JPH07101648B2 - Resin magnet assembly - Google Patents

Resin magnet assembly

Info

Publication number
JPH07101648B2
JPH07101648B2 JP4128290A JP12829092A JPH07101648B2 JP H07101648 B2 JPH07101648 B2 JP H07101648B2 JP 4128290 A JP4128290 A JP 4128290A JP 12829092 A JP12829092 A JP 12829092A JP H07101648 B2 JPH07101648 B2 JP H07101648B2
Authority
JP
Japan
Prior art keywords
resin magnet
magnet
shaft member
flange portion
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4128290A
Other languages
Japanese (ja)
Other versions
JPH0677045A (en
Inventor
義信 本蔵
亜起 度會
浩 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP4128290A priority Critical patent/JPH07101648B2/en
Publication of JPH0677045A publication Critical patent/JPH0677045A/en
Publication of JPH07101648B2 publication Critical patent/JPH07101648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種機器の回転数・回
転速度を検出するために使われるセンサーにおける当該
構成部品として用いられる磁石組立品に関して、特にO
A機器等の静的かつ常温環境下で使用される場合に比べ
て振動、熱又は強度に対して耐久性が要求される自動車
等の回転センサーにおいて、遠距離検知を可能せしめる
磁石組立品を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnet assembly used as a component of a sensor used to detect the number of rotations and the rotation speed of various equipment, and more particularly to a magnet assembly.
Provides a magnet assembly that enables long-distance detection in rotation sensors for automobiles, etc., which require durability against vibration, heat or strength compared to when used in static and normal temperature environments such as equipment A To do.

【0002】[0002]

【従来の技術】近年、自動車等の速度検出装置において
機械的なケーブル等の回転を介して速度を検出する方法
あるいはギアを介して回転数を検出する方法から、永久
磁石の磁気を検知するセンサを使用する電子検出装置に
変わりつつある。この電子検出装置において、遠距離検
知を可能せしめる磁石組立品として焼結フェライト磁
石、フェライト磁石樹脂成形体あるいは焼結Sm−Co
磁石があげられている。しかし、焼結フェライト磁石を
用いる場合には当該磁石の割れ、欠けの問題とともに磁
束密度が低いため遠距離検知は困難であった。また、フ
ェライト磁石樹脂成形体を用いる場合には、当該磁石の
割れ、欠けの問題は解決されるものの磁束密度が低いた
め遠距離検知は困難であった。
2. Description of the Related Art In recent years, a sensor for detecting the magnetism of a permanent magnet is used in a speed detecting device for an automobile or the like, by a method of detecting a speed by rotation of a mechanical cable or a method of detecting a rotation speed by a gear. Is being replaced by an electronic detection device that uses In this electronic detection device, a sintered ferrite magnet, a ferrite magnet resin molded product, or a sintered Sm-Co magnet is used as a magnet assembly that enables long-distance detection.
A magnet is given. However, when a sintered ferrite magnet is used, it is difficult to detect a long distance because the magnetic flux density is low as well as cracking and chipping of the magnet. Further, when a ferrite magnet resin molded body is used, the problem of cracking and chipping of the magnet can be solved, but long-distance detection is difficult because of the low magnetic flux density.

【0003】この遠距離検知を可能とするために磁束密
度の高い焼結Sm−Co磁石を用いた磁石組立品が多く
使用されるている。例えば、図7に示すように、磁気セ
ンサーSと高速回転する焼結磁石組立品80とを用いたも
のが知られている。この焼結磁石組立品80は、円柱状の
焼結Sm−Co磁石81、ケーシング82およびフランジ部
83を有する軸部84からなっている。
In order to enable this long-distance detection, a magnet assembly using a sintered Sm-Co magnet having a high magnetic flux density is often used. For example, as shown in FIG. 7, one using a magnetic sensor S and a sintered magnet assembly 80 rotating at high speed is known. The sintered magnet assembly 80 includes a cylindrical sintered Sm-Co magnet 81, a casing 82, and a flange portion.
It comprises a shank 84 having 83.

【0004】しかし、この焼結磁石組立品80は製造過程
における焼結Sm−Co磁石の割れ、欠けが発生するた
めに製品歩留りが低い、寸法精度が悪い、および部品点
数が多い、そして組み付け性が悪いなどの欠点があっ
た。例えば、円柱状の焼結Sm−Co磁石81の製造にお
いては焼結後に所定の寸法に機械加工する際に、もしく
は工程途上においても同様に割れ、欠けの問題が発生す
る。さらに、焼結磁石組立品80は、回転部品として用い
る際に焼結磁石が割れたり、欠けたりすることを防ぐた
めにケーシング82を必要とおり、このケーシング82と焼
結Sm−Co磁石81との接合には、かしめたり、接着剤
で固定している。かしめの場合には焼結Sm−Co磁石
81が割れたり、接着の場合には剥離したりして強度上の
問題がある。また、焼結磁石組立品が高速回転する時に
フランジ部83の端面から焼結Sm−Co磁石81とケーシ
ング82からなる2部品が剥離することを防止するため
に、焼結Sm−Co磁石81とケーシング82とを固定した
2部品をフランジ部83の端面に接着剤で固定するために
接着剤が塗布されるフランジ部83の端面に滑り止め加工
等を施す工程が必要である。他方、焼結Sm−Co磁石
81の外径にケーシング82を配設するため、焼結Sm−C
o磁石の表面と磁気センサーSとの距離が離れることに
より検出できる磁束密度が低下する。
However, the sintered magnet assembly 80 has a low product yield due to cracking and chipping of the sintered Sm-Co magnet in the manufacturing process, poor dimensional accuracy, and a large number of parts, and assemblability. There was a defect such as bad. For example, in the production of the cylindrical sintered Sm-Co magnet 81, the problem of cracking or chipping similarly occurs during machining into a predetermined size after sintering or during the process. Further, the sintered magnet assembly 80 requires the casing 82 to prevent the sintered magnet from cracking or chipping when it is used as a rotating component. The casing 82 and the sintered Sm—Co magnet 81 are joined together. It is caulked or fixed with an adhesive. Sintered Sm-Co magnet for caulking
There is a problem in strength because 81 is cracked or peeled off in case of adhesion. Further, in order to prevent the two parts composed of the sintered Sm-Co magnet 81 and the casing 82 from peeling off from the end surface of the flange portion 83 when the sintered magnet assembly rotates at high speed, the sintered Sm-Co magnet 81 and In order to fix the two parts, which are fixed to the casing 82, to the end surface of the flange portion 83 with an adhesive, it is necessary to perform a step of applying anti-slip processing to the end surface of the flange portion 83 to which the adhesive is applied. On the other hand, sintered Sm-Co magnet
Since the casing 82 is arranged on the outer diameter of 81, the sintered Sm-C
o When the distance between the surface of the magnet and the magnetic sensor S increases, the detectable magnetic flux density decreases.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0005】本発明の目的は、遠距離検知を可能にする
とともに製造過程における磁石の割れ、欠けによる製造
歩留の低下を防止し、部品点数が少なく組付け性の良好
な磁石組立品を提供するものである。
An object of the present invention is to provide a magnet assembly which enables long-distance detection, prevents a decrease in manufacturing yield due to cracking or chipping of the magnet in the manufacturing process, has a small number of parts, and is easy to assemble. To do.

【0006】[0006]

【課題を解決するための手段】本発明にかかる樹脂磁石
組立品の永久磁石粉末として、希土類系永久磁石粉末と
熱可塑性樹脂を主成分とした円筒状樹脂磁石と、その内
周部にシャフト部材を有する一体成形した樹脂磁石組立
品において、前記シャフト部材は芯部、フランジ部およ
び軸部からなり当該芯部がヨーク機能を有する金属材料
からなることを特徴としている。
As a permanent magnet powder of a resin magnet assembly according to the present invention, a cylindrical resin magnet containing a rare earth permanent magnet powder and a thermoplastic resin as main components, and a shaft member on the inner peripheral portion thereof. In the integrally molded resin magnet assembly having, the shaft member is composed of a core portion, a flange portion and a shaft portion, and the core portion is made of a metal material having a yoke function.

【0007】すなわち、本発明の円筒状樹脂磁石には、
Sm−Co系、Nd−Fe−B系等の希土類系永久磁石
粉末が用いられる。また、熱可塑性樹脂としては、ナイ
ロン、ポリプロピレン等が用いられる。希土類系永久磁
石粉末と熱可塑性樹脂を主成分とした組成物を、先に金
型に挿入してあるシャフト部材に対して射出成形を行
い、円筒状樹脂磁石を形成するとともに当該シャフト部
材と一体成形をする。次いで、円筒状樹脂磁石に多極性
を有するためにラジアル着磁を行う。
That is, the cylindrical resin magnet of the present invention includes
Rare earth-based permanent magnet powder such as Sm-Co-based and Nd-Fe-B-based is used. Further, as the thermoplastic resin, nylon, polypropylene or the like is used. A composition containing a rare earth-based permanent magnet powder and a thermoplastic resin as main components is injection-molded to a shaft member that has been previously inserted into a mold to form a cylindrical resin magnet and to be integrated with the shaft member. Mold. Then, the cylindrical resin magnet is radially magnetized so as to have multiple polarities.

【0008】本発明に用いられるシャフト部材の芯部に
は、ヨーク機能を有する金属材料、例えばS10Cや軟
磁性ステンレス鋼などが用いられる。ここで、ヨーク機
能とは、磁石のパーミアンス係数を上昇させることによ
り、磁石表面の磁束密度をあげる増幅機能をいう。な
お、これらのヨーク機能を有する金属材料をシャフト部
材芯部に用いる場合には、ヨーク機能を有するシャフト
部材芯部の外周と接する円筒状樹脂磁石の内周が隙間を
全くない状態に接合することが必要である。
A metal material having a yoke function, such as S10C or soft magnetic stainless steel, is used for the core of the shaft member used in the present invention. Here, the yoke function means an amplification function of increasing the magnetic flux density on the surface of the magnet by increasing the permeance coefficient of the magnet. When these metal materials having a yoke function are used for the shaft member core, the cylindrical resin magnet that is in contact with the shaft member core having the yoke function should be bonded in such a manner that the inner circumference of the cylindrical resin magnet has no gap. is necessary.

【0009】また、本発明は当該シャフト部材を構成す
るフランジ部がヨーク機能を有する芯部と同様にヨーク
機能を有する金属材料の場合には、当該フランジ部の厚
さTと円筒状樹脂磁石の幅Wとの比であるT/Wが0〜
0.30の範囲を特徴としている。
Further, according to the present invention, when the flange portion constituting the shaft member is made of a metal material having a yoke function similarly to the core portion having a yoke function, the thickness T of the flange portion and the cylindrical resin magnet. T / W, which is the ratio to the width W, is 0
It features a range of 0.30.

【0010】さらに、本発明は当該シャフト部材の形状
において、特に芯部外周の形状については1または2以
上のテーパーを有することを特徴とする。フランジ部を
有する場合には、1のテーパーからなり、その方向は芯
部端面と接するフランジ部の交差線から芯部外周方向に
拡がっている。フランジ部を有しない場合は、2の連続
した山形からなり芯部中心線に対して開放型もしくは閉
鎖型の2のテーパーを有することを特徴とする。また、
フランジ部を有しない場合に3以上の波形テーパーでも
よい。その連続する山形の頂点は円弧を有していてもよ
い。フランジ部を有しない場合においても、2ないし3
以上のテーパーでもよい。芯部外周の形状としては、外
周の一部又は全周にわたってキー溝を設けたり、当該キ
ー溝の替わりにフランジを設けてもよい。
Further, the present invention is characterized in that the shaft member has a taper of 1 or 2 or more particularly in the shape of the outer periphery of the core portion. When it has a flange portion, it has a taper of 1, and the direction thereof extends from the intersection line of the flange portion in contact with the end face of the core portion in the outer peripheral direction of the core portion. In the case of not having a flange portion, it is characterized by comprising two continuous chevron shapes and having two taper types of open type or closed type with respect to the center line of the core portion. Also,
In the case of not having a flange portion, a corrugated taper of 3 or more may be used. The peaks of the continuous chevron may have an arc. Even if it does not have a flange part, it is 2 to 3
The above taper may be used. As the shape of the outer circumference of the core portion, a key groove may be provided over a part or the entire circumference of the outer circumference, or a flange may be provided instead of the key groove.

【0011】[0011]

【作用および効果】本発明のように、希土類系永久磁石
粉末と熱可塑性樹脂を主成分とする組成物を、先に金型
に挿入したヨーク機能をも有する芯部からなる当該シャ
フト部材に射出成形をおこなって一体成形することによ
り、焼結磁石を用いないために割れ、欠けの問題は発生
せず、製造歩留も向上する。また、部品点数は円筒状樹
脂磁石の一体成形部品の1点と減少し、組み付け性も大
幅に改善される。
FUNCTION AND EFFECT As in the present invention, the composition containing the rare earth-based permanent magnet powder and the thermoplastic resin as the main components is injected into the shaft member having the core function which is inserted into the mold and also has the yoke function. By performing the forming and integrally forming, the problem of cracking and chipping does not occur because the sintered magnet is not used, and the manufacturing yield is improved. Moreover, the number of parts is reduced to one point of the integrally molded parts of the cylindrical resin magnet, and the assembling property is greatly improved.

【0012】さらに、円筒状樹脂磁石の内周部に配設さ
れている芯部がヨーク機能を有するために当該円筒状樹
脂磁石の外周表面の磁束密度が増幅されることにより、
遠距離検知が可能となる。すなわち、芯部にヨーク機能
を付加することにより、当該円筒状樹脂磁石の外周表面
からの距離が遠く離れている場合においても、磁気セン
サーで検知できる磁束密度が改善されている。なお、円
筒状樹脂磁石の内周部にヨーク機能を有する芯部の配設
の際に、円筒状樹脂磁石の内周面とヨーク機能を有する
芯部の外周面が完全に密接されずに間隙を有すると、ヨ
ーク機能が激減するために当該円筒状樹脂磁石の外周表
面の磁束密度の増幅がなされず、従って磁気センサーで
検知できる磁束密度は改善されない。
Further, since the core portion disposed on the inner peripheral portion of the cylindrical resin magnet has a yoke function, the magnetic flux density on the outer peripheral surface of the cylindrical resin magnet is amplified,
It enables long-distance detection. That is, by adding the yoke function to the core portion, the magnetic flux density that can be detected by the magnetic sensor is improved even when the distance from the outer peripheral surface of the cylindrical resin magnet is large. When disposing the core portion having the yoke function on the inner peripheral portion of the cylindrical resin magnet, the inner peripheral surface of the cylindrical resin magnet and the outer peripheral surface of the core portion having the yoke function are not completely intimately contacted with each other to form a gap. With the above, since the yoke function is drastically reduced, the magnetic flux density on the outer peripheral surface of the cylindrical resin magnet is not amplified, and therefore the magnetic flux density detectable by the magnetic sensor is not improved.

【0013】また、この作用から、当該円筒状樹脂磁石
の外周表面と磁気センサーの距離が小さい場合には、当
該円筒状樹脂磁石の厚さを薄くすることができ、高価な
希土類系永久磁石粉末の使用を少なくできる効果が得ら
れる。
Further, from this action, when the distance between the outer peripheral surface of the cylindrical resin magnet and the magnetic sensor is small, the thickness of the cylindrical resin magnet can be reduced, and expensive rare earth-based permanent magnet powder can be obtained. It is possible to obtain the effect of reducing the use of.

【0014】また、本発明において、当該シャフト部材
を構成するフランジ部がヨーク機能を有する芯部と同様
にヨーク機能を有する金属材料の場合には、円筒状樹脂
磁石から磁気センサーの向かう1の磁束がフランジ部の
方へ吸引されるために、当該磁気センサーに到達する磁
束密度が減少する傾向にある。そこで、これらの吸引さ
れる磁束が減少するために、当該フランジ部の厚さTと
円筒状樹脂磁石の幅Wとの比であるT/W値を、0.3
0以下とすることにより磁気センサで検知できる磁束密
度を確保している。なお、T/W値が0の場合は、当該
フランジを有しない場合もしくは非磁性金属材料の場合
がある。
Further, in the present invention, when the flange portion constituting the shaft member is made of a metal material having a yoke function similarly to the core portion having a yoke function, one magnetic flux directed from the cylindrical resin magnet to the magnetic sensor. Is attracted toward the flange portion, so that the magnetic flux density reaching the magnetic sensor tends to decrease. Therefore, in order to reduce the attracted magnetic flux, the T / W value, which is the ratio of the thickness T of the flange portion to the width W of the cylindrical resin magnet, is set to 0.3.
By setting it to 0 or less, the magnetic flux density that can be detected by the magnetic sensor is secured. When the T / W value is 0, the flange may not be provided or a non-magnetic metal material may be used.

【0015】さらに、本発明の芯部の外周に1又は2以
上のテーパー、キー溝又はフランジを設けたので、当該
円筒状樹脂磁石と当該芯部との間における物理的結合に
加えて機械構造的結合が生ずるため、円筒状樹脂磁石と
シャフト部材が一層強固に結合することにより、樹脂磁
石組立品の振動、熱での使用環境下もしくは高速回転時
に円筒状樹脂磁石が当該シャフト材から抜け落ちたり、
空回りすることを防ぐことができる。
Further, since one or more tapers, keyways or flanges are provided on the outer periphery of the core portion of the present invention, in addition to the physical connection between the cylindrical resin magnet and the core portion, the mechanical structure is provided. Since the cylindrical resin magnet and the shaft member are more firmly coupled to each other, the cylindrical resin magnet may fall out of the shaft material under vibration or heat of the resin magnet assembly or during high-speed rotation. ,
It is possible to prevent idling.

【0016】また、円筒状樹脂磁石がシャフト材から抜
け落ちたり、空回りすることが防止できることから、当
該シャフト材の構成においてフランジ部を省略すること
ができる。これにより、当該シャフト材の加工工程が容
易となるとともに、前記のT/W値が0となることによ
り磁気センサーで検知できる磁束密度が高くなる。
Further, since the cylindrical resin magnet can be prevented from slipping out of the shaft material or idling, the flange portion can be omitted in the construction of the shaft material. This facilitates the processing step of the shaft material, and increases the magnetic flux density that can be detected by the magnetic sensor because the T / W value becomes 0.

【0017】[0017]

【実施例】次に本発明の実施例について説明する。実施
例1を図1、図2および図6に示すとともに以下に説明
する。図1に示すように、芯部12にヨーク機能を有する
S10Cからシャフト部材を切削加工にて作製した。円
筒状樹脂磁石12の目標とする成形寸法は外径が8.00
mm、内径が4.00mm、そして、円筒状樹脂磁石12
の厚さは2.00mm、幅Wは6.00mmとした。シ
ャフト部材を構成する芯部12の寸法は円筒状樹脂磁石11
の内径との接合面の外径は4.0mm、幅は6.0mm
とした。フランジ部13の寸法は外径が8.00mm、厚
さTは1.50mmとし、軸部14の寸法は外径3.00
mm、長さ25mmとした。
EXAMPLES Next, examples of the present invention will be described. Example 1 will be described below with reference to FIGS. 1, 2 and 6. As shown in FIG. 1, a shaft member was manufactured by cutting from S10C having a yoke function in the core 12. The target molding dimension of the cylindrical resin magnet 12 has an outer diameter of 8.00.
mm, inner diameter 4.00 mm, and cylindrical resin magnet 12
Had a thickness of 2.00 mm and a width W of 6.00 mm. The core portion 12 forming the shaft member has a cylindrical resin magnet 11
The outer diameter of the joint surface with the inner diameter of is 4.0mm, the width is 6.0mm
And The flange portion 13 has an outer diameter of 8.00 mm and the thickness T is 1.50 mm, and the shaft portion 14 has an outer diameter of 3.00.
mm and length 25 mm.

【0018】次いで、重量比で、希土類永久磁石粉末
(商品名MQ1、米国 General Motors Corporation
製)を88wt%〜92wt%、残りを熱可塑性樹脂お
よび添加剤からなるペレット(商品名RNI−125
5、メイト社製)を用いて当該シャフト部材に対して射
出温度270℃、射出圧力1500kgf/cm2 にて
成形し、5.1g/cm3 の密度を有する成形体が得ら
れた。
Then, by weight ratio, rare earth permanent magnet powder (trade name: MQ1, General Motors Corporation, USA) is used.
Pellets (commercial name RNI-125) made of 88 wt% to 92 wt% and the remainder made of thermoplastic resin and additives.
5, manufactured by Mate Co., Ltd.) was used to mold the shaft member at an injection temperature of 270 ° C. and an injection pressure of 1500 kgf / cm 2 to obtain a molded product having a density of 5.1 g / cm 3 .

【0019】射出成形時の割れは、500個成形したと
ころ全く発生せず、芯部の外周 12aと円筒状樹脂磁石の
内周 11bとの接合面は隙間もなく完全な一体成形体が得
られた。また、シャフトの軸14を回転試験装置に組み付
けて1000〜3000rpmの回転試験においても円
筒状樹脂磁石11の空回り、あるいは脱落、欠けの問題は
発生しなかった。
No cracks occurred during injection molding after molding 500 pieces, and there was no gap in the joint surface between the outer circumference 12a of the core portion and the inner circumference 11b of the cylindrical resin magnet, and a complete integral molding was obtained. . Further, even when the shaft 14 of the shaft was assembled in the rotation tester and the rotation test was performed at 1000 to 3000 rpm, the problem of the idle rotation of the cylindrical resin magnet 11 or the dropping and chipping did not occur.

【0020】また、図2には図1に示したフランジ部を
有するシャフト部材のかわりに、同一寸法でフランジ部
が構成されていないシャフト部材の形状体について、す
なわち芯部22および軸部24からのみなるシャフト部材の
芯部外周に樹脂磁石21を同様の条件で射出成形した。こ
の射出成形時における割れは、300個成形して調査し
たところ認められず、また回転試験を行ったところフラ
ンジ部を有するシャフト部材の成形体と同じ結果であっ
た。
Further, in FIG. 2, instead of the shaft member having the flange portion shown in FIG. 1, a shape member of the shaft member having the same size and having no flange portion, that is, from the core portion 22 and the shaft portion 24, A resin magnet 21 was injection-molded under the same conditions on the outer periphery of the core portion of the shaft member made of ash. No cracks were observed during the injection molding when examined by molding 300 pieces, and the rotation test was conducted, and the result was the same as that of the molded body of the shaft member having the flange portion.

【0021】図1に示すフランジ部を有するシャフト部
材を用いた成形体に8極のラジアル着磁を処理してヨー
ク機能の効果を調査し、その結果を図6に示す。成形体
へのラジアル着磁条件は、着磁電圧1000〜1500
V、着磁電流10000〜20000Aで着磁した。こ
うして得られた樹脂磁石組立体10を用い、当該円筒状樹
脂磁石の外周表面 11aから磁気センサーSまでの距離と
して1.0〜6.0mmについて、磁束密度の片側のピ
ーク値を測定した。なお、測定は樹脂磁石組立体10を1
800rpmの回転を与えて行なった。
A molded body using the shaft member having the flange portion shown in FIG. 1 was subjected to radial magnetization of 8 poles to investigate the effect of the yoke function, and the result is shown in FIG. The radial magnetizing condition for the molded body is a magnetizing voltage of 1000 to 1500.
It was magnetized at V and a magnetizing current of 10,000 to 20,000A. Using the resin magnet assembly 10 thus obtained, the peak value on one side of the magnetic flux density was measured for a distance from the outer peripheral surface 11a of the cylindrical resin magnet to the magnetic sensor S of 1.0 to 6.0 mm. In addition, 1 resin resin assembly 10 was used for measurement.
The rotation was performed at 800 rpm.

【0022】比較例として、ヨーク機能を有しない樹脂
磁石組立体にはJIS鋼のSUS304からなり、本発
明の樹脂磁石組立体10と同一の寸法に加工したシャフト
部材を用い、樹脂磁石組立体10の作製と同一条件による
円筒状樹脂磁石を射出成形した後、8極にラジアル着磁
して測定に供した。
As a comparative example, a resin magnet assembly having no yoke function is made of JIS steel SUS304, and a shaft member machined to the same size as the resin magnet assembly 10 of the present invention is used. A cylindrical resin magnet was injection-molded under the same conditions as in the above-mentioned manufacturing, and was then radially magnetized into 8 poles for measurement.

【0023】また、従来例として、図8に示した樹脂組
立品80を用いた。焼結Sm−Co磁石81の外径は5.8
0mm、高さは6.00mmとし、ケーシング82は内径
6.00mm、外径8.00mmの金属Alパイプを長
さ6.00mmに切断したパイプとした。フランジ部お
よび軸部の大きさは本発明の樹脂磁石組立体10に用いら
れているフランジ部および軸部と同一の大きさにした。
この磁石組立体70を測定に供した。
As a conventional example, the resin assembly 80 shown in FIG. 8 was used. The outer diameter of the sintered Sm-Co magnet 81 is 5.8.
The casing 82 was a metal Al pipe having an inner diameter of 6.00 mm and an outer diameter of 8.00 mm cut into a length of 6.00 mm. The sizes of the flange portion and the shaft portion were the same as those of the flange portion and the shaft portion used in the resin magnet assembly 10 of the present invention.
This magnet assembly 70 was subjected to measurement.

【0024】図6には、横軸として当該円筒状樹脂磁石
の外周表面 11aから磁気センサーSまでの距離を1.0
〜6.0mmをとり、縦軸として磁気センサーSで検知
した磁束密度(G;ガウス)を表した。これから、距離
が大きくなるに従って磁束密度は低下する傾向が見られ
る。しかし、芯部にヨーク機能を有していない比較例に
比べて、芯部にヨーク機能を有する本発明の樹脂磁石組
立体10の場合、全ての距離において改善され、高磁束密
度が得られている。このことから、ヨーク機能を付加す
ることにより遠距離検知が可能である。また、ヨーク機
能を付加することにより従来の焼結Sm−Co磁石を用
いた磁石組立体とほぼ同等の性能が得られた。
In FIG. 6, the distance from the outer peripheral surface 11a of the cylindrical resin magnet to the magnetic sensor S is 1.0 on the horizontal axis.
.About.6.0 mm was taken, and the vertical axis represents the magnetic flux density (G; Gauss) detected by the magnetic sensor S. From this, it can be seen that the magnetic flux density tends to decrease as the distance increases. However, in the case of the resin magnet assembly 10 of the present invention having the yoke function in the core, as compared with the comparative example in which the core does not have the yoke function, it is improved at all distances and a high magnetic flux density is obtained. There is. Therefore, it is possible to detect a long distance by adding a yoke function. Further, by adding a yoke function, almost the same performance as a magnet assembly using a conventional sintered Sm-Co magnet was obtained.

【0025】次に、実施例2としてヨーク機能を有する
フランジ部の厚さTと円筒状樹脂磁石の幅Wとの比であ
るT/W値の影響について実験した結果を図7に示す。
実施例1において、樹脂磁石組立体10の当該円筒状樹脂
磁石の幅Wを6.00mmと一定にし、シャフト部材の
フランジ部の厚さTを0.6〜6.0mmまで変化させ
てT/W値の影響を調べた。なお、T/W値が0とは、
フランジを有していない場合について調べた。なお、測
定は実施例1と同じ方法で行い、円筒状樹脂磁石の外周
表面から磁気センサーまでの距離は3.0mmとした。
Next, as Example 2, the result of an experiment conducted on the influence of the T / W value, which is the ratio of the thickness T of the flange portion having the yoke function to the width W of the cylindrical resin magnet, is shown in FIG.
In Example 1, the width W of the cylindrical resin magnet of the resin magnet assembly 10 was kept constant at 6.00 mm, and the thickness T of the flange portion of the shaft member was changed from 0.6 to 6.0 mm to obtain T / The effect of W value was investigated. The T / W value of 0 means
The case without a flange was investigated. The measurement was performed in the same manner as in Example 1, and the distance from the outer peripheral surface of the cylindrical resin magnet to the magnetic sensor was 3.0 mm.

【0026】図7から、T/W値は0のときに最大の磁
束密度が得られるが、T/W値が増加するに従って磁束
密度は漸減する傾向が認められる。T/W値が0.3を
越えると、磁束密度が低下に変極点があらわれその後ほ
ぼ一定の値となる。
It can be seen from FIG. 7 that the maximum magnetic flux density is obtained when the T / W value is 0, but the magnetic flux density tends to gradually decrease as the T / W value increases. When the T / W value exceeds 0.3, an inflection point appears in the decrease in the magnetic flux density, and then becomes a substantially constant value.

【0027】さらに、円筒状樹脂磁石の幅Wを4.00
〜12.mmまで変化させるとともに、フランジ部の厚
さTを0.5〜6.0mmまで変化させた場合も図7と
同様の傾向が得られた。
Further, the width W of the cylindrical resin magnet is 4.00.
~ 12. The same tendency as in FIG. 7 was obtained when the thickness T of the flange portion was changed to 0.5 to 6.0 mm while the thickness T was changed to 0.5 mm.

【0028】これらの結果から、ヨーク機能を有したシ
ャフト部材を用いること、さらに当該シャフト部材のフ
ランジ部の厚さTと円筒状樹脂磁石の幅Wに対して0.
3以下とすることが遠距離検知において必要であること
が明らかとなった。
From these results, it was found that a shaft member having a yoke function was used, and that the thickness T of the flange portion of the shaft member and the width W of the cylindrical resin magnet were 0.
It has been clarified that it is necessary to set it to 3 or less in long-distance detection.

【0029】次に、シャフト部材の芯部の形状を変えた
樹脂磁石成形体の実施例について、1のテーパーからな
る芯部を有する実施例3を図3に示し、2のテーパーか
らなる芯部を有する実施例4を図4に示し、そして芯部
外周の周囲にキー溝を有する実施例5を図5に示す。実
施例3では、シャフト部材の加工において、フランジ部
33側の芯部端面と接するフランジ部の交差線から芯部外
周方向にαの角度(本実施例では2度)を有する芯部32
を切削加工で作製した。その寸法は、フランジ部側の外
径で4.00mm、他の面で4.42mm、幅で6.0
0mmでとした。なお、フランジ部33および軸部34の大
きさは実施例1と同一にした。このシャフト部材を用い
て射出成形により得られた成形体の円筒状樹脂磁石31は
フランジ部33と接する面での内径が4.00mmに対し
て、他の面での内径は4.42mmと大きくなるために
円筒状樹脂磁石31がシャフト部材芯部32から抜けにくい
構造が得られた。
Next, regarding an embodiment of the resin magnet molded body in which the shape of the core portion of the shaft member is changed, FIG. 3 shows Embodiment 3 having a core portion having a taper of 1, and a core portion having a taper of 2. 4 is shown in FIG. 4, and Example 5 having a key groove around the outer circumference of the core is shown in FIG. In Example 3, in processing the shaft member, the flange portion
The core portion 32 having an angle α (2 degrees in the present embodiment) in the outer peripheral direction of the core portion from the intersection line of the flange portion that contacts the core end surface on the 33 side.
Was manufactured by cutting. The outer diameter of the flange side is 4.00 mm, the other surface is 4.42 mm, and the width is 6.0.
It was set to 0 mm. The sizes of the flange portion 33 and the shaft portion 34 were the same as those in the first embodiment. The cylindrical resin magnet 31 of the molded body obtained by injection molding using this shaft member has a large inner diameter of 4.02 mm on the surface in contact with the flange portion 33 and 4.42 mm on the other surface. Therefore, the structure in which the cylindrical resin magnet 31 is hard to come off from the shaft member core portion 32 is obtained.

【0030】実施例4では、シャフト部材の加工におい
て、芯部外周の形状が2の連続した山形からなり芯部中
心線に対してそれぞれγ、βの角度(本実施例ではそれ
ぞれ2度)を有して開放している2のテーパーからなる
芯部41を切削加工で作製した。その寸法は、芯部42の上
下端面の外径で4.00mm、芯部中央の最小径で3.
79mm、幅で6.00mmとした。なお、当該シャフ
ト部材にはフランジ部を有せず、軸部44の大きさは実施
例1と同一とした。このシャフト部材を用いて射出成形
により得られた成形体の円筒状樹脂磁石41は軸部42の上
下の端面で接する寸法4.00mmに比べて軸部42の中
央で接する寸法は4.21mmと大きくなるために円筒
状樹脂磁石41がシャフト部材芯部42から抜けにくい構造
が得られた。
In the fourth embodiment, when the shaft member is machined, the outer shape of the core portion is composed of two continuous chevron shapes, and the angles γ and β (each 2 degrees in this embodiment) with respect to the center line of the core portion. A core portion 41 having two tapers, which is open, is manufactured by cutting. The outer diameter of the upper and lower end surfaces of the core portion 42 is 4.00 mm, and the minimum diameter of the center of the core portion is 3.
The width was 79 mm and the width was 6.00 mm. The shaft member did not have a flange portion, and the size of the shaft portion 44 was the same as that in the first embodiment. The cylindrical resin magnet 41 of the molded body obtained by injection molding using this shaft member has a dimension of 4.01 mm in contact with the upper and lower end surfaces of the shaft portion 42, and a dimension of 4.21 mm in contact with the center of the shaft portion 42. A structure was obtained in which the cylindrical resin magnet 41 was hard to come off from the shaft member core portion 42 because it became large.

【0031】実施例5では、シャフト部材の加工におい
て、芯部52の外周にキー溝55を切削加工にて作製した。
すなわち、外径4.00mm、幅6.00mmから芯部
52のの中央に幅1.50mm、深さ0.30mmの丸み
を有する形状のキー溝55とした。なお、当該シャフト部
材にはフランジ部を有せず、軸部54の大きさは第1実施
例と同一とした。このシャフト部材を用いて射出成形に
より得られた成形体の円筒状樹脂磁石51は円筒状樹脂磁
石51の内径4.00mmに対して内径4.60mmの凸
部を有することになるため円筒状樹脂磁石51がシャフト
部材芯部52から抜けにくい構造が得られた。
In the fifth embodiment, when the shaft member is processed, the key groove 55 is formed on the outer periphery of the core portion 52 by cutting.
That is, from the outer diameter 4.00 mm and the width 6.00 mm to the core
A keyway 55 having a rounded shape with a width of 1.50 mm and a depth of 0.30 mm at the center of 52 is formed. The shaft member does not have a flange portion, and the shaft portion 54 has the same size as that of the first embodiment. A cylindrical resin magnet 51 of a molded body obtained by injection molding using this shaft member has a convex portion with an inner diameter of 4.60 mm with respect to an inner diameter of 4.00 mm of the cylindrical resin magnet 51, so that the cylindrical resin magnet A structure was obtained in which the magnet 51 was difficult to come off from the shaft member core portion 52.

【0032】このような1又は2以上テーパーもしくは
キー溝を設けた樹脂磁石組立品を回転試験装置に組み付
けて6000〜12000rpmの高速回転試験におい
ても空回りあるいは円筒状樹脂磁石31、41、又は51の脱
落の問題は生じなかった。さらに、−20〜120℃の
ヒートサイクル試験と高速回転試験との組合せ試験にお
いても空回りあるいは円筒状樹脂磁石31、41、又は51の
脱落の問題は生じなかった。
Even if a resin magnet assembly having one or more such taper or key grooves is assembled in a rotation tester and a high speed rotation test of 6000 to 12000 rpm is performed, the resin magnets 31, 41, or 51 of the cylindrical resin magnets 31, 41, or 51 are idle. The problem of dropout did not occur. Further, even in the combined test of the heat cycle test of -20 to 120 ° C and the high speed rotation test, there was no problem of idling or dropping of the cylindrical resin magnet 31, 41 or 51.

【0033】なお、樹脂磁石組立品のシャフト部材の形
状については、本発明の実施例に示した芯部の形状のみ
でなく、非円柱状の形状からなり機械構造的な結合が得
られる形状を含むものである。
Regarding the shape of the shaft member of the resin magnet assembly, not only the shape of the core shown in the embodiment of the present invention, but also a shape of a non-cylindrical shape to obtain a mechanical structural connection. It includes.

【0025】[0025]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において、フランジ部を有する樹脂磁
石組立品の断面図。
FIG. 1 is a cross-sectional view of a resin magnet assembly having a flange portion according to the first embodiment.

【図2】実施例1において、フランジ部を有しない樹脂
磁石組立品の断面図。
FIG. 2 is a cross-sectional view of a resin magnet assembly without a flange portion according to the first embodiment.

【図3】実施例3にかかる樹脂磁石組立品の断面図。FIG. 3 is a sectional view of a resin magnet assembly according to a third embodiment.

【図4】実施例4にかかる樹脂磁石組立品の断面図。FIG. 4 is a sectional view of a resin magnet assembly according to a fourth embodiment.

【図5】実施例5にかかる樹脂磁石組立品の断面図。FIG. 5 is a sectional view of a resin magnet assembly according to a fifth embodiment.

【図6】ヨーク機能を付加した効果。FIG. 6 is an effect obtained by adding a yoke function.

【図7】フランジ部の厚さTと円筒状樹脂磁石の幅Wと
の比T/Wが磁気検知力に及ぼす影響。
FIG. 7 shows the influence of the ratio T / W of the thickness T of the flange portion to the width W of the cylindrical resin magnet on the magnetic detection force.

【図8】従来の樹脂磁石組立品の断面図。FIG. 8 is a sectional view of a conventional resin magnet assembly.

【符号の説明】[Explanation of symbols]

10 ...実施例1にかかる樹脂磁石組立品 11 ...円筒状樹脂磁石 11a ...円筒状樹脂磁石の外周 11b ...円筒状樹脂磁石の内周 12 ...シャフト部材の芯部 12a ...シャフト部材の芯部の外周 13 ...シャフト部材のフランジ部 14 ...シャフト部材の軸部 S ...磁気センサー 20 ...実施例1においてフランジ部を有しない
樹脂磁石組立品 21 ...円筒状樹脂磁石 22 ...シャフト部材の芯部 24 ...シャフト部材の軸部 30 ...実施例3にかかる樹脂磁石組立品 31 ...円筒状樹脂磁石 32 ...シャフト部材の芯部 33 ...シャフト部材のフランジ部 34 ...シャフト部材の軸部 α ...芯部のなすテーパーの角度 40 ...実施例4にかかる樹脂磁石組立品 41 ...円筒状樹脂磁石 42 ...シャフト部材の芯部 44 ...シャフト部材の軸部 γ ...芯部のなす1のテーパーの角度 β ...芯部のなす他のテーパーの角度 50 ...実施例5にかかる樹脂磁石組立品 51 ...円筒状樹脂磁石 52 ...シャフト部材の芯部 53 ...シャフト部材のフランジ部 54 ...シャフト部材の軸部
10. . . Resin magnet assembly according to Example 1 11. . . Cylindrical resin magnet 11a. . . Outer circumference of cylindrical resin magnet 11b. . . Inner circumference of cylindrical resin magnet 12. . . Core part of shaft member 12a. . . Outer circumference of core of shaft member 13. . . Flange portion of shaft member 14. . . Shaft member shaft portion S. . . Magnetic sensor 20. . . 20. Resin magnet assembly having no flange portion in Example 1 21. . . Cylindrical resin magnet 22. . . Core part of shaft member 24. . . Shaft member shaft portion 30. . . Resin magnet assembly according to example 3 31. . . Cylindrical resin magnet 32. . . Core part of shaft member 33. . . Flange portion of shaft member 34. . . Shaft member shaft α. . . Angle of taper formed by core 40. . . Resin magnet assembly according to example 4 41. . . Cylindrical resin magnet 42. . . Core part of shaft member 44. . . Shaft member shaft γ. . . Angle of 1 taper made by the core β. . . Other taper angles formed by the core 50. . . Resin magnet assembly according to example 5 51. . . Cylindrical resin magnet 52. . . Core part of shaft member 53. . . Flange portion of shaft member 54. . . Shaft member shaft

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】希土類系永久磁石粉末と熱可塑性樹脂を主
成分とした円筒状樹脂磁石と、その内周部にシャフト部
材を有する一体成形した樹脂磁石組立品において、前記
シャフト部材は芯部、フランジ部および軸部からなり当
該芯部がヨーク機能を有する金属材料からなることを特
徴とする樹脂磁石組立品。
1. An integrally-molded resin magnet assembly having a cylindrical resin magnet containing a rare earth-based permanent magnet powder and a thermoplastic resin as main components, and a shaft member on an inner peripheral portion thereof, wherein the shaft member is a core portion, A resin magnet assembly, comprising a flange portion and a shaft portion, and the core portion made of a metal material having a yoke function.
【請求項2】前記シャフト部材において、ヨーク機能を
有する当該フランジ部の厚さTと前記円筒状樹脂磁石の
幅Wとの比T/Wが0〜0.30を特徴とする請求項1
に記載の樹脂磁石組立品。
2. The ratio T / W between the thickness T of the flange portion having a yoke function and the width W of the cylindrical resin magnet in the shaft member is 0 to 0.30.
The resin magnet assembly described in.
【請求項3】前記シャフト部材の芯部外周と円筒状樹脂
磁石の内周の接合面において、当該芯部形状が非円柱状
からなることを特徴とする請求項1又は2に記載の樹脂
磁石組立品。
3. The resin magnet according to claim 1, wherein the core portion has a non-cylindrical shape at the joining surface between the outer periphery of the core portion of the shaft member and the inner periphery of the cylindrical resin magnet. Assembly.
JP4128290A 1992-04-21 1992-04-21 Resin magnet assembly Expired - Lifetime JPH07101648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128290A JPH07101648B2 (en) 1992-04-21 1992-04-21 Resin magnet assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128290A JPH07101648B2 (en) 1992-04-21 1992-04-21 Resin magnet assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP30722596A Division JP2811302B2 (en) 1996-10-31 1996-10-31 Resin magnet assembly

Publications (2)

Publication Number Publication Date
JPH0677045A JPH0677045A (en) 1994-03-18
JPH07101648B2 true JPH07101648B2 (en) 1995-11-01

Family

ID=14981160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128290A Expired - Lifetime JPH07101648B2 (en) 1992-04-21 1992-04-21 Resin magnet assembly

Country Status (1)

Country Link
JP (1) JPH07101648B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535139B2 (en) * 2011-06-30 2014-07-02 株式会社ヴァレオジャパン Proximity sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190541A (en) * 1989-12-19 1991-08-20 Kawasaki Steel Corp Plastic magnet rotor and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190541A (en) * 1989-12-19 1991-08-20 Kawasaki Steel Corp Plastic magnet rotor and manufacture thereof

Also Published As

Publication number Publication date
JPH0677045A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
US4697114A (en) Permanent-magnet rotor shrink-fit assembly
US4998084A (en) Multipolar magnetic ring
US20070216400A1 (en) Magnetic encoder with cover welded to reinforcing ring
EP1750100A1 (en) Encoder
WO2006018942A1 (en) Pulser ring for magnetic rotary encoder
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
EP2003424B1 (en) Magnetic encoder and method for manufacturing the same
US8405388B2 (en) Rotation angle sensor having a permanent magnet deviated from a center of a rotation shaft
JP2550980Y2 (en) Motor rotor
JPH07101648B2 (en) Resin magnet assembly
JP2811302B2 (en) Resin magnet assembly
WO2006106797A1 (en) Pulser ring of magnetic rotary encoder
JP2004340771A (en) Magnetic rubber encoder
JP2012010571A (en) Magnet rotor for rotary electric machine, manufacturing method of the same, and inner rotor type motor
KR20010021799A (en) Hollow Magnetic Body For Detecting The Rotation Of A Shaft
JP2006329770A (en) Magnetic encoder, its manufacturing method, and roller bearing device
JPH06242132A (en) Rotor for magnetic rotational sensor
JP3062187B1 (en) Radial anisotropic magnet
JPH06275426A (en) Manufacture of rotor for rotation sensor
US10962061B2 (en) Method for manufacturing hub unit
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
JP2713048B2 (en) Rotation detection sensor
JP2007064328A (en) Rolling bearing unit
JP2603351Y2 (en) Rotating electric machine
JP2024022915A (en) Magnetic encoder and magnetic encoder manufacturing method