのできる機構部品およびこの機構
部品の接触面にセラミック皮膜層を形成する方法を提供
することにある。
An object of the present invention is to ensure reliable operation for a long period of time without causing cracks or the like in the underlayer even when used in a place where the surface pressure of the contact portion is high, and thus without causing rust. (EN) Provided is a mechanical component and a method for forming a ceramic coating layer on a contact surface of the mechanical component.

【0005】[0005]

【課題を解決するための手段】この発明によれば、この
目的は、機械的に連結され、互いに回動或いは摺動接触
する機構部品において、少なくともその一方の接触面に
無電解ニッケルメッキ処理により形成された下地層と、
この下地層の上に形成されたセラミック皮膜層とを備え
ることにより達成される。この下地層としては、無電解
Ni−Pメッキ或いは無電解Ni−Bメッキで処理したもの
がよい。また、この際下地層は600℃以下、好ましく
は400℃以下の条件で熱処理されるのがよい。また、
このような機構部品の接触面にセラミック皮膜層を形成
する方法としては、先ず、機構部品の接触面に無電解Ni
−Pメッキ又は無電解Ni−Bメッキで処理して下地層を
形成した後、この下地層の上に600℃以下、好ましく
は400℃以下の熱処理条件で物理蒸着法或いはプラズ
マ化学蒸着法によりよりセラミック皮膜層を形成する。
According to the present invention, an object of the present invention is to provide at least one contact surface of a mechanical component mechanically coupled to each other, which is in rotary or sliding contact, by electroless nickel plating. A formed underlayer,
This is achieved by including a ceramic coating layer formed on this underlayer. This underlayer is electroless
Those treated by Ni-P plating or electroless Ni-B plating are preferable. At this time, the underlayer is preferably heat-treated under the condition of 600 ° C. or lower, preferably 400 ° C. or lower. Also,
As a method of forming a ceramic coating layer on the contact surface of such a mechanical component, first, electroless Ni is formed on the contact surface of the mechanical component.
-P plating or electroless Ni-B plating is performed to form an underlayer, and then a physical vapor deposition method or a plasma chemical vapor deposition method is performed on the underlayer under heat treatment conditions of 600 ° C or lower, preferably 400 ° C or lower. Form a ceramic coating layer.

【0006】[0006]

【作用】この発明の構成によれば、機構部品の少なくと
もその一方の接触面に無電解Ni−Pメッキ又は無電解Ni
−Bメッキで形成された下地層と、この下地層の上に形
成されたセラミック皮膜層とを備える。通常のニッケル
メッキにより形成された膜が硬度Hv200程度である
のに対して、無電解ニッケルメッキにより形成された膜
はこれよりかなり硬度が高く、例えばNi−Pメッキで処
理した場合、その膜の硬度はHv400〜500程度、
Ni−Bメッキで処理した場合、Hv700程度である。
従って、このような無電解ニッケルメッキ処理により機
構部品の接触部における硬度が著しく向上し、長期にわ
たって高い面圧を受ける部分に使用してもこれに対して
充分耐えることができる。さらにまた、このようにして
形成された下地層の上に、600℃以下の熱処理条件で
物理蒸着法或いはプラズマ化学蒸着法によりよりセラミ
ック皮膜層を形成した場合、接触部表面の硬度をHv9
00〜1200程度にまで上昇させることができる。従
って、この発明による機構部品は耐磨耗性、防錆性の点
で著しく優れたものとなる。
According to the structure of the present invention, at least one contact surface of the mechanical component is electroless Ni-P plated or electroless Ni-P plated.
-A base layer formed by B plating and a ceramic coating layer formed on the base layer. A film formed by ordinary nickel plating has a hardness of about Hv200, whereas a film formed by electroless nickel plating has a considerably higher hardness, and for example, when processed by Ni-P plating, Hardness is about Hv 400-500,
When treated with Ni-B plating, the Hv is about 700.
Therefore, the hardness of the contact portion of the mechanical component is remarkably improved by such electroless nickel plating treatment, and even if it is used in a portion that receives a high surface pressure for a long period of time, it can sufficiently endure this. Furthermore, when a ceramic coating layer is formed on the thus formed underlayer by a physical vapor deposition method or a plasma chemical vapor deposition method under a heat treatment condition of 600 ° C. or less, the hardness of the surface of the contact portion is Hv9.
It can be increased to about 00 to 1200. Therefore, the mechanical component according to the present invention is remarkably excellent in abrasion resistance and rust prevention.

【0007】[0007]

【実施例】以下この発明を真空遮断器の操作機構に適用
した実施例に基づいて説明する。図1はこのような真空
遮断器の操作機構を示す側面図である。図1において、
真空バルブ1は絶縁ロッド12、レバー10および接触
ばね9を介してローラ8の軸に連結されている。ローラ
8はラッチレバー7に回転自由に取り付けられており、
このレバー7の先端に回転自由なローラ13が取り付け
られている。ローラ13は図示の真空遮断器の閉状態で
爪14と係合している。図2に操作機構部の要部を拡大
して示し、ロッド5が投入電磁石の励磁により駆動され
てローラ8を押し上げた状態を示している。これにより
開閉軸6が時計方向に回動し、真空バルブ内の可動電極
が接触ばね9、レバー10および絶縁ロッド12を介し
て押し下げられ、固定電極との間を閉路する。同時に爪
14がローラ13と係合して真空遮断器の開状態を保持
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment applied to an operating mechanism of a vacuum circuit breaker. FIG. 1 is a side view showing an operating mechanism of such a vacuum circuit breaker. In FIG.
The vacuum valve 1 is connected to the shaft of the roller 8 via an insulating rod 12, a lever 10 and a contact spring 9. The roller 8 is rotatably attached to the latch lever 7,
A freely rotatable roller 13 is attached to the tip of the lever 7. The roller 13 is engaged with the pawl 14 in the closed state of the illustrated vacuum circuit breaker. FIG. 2 is an enlarged view of the main part of the operation mechanism section, showing a state in which the rod 5 is driven by the excitation of the closing electromagnet to push up the roller 8. As a result, the opening / closing shaft 6 rotates clockwise, and the movable electrode in the vacuum valve is pushed down via the contact spring 9, the lever 10 and the insulating rod 12 to close the fixed electrode. At the same time, the pawl 14 engages with the roller 13 to hold the open state of the vacuum circuit breaker.

【0008】以上のように、真空遮断器の操作機構には
回動或いは摺動接触する機構部品が存在する。特にロー
ラ13および爪14とは互いに係合して真空遮断器の開
状態或いは閉状態を保持するものであり、しかもこの部
品は接触ばねの力を受けるので大きな荷重がかかる。こ
のような高荷重のかかる部分には、特にこの発明を適用
するとにより、長期にわたり操作機構の動作の信頼性が
得られる。
As described above, the operating mechanism of the vacuum circuit breaker has a mechanical component that makes a rotating or sliding contact. In particular, the roller 13 and the claw 14 are engaged with each other to maintain the open or closed state of the vacuum circuit breaker. Moreover, since this component receives the force of the contact spring, a large load is applied. By applying the present invention to such a portion to which a high load is applied, the reliability of the operation of the operating mechanism can be obtained for a long period of time.

【0009】図3はこのような機構部品にこの発明を適
用した実施例で、例えばローラ、爪などの部品20に下
地層21を無電解Ni−Bメッキ或いは無電解Ni−Pメッ
キ処理により形成し、さらにその上にTiC 、TiN 、TiCN
等のセラミック皮膜22を形成したものである。この場
合、機構部品の下地層を無電解Ni−Bメッキで形成した
場合にはその硬度はHv700程度であり、さらに60
0℃以下、好ましくは400℃付近で熱処理することに
よりHv900程度に上げることができた。また、無電
解Ni−Pメッキで処理した場合にはその硬度はHv40
0〜500程度であり、さらに熱処理することによりH
v600〜700程度に上げることができた。なお、こ
の熱処理により硬度が上がるのは、メッキ上がり状態で
Ni中に溶け込んでいるBやPが加熱によりNiと化合して
化合物をつくるためと考えられるが、温度を600℃以
上に上げると、化合物が成長して却って軟化する。従っ
てこの熱処理温度は600℃以下、特に400℃近辺が
よい。
FIG. 3 shows an embodiment in which the present invention is applied to such a mechanical component. For example, a base layer 21 is formed on a component 20 such as a roller or a claw by electroless Ni-B plating or electroless Ni-P plating. On top of that, TiC, TiN, TiCN
A ceramic coating 22 such as is formed. In this case, when the underlying layer of the mechanical component is formed by electroless Ni-B plating, the hardness is about Hv700, and further 60
It was possible to raise the temperature to about Hv900 by performing heat treatment at 0 ° C. or lower, preferably near 400 ° C. When treated with electroless Ni-P plating, its hardness is Hv40.
It is about 0 to 500, and further heat treatment results in H
I was able to raise it to about v600-700. It should be noted that the hardness is increased by this heat treatment when the plating is finished.
It is considered that B and P dissolved in Ni combine with Ni by heating to form a compound, but when the temperature is raised to 600 ° C or higher, the compound grows and is rather softened. Therefore, the heat treatment temperature is preferably 600 ° C. or lower, particularly around 400 ° C.

【0010】また、TiC 、TiN 、TiCN等のセラミック皮
膜の形成には、物理蒸着法(PVD)やプラズマ化学蒸
着法(P−CVD)が特に適している。この方法ではそ
の熱処理温度が600℃以下でよいので、セラミック皮
膜を形成する際に同時に下地層の熱処理を行うことにな
り、その硬度を上げることができるからである。なお、
上記の説明では真空遮断器の操作機構の機構部品につい
てこの発明を適用した例を示した。しかし、この発明は
このような機構部品に限らず、これと同様な課題を持つ
機構部品についても適用できることは勿論である。
Physical vapor deposition (PVD) and plasma chemical vapor deposition (P-CVD) are particularly suitable for forming a ceramic film of TiC, TiN, TiCN or the like. In this method, the heat treatment temperature may be 600 ° C. or lower, so that the heat treatment of the base layer is performed at the same time when the ceramic film is formed, and the hardness can be increased. In addition,
In the above description, the example in which the present invention is applied to the mechanical parts of the operating mechanism of the vacuum circuit breaker is shown. However, it goes without saying that the present invention can be applied not only to such a mechanical component but also to a mechanical component having the same problem as this.

【0011】[0011]

【発明の効果】この発明によれば、通常のニッケルメッ
キにより形成された膜が硬度Hv200程度であるのに
対して、無電解Ni−Pメッキ又は無電解Ni−Bメッキで
形成された下地層はそれよりかなり硬度が高く、例えば
Ni−Pメッキで処理した場合、その膜の硬度はHv40
0〜500程度、Ni−Bメッキで処理した場合、Hv7
00程度であり、さらに、このようにして形成された下
地層を600℃以下、好ましくは400℃付近の温度で
熱処理することにより、それぞれ硬度をHv600乃至
700もしくは900程度に上げることができるので、
長期にわたって高い面圧を受ける部分に使用してもこれ
に対して充分耐えることができ、下地層の割れのない、
従ってその部分の発錆を防止した機構部品が得られる。
According to the present invention, a film formed by normal nickel plating has a hardness of about Hv200, whereas an underlayer formed by electroless Ni-P plating or electroless Ni-B plating. Is much harder than that, for example
When treated with Ni-P plating, the hardness of the film is Hv40
0 to 500, Hv7 when treated with Ni-B plating
The hardness can be increased to about Hv 600 to 700 or 900 by heat-treating the underlayer thus formed at a temperature of 600 ° C. or lower, preferably around 400 ° C.
Even if it is used in a part that receives high surface pressure for a long time, it can withstand this sufficiently and there is no crack in the underlayer,
Therefore, a mechanical component can be obtained in which rusting of that portion is prevented.

【0012】特に、下地層の上に600℃以下、好まし
くは400℃付近の熱処理条件で物理蒸着法或いはプラ
ズマ化学蒸着法によりよりセラミック皮膜層を形成する
場合には、皮膜の形成と同時に下地層の熱処理を行える
のでより効率的である。
In particular, when a ceramic coating layer is formed on the undercoat layer by a physical vapor deposition method or a plasma chemical vapor deposition method under a heat treatment condition of 600 ° C. or less, preferably around 400 ° C., the undercoat layer is formed at the same time as the formation of the coating film. It is more efficient because it can be heat treated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の適用例としての真空遮断器の操作機
構を示す側面図
FIG. 1 is a side view showing an operating mechanism of a vacuum circuit breaker as an application example of the present invention.

【図2】図1の要部の拡大図FIG. 2 is an enlarged view of a main part of FIG.

【図3】この発明を適用した機構部品の要部の拡大図FIG. 3 is an enlarged view of a main part of a mechanical component to which the present invention is applied.

【符号の説明】[Explanation of symbols]

20 機構部品 21 下地層 22 セラミック皮膜 20 Mechanical parts 21 Underlayer 22 Ceramic film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 敏夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Kobayashi 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】機械的に連結され、互いに回動或いは摺動
接触する機構部品であって、少なくともその一方の接触
面に無電解ニッケルメッキ処理により形成された下地層
と、この下地層の上に形成されたセラミック皮膜層とを
備えたことを特徴とする機構部品。
1. A mechanical component which is mechanically coupled to each other and makes a rotating or sliding contact with each other, wherein at least one of the contact surfaces is provided with an underlayer formed by electroless nickel plating, and an upper layer of the underlayer. And a ceramic coating layer formed on the.
【請求項2】請求項1記載のものにおいて、下地層が無
電解Ni−Pメッキで処理されたものであることを特徴と
する機構部品。
2. The mechanical component according to claim 1, wherein the underlayer is treated by electroless Ni-P plating.
【請求項3】請求項1記載のものにおいて、下地層が無
電解Ni−Bメッキで処理されたものであることを特徴と
する機構部品。
3. The mechanical component according to claim 1, wherein the underlayer is treated by electroless Ni-B plating.
【請求項4】請求項1ないし3のいずれかの一つに記載
のものにおいて、下地層が600℃以下、好ましくは4
00℃付近の温度で熱処理したものであることを特徴と
する機構部品。
4. The material according to claim 1, wherein the underlayer has a temperature of 600 ° C. or lower, preferably 4 ° C.
A mechanical component characterized by being heat-treated at a temperature near 00 ° C.
【請求項5】機械的に連結され、互いに回動或いは摺動
接触する機構部品の接触面に無電解ニッケルメッキ処理
により下地層を形成した後、この下地層の上に600℃
以下、好ましくは400℃付近の温度で蒸着法によりセ
ラミック皮膜層を形成することを特徴とする機構部品の
皮膜形成方法。
5. A base layer is formed by electroless nickel plating on the contact surfaces of mechanical parts that are mechanically connected to each other and that make rotational or sliding contact with each other, and then 600 ° C. is formed on the base layer.
Hereinafter, preferably, a method for forming a film of a mechanical component, which comprises forming a ceramic film layer by a vapor deposition method at a temperature of about 400 ° C.
【請求項6】請求項5記載の方法において、下地層を形
成する無電解ニッケルメッキ処理が無電解Ni−Pメッキ
処理であることを特徴とする機構部品の皮膜形成方法。
6. The method for forming a film for a mechanical component according to claim 5, wherein the electroless nickel plating treatment for forming the underlayer is an electroless Ni-P plating treatment.
【請求項7】請求項5記載の方法において、下地層を形
成する無電解ニッケルメッキ処理が無電解Ni−Bメッキ
処理であることを特徴とする機構部品の皮膜形成方法。
7. The method for forming a film of a mechanical component according to claim 5, wherein the electroless nickel plating treatment for forming the underlayer is an electroless Ni-B plating treatment.
【請求項8】請求項5、6または7記載の方法におい
て、セラミック皮膜層を形成する蒸着法が物理蒸着法で
あることを特徴とする機構部品の皮膜形成方法。
8. The method for forming a film of a mechanical component according to claim 5, 6 or 7, wherein the vapor deposition method for forming the ceramic coating layer is a physical vapor deposition method.
【請求項9】請求項5、6または7記載の方法におい
て、セラミック皮膜層を形成する蒸着法がプラズマ化学
蒸着法であることを特徴とする機構部品の皮膜形成方
法。
9. The method of claim 5, 6 or 7, wherein the vapor deposition method for forming the ceramic coating layer is a plasma chemical vapor deposition method.
JP5245838A 1993-10-01 1993-10-01 Mechanism parts and formation of film thereon Pending JPH07102387A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5245838A JPH07102387A (en) 1993-10-01 1993-10-01 Mechanism parts and formation of film thereon
DE4434302A DE4434302C2 (en) 1993-10-01 1994-09-26 Mechanical parts in a check valve and method of manufacture
CN94116588A CN1101383A (en) 1993-10-01 1994-09-29 Mechanical parts and a method of forming a film on the same
KR1019940024926A KR950012505A (en) 1993-10-01 1994-09-30 Mechanical parts and methods of forming films on them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5245838A JPH07102387A (en) 1993-10-01 1993-10-01 Mechanism parts and formation of film thereon

Publications (1)

Publication Number Publication Date
JPH07102387A true JPH07102387A (en) 1995-04-18

Family

ID=17139608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5245838A Pending JPH07102387A (en) 1993-10-01 1993-10-01 Mechanism parts and formation of film thereon

Country Status (4)

Country Link
JP (1) JPH07102387A (en)
KR (1) KR950012505A (en)
CN (1) CN1101383A (en)
DE (1) DE4434302C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157940A (en) * 2005-12-02 2007-06-21 Nichia Chem Ind Ltd Light emitting device and method of manufacturing same
CN101962760A (en) * 2010-10-20 2011-02-02 北京科技大学 Method for performing electroless nickel plating on surface of aluminum nitride ceramic
CN105714292A (en) * 2016-04-14 2016-06-29 温州兰理工科技园有限公司 Surface-hardening treatment method for hard sealing ball valve sealing pair

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444083B1 (en) * 1999-06-30 2002-09-03 Lam Research Corporation Corrosion resistant component of semiconductor processing equipment and method of manufacturing thereof
DE102008045381A1 (en) * 2008-09-02 2010-03-04 Schaeffler Kg Wear and corrosion-inhibiting layer composite

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1542856A (en) * 1975-11-14 1979-03-28 Fulmer Res Inst Ltd Coated die and a method for the production thereof
CH639598A5 (en) * 1979-05-04 1983-11-30 Sulzer Ag METAL PART PROVIDED WITH A WEAR AND CORROSION-RESISTANT TUNGSTEN CARBIDE PROTECTIVE LAYER.
DE3116801C2 (en) * 1981-04-28 1985-01-24 Rosenthal Technik Ag, 8672 Selb Valve disc
IT1182433B (en) * 1985-02-12 1987-10-05 Gevipi Ag HARD SEALING BODIES HAVING LOW FRICTION COEFFICIENT
DE3509572C1 (en) * 1985-03-16 1986-07-10 Feldmühle AG, 4000 Düsseldorf Sliding element coated with ceramic material components and its use
US4902535A (en) * 1987-12-31 1990-02-20 Air Products And Chemicals, Inc. Method for depositing hard coatings on titanium or titanium alloys
DE3829007A1 (en) * 1988-08-26 1990-03-01 Multi Arc Gmbh METHOD FOR PLASMA COATING OBJECTS WITH A HARD MATERIAL
DE3832692A1 (en) * 1988-09-27 1990-03-29 Leybold Ag SEALING ELEMENT WITH A SHUT-OFF BODY MADE OF A METAL OR NON-METAL MATERIAL AND METHOD FOR APPLYING HARD MATERIAL LAYERS TO THE SHUT-OFF BODY
DE3837306C2 (en) * 1988-09-27 2002-05-16 Knut Enke Piston and piston rod for a vibration damper in motor vehicles
JP3017816B2 (en) * 1991-02-20 2000-03-13 清原 まさ子 Fluid controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157940A (en) * 2005-12-02 2007-06-21 Nichia Chem Ind Ltd Light emitting device and method of manufacturing same
CN101962760A (en) * 2010-10-20 2011-02-02 北京科技大学 Method for performing electroless nickel plating on surface of aluminum nitride ceramic
CN105714292A (en) * 2016-04-14 2016-06-29 温州兰理工科技园有限公司 Surface-hardening treatment method for hard sealing ball valve sealing pair

Also Published As

Publication number Publication date
CN1101383A (en) 1995-04-12
DE4434302C2 (en) 1997-02-06
KR950012505A (en) 1995-05-16
DE4434302A1 (en) 1995-04-13

Similar Documents

Publication Publication Date Title
EP1236914B1 (en) Plain bearing
JP3221892B2 (en) Piston ring and its manufacturing method
Spalvins Coatings for wear and lubrication
US8129041B2 (en) Article having a protective coating and methods
DE102006052869B4 (en) PVD hard material coating of chain link parts
JPH07102387A (en) Mechanism parts and formation of film thereon
JPH07102383A (en) Mechanism element
EP1746179B1 (en) Titanium part for internal combustion engine
Kim et al. Hole and hillock formation in gold metallizations at elevated temperatures deposited on titanium, vanadium, and other barrier layers
JP2002256967A (en) Sliding member and its manufacturing method
US7189630B2 (en) Layer sequence for producing a composite material for electromechanical components
US20160078976A1 (en) Corrosion Resistant Barrier Formed by Vapor Phase Tin Reflow
JP2011530008A (en) Sliding part with conformable coating and method for manufacturing the same
KR100643617B1 (en) Method for Tungsten Carbide Carbon coating of tappet in engine
Lee et al. Thermal stability enhancement of Cu interconnects by employing a self-aligned MgO layer obtained from a Cu (Mg) alloy film
JP2819946B2 (en) Cam contact structure of valve train of internal combustion engine
JP2534566Y2 (en) piston ring
JP2006095910A (en) Multilayer film-coated steel pin
EP4353955A1 (en) Methods for surface modification of mid-turbine frame piston seal rings and interfacing components to achieve low friction and high wear resistance
JPH02309528A (en) Switchgear
JPH0332727Y2 (en)
JP2685389B2 (en) Rotary compressor
JPS6376862A (en) Aluminum member having hardened surface layer
JP2000048937A (en) Heating material mainly containing molybdemum disilicide and having electrode part excellent in low- temperature oxidation resistant characteristic
CN115003936A (en) Piston ring and method for manufacturing same