JPH07102386A - Method for hardening surface of aluminum alloy member - Google Patents

Method for hardening surface of aluminum alloy member

Info

Publication number
JPH07102386A
JPH07102386A JP5299174A JP29917493A JPH07102386A JP H07102386 A JPH07102386 A JP H07102386A JP 5299174 A JP5299174 A JP 5299174A JP 29917493 A JP29917493 A JP 29917493A JP H07102386 A JPH07102386 A JP H07102386A
Authority
JP
Japan
Prior art keywords
powder
aluminum alloy
base material
alloy member
alloying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5299174A
Other languages
Japanese (ja)
Inventor
Yoshifumi Yamamoto
義史 山本
Yukihiro Sugimoto
幸弘 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP5299174A priority Critical patent/JPH07102386A/en
Publication of JPH07102386A publication Critical patent/JPH07102386A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Abstract

PURPOSE:To efficiently form an alloy layer by mixing alloy elemental powder for alloying and metal powder brought into reaction with Al and generating the heat of reaction, melting this powdery mixture by a high density energy beam and forming an alloy layer on the surface of an Al base metal. CONSTITUTION:For example, at the time of hardening the surface of a piston l made of an Al alloy casting, its outer circumference is subjected to rough working, and a powdery mixture 14 of pure Ni powder as alloy elements for alloying and pure Ti powder brought into reaction with Al and generating the heat of reaction is prepd. At this time, the amt. of the pure Ti powder to be added is regulated to 1 to 50wt.% to the pure Ni powder. The piston 1 is rotated with its cylindrical center axis as the center 15, and while the powdery mixture 14 is fed to the surface of the piston from a powder feeding nozzle 13, a CO2 laser beam LB is applied to form a high alloy layer 7a. By subjecting this high alloy layer 7a to finish working, the high alloy layer can be formed uniformly over the whole face of the piston.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば、アルミニウ
ム合金製ピストンのトップリング溝相当部を表面硬化さ
せるようなアルミニウム合金部材の表面硬化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface hardening method for an aluminum alloy member, for example, for surface hardening a portion corresponding to a top ring groove of an aluminum alloy piston.

【0002】[0002]

【従来の技術】一般に、高密度エネルギビーム熱源で母
材を局部溶融し、同時にこの部位に他の元素を添加する
ことにより、局部的に母材と異なる高合金化層を形成す
ることが知られており、上記元素の添加に際しては、棒
材、線材、板材、箔材に対して粉末を供給すると材料選
定の自由度が高くなる。
2. Description of the Related Art Generally, it is known that a base material is locally melted by a high-density energy beam heat source and at the same time, another element is added to this part to locally form a highly alloyed layer different from the base material. Therefore, when the above-mentioned elements are added, if powder is supplied to the rod, wire, plate and foil, the degree of freedom in material selection increases.

【0003】そこで、添加剤として粉末を用いて高合金
化層を形成する場合、TIG(tungsten inertgas 、タ
ングステンイナートガス)、電子ビーム、プラズマアー
ク、レーザビームを用いる方法が考えられる。
Therefore, when a highly alloyed layer is formed by using powder as an additive, a method using TIG (tungsten inert gas), electron beam, plasma arc, or laser beam can be considered.

【0004】上述のTIGを用いる場合には、粉末が電
極に飛散して異常損耗するため好ましくない。また電子
ビームを用いる場合には、被処理材を真空中に配置する
必要があるので、粉末の供給が困難となる。さらにプラ
ズマアークを用いる場合には、ビームのエネルギ密度が
低いため、局部加熱には限界が生ずる。したがって、添
加剤として粉末を用いて局部高合金化層を形成するに
は、レーザビームを用いる方法が最適である。
When the above-mentioned TIG is used, powder is scattered on the electrodes and is abnormally worn, which is not preferable. Further, when the electron beam is used, it is necessary to place the material to be processed in vacuum, which makes it difficult to supply the powder. Further, when a plasma arc is used, the local energy is limited due to the low energy density of the beam. Therefore, a method using a laser beam is most suitable for forming a locally highly alloyed layer using powder as an additive.

【0005】従来、レーザビームを用いてアルミニウム
合金部材の表面を硬化する方法としては、例えば、特開
昭63−72488号公報に記載の方法がある。
A conventional method for hardening the surface of an aluminum alloy member using a laser beam is, for example, the method described in JP-A-63-72488.

【0006】すなわち、図6に示すようにアルミニウム
合金粉末61をCO2 レーザビーム62で、アルミニウ
ム合金製母材としてのシリンダブロック63の表面に溶
け込ませ、これを凝固させて合金化層64を形成する方
法である。なお、図6において65は集光レンズ、66
は給粉ノズルである。
That is, as shown in FIG. 6, an aluminum alloy powder 61 is melted by a CO 2 laser beam 62 on the surface of a cylinder block 63 as a base material made of an aluminum alloy, and this is solidified to form an alloyed layer 64. Is the way to do it. In FIG. 6, reference numeral 65 is a condenser lens, and 66
Is a powder feeding nozzle.

【0007】しかし、図6に示す従来方法においては次
のような問題点があった。つまり上述のCO2 レーザビ
ーム62は金属、特にアルミニウム合金に対してビーム
反射率が高く、熱エネルギへの変換効率が悪いため、充
分な溶融効率を確保することができない問題点があり、
このような問題点を解決するためにレーザ出力を向上さ
せた場合にはレーザ装置が大型化し、被処理材としての
母材表面に吸収率の良好な物質(例えばグラファイト)
をコーティングする場合には、別途コーティング処理工
程を要するため、工程数が増大する問題点があった。
However, the conventional method shown in FIG. 6 has the following problems. That is, the above-mentioned CO 2 laser beam 62 has a high beam reflectance with respect to a metal, particularly an aluminum alloy, and has a poor conversion efficiency into heat energy, so that there is a problem that sufficient melting efficiency cannot be secured.
When the laser output is increased in order to solve such a problem, the laser device becomes large, and a substance having a high absorptivity (eg, graphite) is formed on the surface of the base material as the material to be processed.
However, there is a problem in that the number of steps is increased because a separate coating treatment step is required for coating.

【0008】[0008]

【発明が解決しようとする課題】この発明の請求項1記
載の発明(第1発明)は、合金化用の合金元素粉末と、
母材のアルミニウムと反応して反応熱を生成する金属粉
末とを混合し、この混合粉末を高密度エネルギビームに
て溶融することで、上述の反応熱を母材溶融用の熱エネ
ルギとして活用し、溶融効率の向上を図ることができる
アルミニウム合金部材の表面硬化方法の提供を目的とす
る。
The invention according to claim 1 (first invention) of the present invention comprises an alloying element powder for alloying,
By mixing metal powder that reacts with aluminum of the base material to generate reaction heat, and melting the mixed powder with a high-density energy beam, the above-mentioned reaction heat is utilized as heat energy for melting the base material. An object of the present invention is to provide a surface hardening method for an aluminum alloy member which can improve the melting efficiency.

【0009】この発明の請求項2記載の発明は、上記請
求項1記載の発明の目的と併せて、上述の合金元素粉末
をニッケル粉末とすることで、ニッケル化合物が分散し
た高合金化層を形成することができるアルミニウム合金
部材の表面硬化方法の提供を目的とする。
According to the invention of claim 2 of the present invention, in addition to the object of the invention of claim 1, by using the above-mentioned alloying element powder as nickel powder, a highly alloyed layer in which a nickel compound is dispersed is formed. An object is to provide a surface hardening method for an aluminum alloy member that can be formed.

【0010】この発明の請求項3記載の発明は、上記請
求項1または2記載の発明の目的と併せて、上述の金属
粉末をチタン粉末とすることで、母材のアルミニウムと
反応して良好な反応熱を生成することができるアルミニ
ウム合金部材の表面硬化方法の提供を目的とする。
The invention according to claim 3 of the present invention, together with the object of the invention according to claim 1 or 2, uses titanium powder as the above metal powder, so that it reacts with aluminum as a base material and is good. An object of the present invention is to provide a surface hardening method for an aluminum alloy member capable of generating various reaction heats.

【0011】この発明の請求項4記載の発明は、上記請
求項3記載の発明の目的と併せて、ニッケル粉末に対す
るチタン粉末の添加量を所定範囲に特定することで、溶
融部の表面荒れや粉末の歩留り悪化を招くことなく、充
分な反応熱を生成して、確実に高合金化層を形成するこ
とができるアルミニウム合金部材の表面硬化方法の提供
を目的とする。
According to the invention described in claim 4 of the present invention, in addition to the object of the invention described in claim 3, by specifying the addition amount of the titanium powder to the nickel powder within a predetermined range, the surface roughness of the fusion zone and An object of the present invention is to provide a surface hardening method for an aluminum alloy member, which can generate a sufficient reaction heat and can surely form a highly alloyed layer without causing a deterioration in powder yield.

【0012】この発明の請求項5記載の発明(第2発
明)は、アルミニウム合金製の円筒状の母材をその円筒
中心軸を回転中心として回転させ、この回転中心に対し
て回転方向手前側に所定量オフセットした位置から高密
度エネルギビームを照射することで、高密度エネルギビ
ームで溶融された溶湯の垂れ落ち現象により、均一な合
金化層を形成することができるアルミニウム合金部材の
表面硬化方法の提供を目的とする。
According to a fifth aspect of the present invention (the second invention), a cylindrical base material made of an aluminum alloy is rotated about the center axis of the cylinder, and the front side in the direction of rotation with respect to the center of rotation. A method for surface hardening an aluminum alloy member, which is capable of forming a uniform alloyed layer by irradiating a high-density energy beam from a position offset by a predetermined amount to a molten metal melted by the high-density energy beam due to a dripping phenomenon. For the purpose of providing.

【0013】[0013]

【課題を解決するための手段】この発明の請求項1記載
の発明(第1発明)は、アルミニウム合金製の母材の表
面に合金化用の合金元素を溶融して、合金化層を形成す
るアルミニウム合金部材の表面硬化方法であって、上記
合金元素を粉末状とし、上記合金元素粉末と、上記母材
のアルミニウムと反応して反応熱を生成する金属粉末と
を混合し、上記混合粉末を高密度エネルギビームにて溶
融して、上記母材表面に合金化層を生成するアルミニウ
ム合金部材の表面硬化方法であることを特徴とする。
According to a first aspect of the present invention, the alloying element for alloying is melted on the surface of a base material made of an aluminum alloy to form an alloyed layer. A method for surface hardening an aluminum alloy member, wherein the alloying element is in the form of powder, the alloying element powder is mixed with a metal powder which reacts with aluminum of the base material to generate heat of reaction, and the mixed powder is mixed. Is a surface hardening method for an aluminum alloy member, in which an alloyed layer is formed on the surface of the base material by melting with a high-density energy beam.

【0014】この発明の請求項2記載の発明は、上記請
求項1記載の発明の構成と併せて、上記合金元素粉末を
ニッケル粉末としたアルミニウム合金部材の表面硬化方
法であることを特徴とする。
The invention according to claim 2 of the present invention is, in addition to the constitution of the invention according to claim 1, a method for surface hardening an aluminum alloy member using nickel powder as the alloy element powder. .

【0015】この発明の請求項3記載の発明は、上記請
求項1または2記載の発明の構成と併せて、上記金属粉
末をチタン粉末としたアルミニウム合金部材の表面硬化
方法であることを特徴とする。
The invention according to claim 3 of the present invention is, in addition to the constitution of the invention according to claim 1 or 2, a method for surface hardening an aluminum alloy member using titanium powder as the metal powder. To do.

【0016】この発明の請求項4記載の発明は、上記請
求項3記載の発明の構成と併せて、上記チタン粉末の添
加量を上記ニッケル粉末に対して1〜50wt%とした
アルミニウム合金部材の表面硬化方法であることを特徴
とする。
According to a fourth aspect of the present invention, in addition to the structure of the third aspect of the present invention, the addition amount of the titanium powder is 1 to 50 wt% with respect to the nickel powder. It is characterized by a surface hardening method.

【0017】この発明の請求項5記載の発明(第2発
明)は、アルミニウム合金製の円筒状の母材の外周面に
おける円周方向に合金化用の合金元素を溶融して、合金
化層を形成するアルミニウム合金部材の表面硬化方法で
あって、上記母材をその円筒中心軸を回転中心として回
転させ、この回転中心に対して回転方向手前側に所定量
オフセットした位置から高密度エネルギビームを照射す
るアルミニウム合金部材の表面硬化方法であることを特
徴とする。
According to a fifth aspect of the present invention (the second invention), the alloying element for alloying is melted in the circumferential direction on the outer peripheral surface of the cylindrical base material made of an aluminum alloy to form an alloyed layer. A method of surface hardening an aluminum alloy member for forming a high density energy beam from a position offset by a predetermined amount to the front side in the direction of rotation with respect to the center of rotation of the base metal, the center of the cylinder being the center of rotation. Is a method for surface hardening an aluminum alloy member.

【0018】[0018]

【発明の効果】この発明の請求項1記載の発明(第1発
明)によれば、上述の合金化用の合金元素粉末と、母材
のアルミニウムと反応熱を生成する金属粉末とを混合
し、この混合粉末を高密度エネルギビームにて溶融する
ので、上述の反応熱を母材溶融用の熱エネルギとして活
用することができ、この結果、溶融効率の向上を図るこ
とができる効果がある。
According to the invention described in claim 1 (first invention) of the present invention, the alloying element powder for alloying described above is mixed with the aluminum of the base material and the metal powder for generating heat of reaction. Since the mixed powder is melted by the high-density energy beam, the above-mentioned reaction heat can be utilized as the heat energy for melting the base material, and as a result, the melting efficiency can be improved.

【0019】この発明の請求項2記載の発明によれば、
上記請求項1記載の発明の効果と併せて、上述の合金元
素粉末をニッケル粉末としたので、ニッケル化合物が分
散した高合金化層を形成することができる効果がある。
According to the second aspect of the present invention,
In addition to the effect of the invention described in claim 1, since the above-mentioned alloy element powder is nickel powder, there is an effect that a highly alloyed layer in which a nickel compound is dispersed can be formed.

【0020】この発明の請求項3記載の発明によれば、
上記請求項1または2記載の発明の効果と併せて、上述
の金属粉末をチタン粉末としたので、母材のアルミニウ
ムと反応して良好な反応熱を生成することができる効果
がある。
According to the invention of claim 3 of the present invention,
In addition to the effect of the invention according to claim 1 or 2, the above-mentioned metal powder is titanium powder, so that there is an effect that it can react with aluminum as a base material and generate good reaction heat.

【0021】この発明の請求項4記載の発明によれば、
上記請求項3記載の発明の効果と併せて、ニッケル粉末
に対するチタン粉末の添加量を1〜50wt%に設定し
たので、溶融部の表面荒れや粉末の歩留り悪化を招くこ
となく、充分な反応熱を生成して、確実に高合金化層を
形成することができる効果がある。
According to the invention of claim 4 of the present invention,
In addition to the effect of the invention described in claim 3, the addition amount of the titanium powder to the nickel powder is set to 1 to 50 wt%, so that sufficient reaction heat can be achieved without causing surface roughness of the fusion zone and deterioration of powder yield. Is produced and the highly alloyed layer can be reliably formed.

【0022】因に、チタン粉末の添加量が1wt%未満
の場合には、上記の反応熱生成の効果が得られず、チタ
ン粉末の添加量が50wt%を超過する場合には、母材
表面での反応が過度に活発化して、溶融部の表面荒れが
激しくなるうえ、供給粉末が飛散し高合金化が不可とな
り、粉末の歩留りが悪化するので、上記範囲内に特定す
る。
When the amount of titanium powder added is less than 1 wt%, the above-mentioned effect of reaction heat generation cannot be obtained, and when the amount of titanium powder added exceeds 50 wt%, the surface of the base metal The reaction in (1) is excessively activated, the surface of the molten portion becomes rough, and the supplied powder is scattered to make high alloying impossible, resulting in a poor powder yield. Therefore, the content is specified within the above range.

【0023】この発明の請求項5記載の発明(第2発
明)によれば、アルミニウム合金製の円筒状の母材をそ
の円筒中心軸を回転中心として回転させ、この回転中心
に対して回転方向手前側に所定量オフセットした位置か
ら高密度エネルギビームを照射する方法であるから、高
密度エネルギビームで溶融された溶湯の垂れ落ち現象に
より、均一な合金化層を形成することができる効果があ
る。
According to the fifth aspect of the present invention (the second invention), a cylindrical base material made of an aluminum alloy is rotated about the center axis of the cylinder, and the direction of rotation with respect to the center of rotation. Since this is a method of irradiating the high-density energy beam from a position offset by a predetermined amount on the front side, there is an effect that a uniform alloyed layer can be formed due to the phenomenon of dripping of the molten metal melted by the high-density energy beam. .

【0024】[0024]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。 (第1実施例)図面はアルミニウム合金部材の表面硬化
方法を示し、図1、図2において、この表面硬化方法に
用いられるアルミニウム合金部材としてのエンジンのピ
ストン1は、そのトップデッキ2(ピストンヘッド部の
こと)に燃焼室デッドボリュームとしての凹部3が形成
された円筒状で、ピストン1の上端部分外周面にはトッ
プリング溝4、セカンドリング溝5、オイルリング溝6
がそれぞれ離間形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. (First Embodiment) The drawings show a surface hardening method for an aluminum alloy member. In FIGS. 1 and 2, an engine piston 1 as an aluminum alloy member used in this surface hardening method is a top deck 2 (piston head). Portion)) having a recess 3 as a combustion chamber dead volume, and having a top ring groove 4, a second ring groove 5, and an oil ring groove 6 on the outer peripheral surface of the upper end portion of the piston 1.
Are formed separately from each other.

【0025】上述のトップリング溝4の相当部には後述
する本願発明の表面硬化方法により高合金化層7(トッ
プリング溝4加工後の高合金化層)が形成されている。
また図1における8はピストンピン配設部、図2におけ
る9はトップリング、10はセカンドリング、11はシ
リンダボアである。
A highly alloyed layer 7 (a highly alloyed layer after the processing of the top ring groove 4) is formed in a portion corresponding to the above-mentioned top ring groove 4 by the surface hardening method of the present invention described later.
Further, 8 in FIG. 1 is a piston pin arrangement portion, 9 in FIG. 2 is a top ring, 10 is a second ring, and 11 is a cylinder bore.

【0026】ここで、上述のピストン1はアルミニウム
合金、具体的にはCu(銅)が0.8〜1.3%、Si
(ケイ素)が11.0〜13.0%、Mg(マグネシウ
ム)が0.7〜1.3%、Zn(亜鉛)が0.1%以
下、Fe(鉄)が0.8%以下、Mn(マンガン)が
0.1%以下、Ni(ニッケル)が1.0〜2.5%、
Ti(チタン)が0.2%以下、残部Al(アルミニウ
ム)のアルミニウム合金鋳物(JIS規格AC8A)に
より構成されている。
The piston 1 is made of an aluminum alloy, specifically Cu (copper) 0.8 to 1.3%, Si.
(Silicon) 11.0 to 13.0%, Mg (magnesium) 0.7 to 1.3%, Zn (zinc) 0.1% or less, Fe (iron) 0.8% or less, Mn (Manganese) is 0.1% or less, Ni (nickel) is 1.0 to 2.5%,
It is composed of an aluminum alloy casting (JIS standard AC8A) in which Ti (titanium) is 0.2% or less and the balance is Al (aluminum).

【0027】図3は表面硬化方法に用いる装置を示し、
12は高密度エネルギビームとしてのCO2 レーザビー
ムLB(炭酸ガスレーザビーム,carbon dioxide laser
beam ,λ=10.6μm)を集光させる集光レンズ、
13は合金化用の合金元素粉末と、上記ピストン1の母
材のアルミニウムと反応して反応熱(heat of reactio
n)を生成する金属粉末とを混合した混合粉末14を供
給するための給粉ノズルである。
FIG. 3 shows an apparatus used for the surface hardening method,
Reference numeral 12 denotes a CO 2 laser beam LB (carbon dioxide laser beam, which is a high-density energy beam).
beam, λ = 10.6 μm),
Reference numeral 13 is a heat of reactio that reacts with the alloying element powder for alloying and aluminum as the base material of the piston 1.
It is a powder supply nozzle for supplying the mixed powder 14 in which the metal powder for producing n) is mixed.

【0028】次に図3を参照して、表面硬化方法につい
て述べる。JIS規格AC8A製(アルミニウム合金鋳
物製)のピストン1の外周を仕上げ加工代片肉0.5mm
t残して粗加工する一方、合金化用の合金元素粉末とし
て100メッシュアンダ(なお粒径50〜150μmで
も可)の純ニッケル粉末と、母材のアルミニウムと反応
して反応熱を生成する金属粉末として100メッシュア
ンダの純チタン粉末とを混合して、混合粉末14を形成
する。
Next, the surface hardening method will be described with reference to FIG. JIS standard AC8A (aluminum alloy casting) piston 1 outer circumference finish machining allowance 0.5mm
While being rough-processed while remaining t, pure nickel powder of 100 mesh under (as a particle size of 50 to 150 μm is acceptable) as alloying element powder for alloying, and metal powder that reacts with aluminum of the base material to generate reaction heat As a mixture, pure titanium powder of 100 mesh under is mixed to form mixed powder 14.

【0029】ここで、上述の純チタン粉末の添加量は上
述の純ニッケル粉末に対して1〜50wt%の範囲内に
設定する。この第1実施例では純チタン粉末を10wt
%混合した混合粉末14を用いる。
Here, the addition amount of the above-mentioned pure titanium powder is set within the range of 1 to 50 wt% with respect to the above-mentioned pure nickel powder. In this first embodiment, 10 wt% of pure titanium powder is used.
% Mixed powder 14 is used.

【0030】すなわち、チタン粉末の添加量が1wt%
未満の場合には、反応熱生成の効果が得られず、チタン
粉末の添加量が50wt%を超過する場合には、母材表
面での反応が過度に活発化して、溶融部の表面荒れが激
しくなるうえ、供給粉末が飛散して高合金化が不可とな
り、粉末の歩留りが悪化するので、上述の範囲内に特定
する。
That is, the addition amount of titanium powder is 1 wt%
When the amount is less than the above, the effect of reaction heat generation cannot be obtained, and when the addition amount of titanium powder exceeds 50 wt%, the reaction on the surface of the base material is excessively activated and the surface roughness of the melted portion is roughened. In addition to becoming violent, the supplied powder is scattered and high alloying becomes impossible, and the yield of the powder is deteriorated. Therefore, it is specified within the above range.

【0031】そして上述の混合粉末14を給粉ノズル1
3から円筒状の母材の外周面所定部に、5g/min の供
給速度で供給しながら、次に示すレーザ照射条件(給粉
条件を含む)下においてCO2 レーザビームLBにて溶
融した。
The above-mentioned mixed powder 14 is fed to the powder feeding nozzle 1
While being supplied from 3 to a predetermined portion of the outer peripheral surface of the cylindrical base material at a supply rate of 5 g / min, it was melted by a CO 2 laser beam LB under the following laser irradiation conditions (including powdering conditions).

【0032】レーザ照射条件 ビーム径……4.0mmφ 出力…5.0KW 溶融速度…0.6m /min 給粉ノズル径…5.0mmφ 母材表面とノズル間の距離(h)…5.0mm シールドガス…Ar(アルゴン),30l/min 上記の各条件下で母材表面に混合粉末14を供給、溶融
して高合金化層7a(トップリング溝4加工前の高合金
化層)を形成した結果、幅5.5mm、深さ4.2mm、ビ
ッカース硬さ(Vickers Hardness)Hv=250のニッ
ケル化合物が分散した高合金化層7aが形成された。こ
の高合金化層7aを図1、図2に示す如く仕上げ加工し
た結果、リング溝の全面にわたって高合金化層7が形成
された。
Laser irradiation condition Beam diameter: 4.0 mm φ output: 5.0 kW Melting speed: 0.6 m / min Powder feeding nozzle diameter: 5.0 mm φ Distance between base material surface and nozzle (h) ... 0 mm shield gas ... Ar (argon), 30 l / min Under each of the above conditions, the mixed powder 14 is supplied to the surface of the base material and melted to form the highly alloyed layer 7a (the highly alloyed layer before processing the top ring groove 4). As a result of formation, a highly alloyed layer 7a in which a nickel compound having a width of 5.5 mm, a depth of 4.2 mm and a Vickers Hardness Hv of 250 was dispersed was formed. As a result of finishing the highly alloyed layer 7a as shown in FIGS. 1 and 2, the highly alloyed layer 7 was formed over the entire surface of the ring groove.

【0033】この第1実施例に対して比較例1として、
上述同様のJIS規格AC8A製ピストンに、100メ
ッシュアンダの純ニッケル粉末を供給速度5g/min で
供給しつつ、上述のレーザ照射条件および給粉条件と同
一条件下にて溶融した結果、幅4.5mm、深さ2.7m
m、ビッカース硬さHv=300のニッケル化合物が分
散した高合金化層が形成された。しかし、この比較例1
のものを、ピストンとして仕上げ加工したところ、リン
グ溝の深さ2/3までしか高合金化合層は形成されなか
った。
As Comparative Example 1 with respect to the first embodiment,
3. A JIS standard AC8A piston similar to the one described above was supplied with pure nickel powder of 100 mesh under at a supply rate of 5 g / min and was melted under the same conditions as the laser irradiation condition and the powder supply condition, resulting in a width of 4. 5mm, depth 2.7m
A highly alloyed layer in which a nickel compound having m and Vickers hardness Hv = 300 was dispersed was formed. However, this comparative example 1
When this was finished as a piston, a high alloy compound layer was formed only up to a depth of 2/3 of the ring groove.

【0034】要するに、この第1実施例の表面硬化方法
は、合金化用の合金元素粉末(純ニッケル粉末、90w
t%)と、母材のアルミニウムと反応して反応熱を生成
する金属粉末(純チタンは粉末、10wt%)とを所定
範囲内にて混合し、この混合粉末14を高密度エネルギ
(CO2 レーザビームLB)にて溶融するので、上述の
反応熱を母材溶融用の熱エネルギとして活用することが
でき、この結果、溶融効率の向上を図ることができる効
果がある。
In short, the surface hardening method of the first embodiment is performed by alloying element powder (pure nickel powder, 90w) for alloying.
t%) and a metal powder (pure titanium is a powder of 10 wt%) that reacts with aluminum as a base material to generate reaction heat within a predetermined range, and the mixed powder 14 is mixed with high density energy (CO 2 Since it is melted by the laser beam LB), the above-mentioned reaction heat can be utilized as heat energy for melting the base material, and as a result, the melting efficiency can be improved.

【0035】加えて、純ニッケル粉末に対する純チタン
粉末の添加量を1〜50wt%の範囲内に設定したの
で、溶融部の表面荒れや粉末の歩留り悪化を招くことな
く、充分な反応熱を生成して、確実に高合金化層7を形
成することができる効果がある。
In addition, since the addition amount of the pure titanium powder to the pure nickel powder is set within the range of 1 to 50 wt%, sufficient reaction heat is generated without causing the surface roughness of the fusion zone and the deterioration of the powder yield. Then, there is an effect that the highly alloyed layer 7 can be reliably formed.

【0036】(第2実施例)次に上述の図3を参照して
第2実施例について述べる。この実施例では上述のJI
S規格AC8A製のピストン1をその円筒中心軸を回転
中心15として図3の矢印方向に回転させ、この回転中
心15に対して回転方向手前側に所定量L1だけオフセ
ットした位置からCO2 レーザビームLBを照射する方
法である。すなわち、外径80mmφのピストン1に対し
て、L1=5mmに設定し、給粉条件およびレーザ照射条
件を先の第1実施例と同一条件にして、母材表面に混合
粉末14を供給、溶融して高合金化層7aを形成した結
果、幅5.3mm、深さ4.0mm、ビッカース硬さHv=
280のニッケル化合物が分散した高合金化層7aが形
成され、上述のビッカース硬さは高合金化層7aの表面
部から底部にかけて均等であった。
(Second Embodiment) Next, a second embodiment will be described with reference to FIG. In this embodiment, the JI
The piston 1 made of S standard AC8A is rotated in the direction of the arrow in FIG. 3 with the cylinder center axis as the rotation center 15, and the CO 2 laser beam is offset from this rotation center 15 by a predetermined amount L1 toward the front side in the rotation direction. This is a method of irradiating LB. That is, L1 = 5 mm was set for the piston 1 having an outer diameter of 80 mmφ, the powder feeding condition and the laser irradiation condition were set to the same conditions as in the first embodiment, and the mixed powder 14 was supplied to the surface of the base material. As a result of melting to form the highly alloyed layer 7a, the width is 5.3 mm, the depth is 4.0 mm, and the Vickers hardness is Hv =
A highly alloyed layer 7a in which 280 nickel compounds were dispersed was formed, and the above-mentioned Vickers hardness was uniform from the surface portion to the bottom portion of the highly alloyed layer 7a.

【0037】つまり、ニッケルはその比重が8.9g/
cm2 、アルミニウム合金はその比重が2.6〜2.8g
/cm2 で、これら両者間には本来比較的大きい比重差が
あるが、CO2 レーザビームLBを所定量L1=5mmだ
けオフセットして溶融する方法であるから、溶湯の垂れ
落ち現象により均一な高合金化層7aが形成される。な
お、この高合金化層7aを図1、図2に示す如く仕上げ
加工して、トップリング溝4に相当する高合金化層7と
成すことは先の第1実施例と同様である。
That is, nickel has a specific gravity of 8.9 g /
cm 2 , aluminum alloy has a specific gravity of 2.6-2.8g
In / cm 2, there is a relatively large difference in specific gravity originally between these two, because the CO 2 laser beam LB is a predetermined amount L1 = 5 mm only method of melt offset, uniform by dripping phenomenon of the molten metal The highly alloyed layer 7a is formed. The highly alloyed layer 7a is finished as shown in FIGS. 1 and 2 to form the highly alloyed layer 7 corresponding to the top ring groove 4 as in the first embodiment.

【0038】この第2実施例に対して比較例2(図4参
照)および比較例3(図5参照)に示す方法にて表面硬
化を行なった。なお、これら比較例2,3において第2
実施例と同一の部分には説明の便宜上、同一番号および
同一符号を付している。
Surface hardening was performed on the second example by the methods shown in Comparative Example 2 (see FIG. 4) and Comparative Example 3 (see FIG. 5). In addition, in these Comparative Examples 2 and 3, the second
For convenience of explanation, the same parts as those in the embodiment are designated by the same reference numerals and symbols.

【0039】すなわち、上述の比較例2(図4参照)で
はオフセット量を零に設定し、外径80mmφのピストン
1に対して、給粉条件およびレーザ照射条件を先の第2
実施例と同一条件にして、母材表面に混合粉末14を供
給、溶融して高合金化層7aを形成した結果、幅5.5
mm、深さ4.2mmのニッケル化合物が分散した高合金化
層7aが形成されたが、この高合金化層7aのビッカー
ス硬さHvは深さ0.5mmの表面部では210、深さ
3.0mmの底部では350であり、ニッケルとアルミニ
ウム合金との比重差に起因して、硬さが不均一となっ
た。
That is, in the above-mentioned comparative example 2 (see FIG. 4), the offset amount is set to zero, and the piston 1 having an outer diameter of 80 mmφ is subjected to the powder feeding condition and the laser irradiation condition in the second condition.
Under the same conditions as in the example, the mixed powder 14 was supplied to the surface of the base material and melted to form the highly alloyed layer 7a. As a result, the width was 5.5.
A highly alloyed layer 7a having a nickel compound dispersed therein having a depth of mm and a depth of 4.2 mm was formed. The Vickers hardness Hv of the highly alloyed layer 7a was 210 at the surface portion having a depth of 0.5 mm, and the depth of 3 was 3. It was 350 at the bottom of 0.0 mm, and the hardness became non-uniform due to the difference in specific gravity between nickel and aluminum alloy.

【0040】また上述の比較例3(図5参照)では外径
80mmφのピストン1に対してオフセット量L2を10
mmと過大に設定して、給粉条件およびレーザ照射条件を
先の第2実施例と同一条件にして、母材表面に混合粉末
14を供給、溶融して合金化層7aを形成した結果、幅
4.0mm、深さ2.2mmのニッケル化合物が分散した合
金化層7aが形成されたが、この合金化層7aは幅、深
さ、ビッカース硬さ共に不充分であり、良好な高合金化
層の形成が不可能であった。
Further, in the above-described comparative example 3 (see FIG. 5), the offset amount L2 is 10 with respect to the piston 1 having an outer diameter of 80 mmφ.
mm was set excessively, the powder feeding condition and the laser irradiation condition were the same as those of the second embodiment, and the mixed powder 14 was supplied to the surface of the base material and melted to form the alloyed layer 7a. An alloyed layer 7a having a width of 4.0 mm and a depth of 2.2 mm in which a nickel compound was dispersed was formed. However, the alloyed layer 7a has insufficient width, depth and Vickers hardness, and is a high alloy. The formation of the chemical conversion layer was impossible.

【0041】要するに、この第2実施例の表面硬化方法
は、アルミニウム合金(具体的にはJIS規格AC8
A)製の円筒状の母材(ピストン1参照)を、その円筒
中心軸を回転中心15として回転させ、この回転中心1
5に対して回転方向手前側に所定量(L1=5mm)オフ
セットした位置から高密度エネルギビーム(CO2 レー
ザビームLB)を照射するる方法であるから、高密度エ
ネルギビーム(CO2 レーザビームLB)で溶融された
溶湯の垂れ落ち現象により、均一な高合金化層7aを形
成することができる効果がある。
In short, the surface hardening method of the second embodiment is based on an aluminum alloy (specifically, JIS standard AC8).
A cylindrical base material (see piston 1) made of A) is rotated about the center axis of the cylinder as a rotation center 15, and the rotation center 1
5 is a method of irradiating a high-density energy beam (CO 2 laser beam LB) from a position offset by a predetermined amount (L1 = 5 mm) to the front side in the rotation direction with respect to No. 5, and therefore a high-density energy beam (CO 2 laser beam LB) By the phenomenon that the molten metal melted in () drops off, it is possible to form a uniform highly alloyed layer 7a.

【0042】この発明の構成と、上述の実施例との対応
において、この発明のアルミニウム合金は、実施例のJ
IS規格AC8A(アルミニウム合金鋳物)に対応し、
以下同様に、アルミニウム合金部材はエンジンのピスト
ン1に対応し、合金化用の合金元素粉末は、純ニッケル
粉末に対応し、反応熱生成用の金属粉末は、純チタン粉
末に対応し、合金化層は、トップリング溝加工前の高合
金化層7aおよびトップリング溝加工後の高合金化層7
に対応し、高密度エネルギビームは、CO2 レーザビー
ムLBに対応するも、この発明は、上述の実施例の構成
のみに限定されるものではない。
In the correspondence between the constitution of the present invention and the above-mentioned embodiment, the aluminum alloy of the present invention is
Compatible with IS standard AC8A (aluminum alloy casting),
Similarly, the aluminum alloy member corresponds to the piston 1 of the engine, the alloying element powder for alloying corresponds to pure nickel powder, the metal powder for reaction heat generation corresponds to pure titanium powder, and alloying is performed. The layer is a highly alloyed layer 7a before the top ring groove processing and a highly alloyed layer 7 after the top ring groove processing.
The high-density energy beam corresponds to the CO 2 laser beam LB, but the present invention is not limited to the configuration of the above-described embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアルミニウム合金部材の表面硬化方法
に用いるピストン単体の断面図。
FIG. 1 is a sectional view of a single piston used in a surface hardening method for an aluminum alloy member according to the present invention.

【図2】ピストンをシリンダボアに配置した状態で示す
部分拡大断面図。
FIG. 2 is a partially enlarged sectional view showing a state where a piston is arranged in a cylinder bore.

【図3】本発明のアルミニウム合金部材の表面硬化方法
を示す説明図。
FIG. 3 is an explanatory view showing a surface hardening method for an aluminum alloy member of the present invention.

【図4】比較例の説明図。FIG. 4 is an explanatory diagram of a comparative example.

【図5】他の比較例を示す説明図。FIG. 5 is an explanatory diagram showing another comparative example.

【図6】従来の表面硬化方法を示す説明図。FIG. 6 is an explanatory view showing a conventional surface hardening method.

【符号の説明】[Explanation of symbols]

1…ピストン(アルミニウム合金部材) 7,7a…高合金化層 14…混合粉末 15…回転中心 LB…CO2 レーザビーム1 ... Piston (aluminum alloy member) 7, 7a ... Highly alloyed layer 14 ... Mixed powder 15 ... Rotation center LB ... CO 2 laser beam

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム合金製の母材の表面に合金化
用の合金元素を溶融して、合金化層を形成するアルミニ
ウム合金部材の表面硬化方法であって、上記合金元素を
粉末状とし、上記合金元素粉末と、上記母材のアルミニ
ウムと反応して反応熱を生成する金属粉末とを混合し、
上記混合粉末を高密度エネルギビームにて溶融して、上
記母材表面に合金化層を生成するアルミニウム合金部材
の表面硬化方法。
1. A surface hardening method for an aluminum alloy member, comprising forming an alloyed layer by melting an alloying alloying element on the surface of an aluminum alloy base material, the alloying element being powdered. The alloy element powder and a metal powder that reacts with the base material aluminum to generate heat of reaction are mixed,
A surface hardening method for an aluminum alloy member, comprising melting the mixed powder with a high-density energy beam to form an alloyed layer on the surface of the base material.
【請求項2】上記合金元素粉末をニッケル粉末とした請
求項1記載のアルミニウム合金部材の表面硬化方法。
2. The surface hardening method for an aluminum alloy member according to claim 1, wherein the alloy element powder is nickel powder.
【請求項3】上記金属粉末をチタン粉末とした請求項1
または2記載のアルミニウム合金部材の表面硬化方法。
3. The metal powder is titanium powder.
Alternatively, the surface hardening method of the aluminum alloy member according to the item 2.
【請求項4】上記チタン粉末の添加量を上記ニッケル粉
末に対して1〜50wt%とした請求項3記載のアルミ
ニウム合金部材の表面硬化方法。
4. The surface hardening method for an aluminum alloy member according to claim 3, wherein the addition amount of the titanium powder is 1 to 50 wt% with respect to the nickel powder.
【請求項5】アルミニウム合金製の円筒状の母材の外周
面における円周方向に合金化用の合金元素を溶融して、
合金化層を形成するアルミニウム合金部材の表面硬化方
法であって、上記母材をその円筒中心軸を回転中心とし
て回転させ、この回転中心に対して回転方向手前側に所
定量オフセットした位置から高密度エネルギビームを照
射するアルミニウム合金部材の表面硬化方法。
5. An alloy element for alloying is melted in a circumferential direction on an outer peripheral surface of a cylindrical base material made of an aluminum alloy,
A method of surface hardening an aluminum alloy member for forming an alloyed layer, wherein the base material is rotated about its cylindrical center axis as a rotation center, and a high amount is obtained from a position offset by a predetermined amount in the rotation direction front side with respect to this rotation center. A method for hardening a surface of an aluminum alloy member, which comprises irradiating a density energy beam.
JP5299174A 1993-10-01 1993-10-01 Method for hardening surface of aluminum alloy member Pending JPH07102386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5299174A JPH07102386A (en) 1993-10-01 1993-10-01 Method for hardening surface of aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5299174A JPH07102386A (en) 1993-10-01 1993-10-01 Method for hardening surface of aluminum alloy member

Publications (1)

Publication Number Publication Date
JPH07102386A true JPH07102386A (en) 1995-04-18

Family

ID=17869097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5299174A Pending JPH07102386A (en) 1993-10-01 1993-10-01 Method for hardening surface of aluminum alloy member

Country Status (1)

Country Link
JP (1) JPH07102386A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537121A (en) * 1999-02-19 2002-11-05 フオルクスワーゲン・アクチエンゲゼルシヤフト Method and apparatus for producing a wear-resistant and anti-friction cylinder sliding surface
CN102267260A (en) * 2010-04-28 2011-12-07 普拉特及惠特尼火箭达因公司 Substrate having laser sintered underplate
FR3060609A1 (en) * 2016-12-15 2018-06-22 Airbus Operations Sas SURFACE TREATMENT ON AN ALUMINUM ALLOY SUBSTRATE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537121A (en) * 1999-02-19 2002-11-05 フオルクスワーゲン・アクチエンゲゼルシヤフト Method and apparatus for producing a wear-resistant and anti-friction cylinder sliding surface
CN102267260A (en) * 2010-04-28 2011-12-07 普拉特及惠特尼火箭达因公司 Substrate having laser sintered underplate
US9346114B2 (en) 2010-04-28 2016-05-24 Aerojet Rocketdyne Of De, Inc. Substrate having laser sintered underplate
FR3060609A1 (en) * 2016-12-15 2018-06-22 Airbus Operations Sas SURFACE TREATMENT ON AN ALUMINUM ALLOY SUBSTRATE

Similar Documents

Publication Publication Date Title
EP0445818B1 (en) Method of modifying surface qualities of metallic articles and apparatus therefor
EP2322315B1 (en) Hardfacing mig-arc welding wire and hardfacing mig-arc welding process
US4818307A (en) Dispersion strengthened copper-base alloy
JP2678804B2 (en) Method for forming pure Cu build-up layer on iron alloy substrate
JPH0525655A (en) Method for hardening surface of aluminum base metal and surface hardened aluminum base member
JPH07102386A (en) Method for hardening surface of aluminum alloy member
JPS62270277A (en) Production of titanium base alloy-made wear resistant member
US4785775A (en) Wear layer for piston and cylinder of an internal combustion engine
US7235144B2 (en) Method for the formation of a high-strength and wear-resistant composite layer
JPH07102385A (en) Method for hardening surface of aluminum alloy member
JPH02205664A (en) Laser cladding method
US5139585A (en) Structural member made of titanium alloy having embedded beta phase of different densities and hard metals
JP3158637B2 (en) Material modification method and welding wire used therefor
JP2731968B2 (en) Overlay welding method for titanium or titanium alloy surface
JPS63235087A (en) Build-up welding method
JP3552330B2 (en) Surface alloying treatment method for aluminum material
JPH02149678A (en) Production of aluminum alloy material having superior wear resistance
JP2943245B2 (en) Method and apparatus for surface reforming of metallic parts
JPS63307285A (en) Surface modification method for aluminum-type member
RU2060124C1 (en) Constricted arc treatment method
JPH02165884A (en) Formation of protective film
SU1602642A1 (en) Method of surfacing wear-resistan alloys
JP2942299B2 (en) Additive for surface hardening of aluminum
WO1991005072A1 (en) Method of modifying the surface of a substrate
Hashimoto Formation of hardened layers on aluminium alloy surfaces by the plasma transferred arc process