JPH07101211B2 - Galvanic battery type flammable gas sensor - Google Patents

Galvanic battery type flammable gas sensor

Info

Publication number
JPH07101211B2
JPH07101211B2 JP2410229A JP41022990A JPH07101211B2 JP H07101211 B2 JPH07101211 B2 JP H07101211B2 JP 2410229 A JP2410229 A JP 2410229A JP 41022990 A JP41022990 A JP 41022990A JP H07101211 B2 JPH07101211 B2 JP H07101211B2
Authority
JP
Japan
Prior art keywords
combustible gas
electrode
gas sensor
silver
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2410229A
Other languages
Japanese (ja)
Other versions
JPH04215058A (en
Inventor
人見  周二
寿士 工藤
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP2410229A priority Critical patent/JPH07101211B2/en
Publication of JPH04215058A publication Critical patent/JPH04215058A/en
Publication of JPH07101211B2 publication Critical patent/JPH07101211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガルバニ電池式可燃性ガ
スセンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvanic cell type combustible gas sensor.

【0002】[0002]

【従来の技術】可燃性ガスセンサには半導体式、接触燃
焼式および電気化学式がある。半導体式はガス選択性が
ないという欠点を持ち、接触燃焼式は選択性はあるもの
の、高濃度の可燃性ガスの測定ができないという難点を
持つ。これらに対し電気化学式はすぐれたガス選択性を
有するとともに、広範囲の可燃性ガス濃度の測定が可能
である。
Combustible gas sensors include semiconductor type, catalytic combustion type and electrochemical type. The semiconductor type has a drawback of not having gas selectivity, and the catalytic combustion type has a selectivity, but has a drawback of not being able to measure a high concentration of combustible gas. On the other hand, the electrochemical formula has excellent gas selectivity and can measure a wide range of combustible gas concentrations.

【0003】電気化学式には定電位電解方式とガルバニ
電池方式とがある。一般的に定電位電解式可燃性ガスセ
ンサは、可燃性ガスの電気化学的酸化反応に有効な白金
等の触媒金属とその外側に位置し可燃性ガスの供給を制
限するための有機高分子膜とで構成されるガス極を作用
極とする。対極としては、二酸化鉛等の金属酸化物を用
いたものと、酸素の電気化学的還元反応に有効な白金や
パラジウム等の触媒からなるガス極を用いたものとがあ
る。いずれの場合も作用極において可燃性ガスの電気化
学的反応のみが生じるように、つまり酸素の発生や還元
反応が生じないように、外部より定電位印加装置を用い
て作用極の電位を酸素の酸化還元電位に設定しているこ
とが特徴であり、作用極と対極との間に流れる電流が可
燃性ガス濃度に比例することを利用したものである。こ
の方式のものは、酸素の影響を全く受けないため高濃度
の可燃性ガスの測定はもちろん低濃度の可燃性ガスの測
定も精度良く行えるが、ポテンシオスタット等の高価で
取扱い難い定電位印加装置を必要とするうえ、作用極に
電位を印加してからセンサの出力が安定するまで相当な
時間が必要で測定したいとき即座に測れないという問題
がある。
The electrochemical system includes a constant potential electrolysis system and a galvanic cell system. In general, a potentiostatic combustible gas sensor has a catalytic metal such as platinum that is effective in the electrochemical oxidation reaction of the combustible gas and an organic polymer film that is located outside the catalytic metal and that restricts the supply of the combustible gas. The working electrode is a gas electrode composed of. As the counter electrode, there are one using a metal oxide such as lead dioxide and one using a gas electrode composed of a catalyst such as platinum or palladium which is effective for the electrochemical reduction reaction of oxygen. In any case, the potential of the working electrode is adjusted from the outside by using a constant potential applying device so that only the electrochemical reaction of the flammable gas occurs in the working electrode, that is, the generation or reduction reaction of oxygen does not occur. The feature is that the redox potential is set, and the fact that the current flowing between the working electrode and the counter electrode is proportional to the combustible gas concentration is used. Since this method is not affected by oxygen at all, it can measure high concentration combustible gas as well as low concentration combustible gas with high accuracy, but it is expensive and difficult to handle with constant potential application such as potentiostat. In addition to the need for a device, there is a problem that a considerable amount of time is required from the application of a potential to the working electrode until the output of the sensor stabilizes, and the measurement cannot be performed immediately when desired.

【0004】このような問題は、電気化学センサのもう
一つの作動方式であるガルバニ電池式可燃性ガスセンサ
により解決される。ガルバニ電池式可燃性ガスセンサで
実用化されているものとしては可燃性ガスの電気化学的
酸化反応に有効な白金等の触媒金属とその外側に位置し
可燃性ガスの供給を制限するための有機高分子膜とで構
成されるガス極を負極とし、二酸化鉛を正極とし、酢酸
と酢酸鉛の濃合溶液を電解液とするものがある。これ
は、二酸化鉛−可燃性ガス電池を可燃性ガスの拡散律速
下で作動するように抵抗を介して放電させたとき可燃性
ガス濃度と電池に流れる電流との間に直線関係が生ずる
ことを利用したものである。つまりこの方式は、先述の
定電位電解方式とは異なり、それ自身が電池として働く
ため定電位印加装置も不要であり、また常に動作状態に
あるためウォーミングアップなしで即座に測定が可能で
ある。
Such a problem is solved by a galvanic cell type combustible gas sensor which is another operation system of the electrochemical sensor. Galvanic cell-type combustible gas sensors have been put to practical use as catalyst metals such as platinum that are effective for the electrochemical oxidation reaction of combustible gas and organic high-pressure gas located outside the catalytic metal to limit the supply of combustible gas. There is one in which a gas electrode composed of a molecular film is used as a negative electrode, lead dioxide is used as a positive electrode, and a concentrated solution of acetic acid and lead acetate is used as an electrolytic solution. This means that when a lead dioxide-combustible gas battery is discharged through a resistor so that it operates under diffusion-controlled diffusion of the combustible gas, a linear relationship occurs between the combustible gas concentration and the current flowing through the battery. It was used. That is, unlike the above-described constant potential electrolysis method, this method does not require a constant potential applying device because it works as a battery itself, and since it is always in operation, it is possible to perform immediate measurement without warming up.

【0005】[0005]

【発明が解決しようとする課題】上述のように定電位電
解式可燃性ガスセンサのいくつかの問題をクリヤしたも
のにガルバニ電池式可燃性ガスセンサがある。しかし従
来のガルバニ電池式可燃性ガスセンサには次に述べる問
題点がある。すなわち、可燃性ガス濃度が非常に低いと
きに、負極の電位が二酸化鉛よりなる正極の電位にほぼ
等しくなるが、この正極の電位が酸素の酸化還元電位よ
りも貴なため、このような状態では負極において酸素が
発生し、白金等の触媒金属とその外側に設けられた高分
子膜間に形成された液膜内に酸素ガスの気孔が生じて正
確な測定ができなくなるということである。また、酸素
発生による電流が両電極間に流れるため、その電流分の
み測定値に誤差が生じてしまうという問題もある。
A galvanic cell type combustible gas sensor has been found to solve some problems of the potentiostatic electrolysis type combustible gas sensor as described above. However, the conventional galvanic cell type combustible gas sensor has the following problems. That is, when the combustible gas concentration is very low, the potential of the negative electrode becomes approximately equal to the potential of the positive electrode made of lead dioxide, but since the potential of this positive electrode is nobler than the redox potential of oxygen, Then, oxygen is generated in the negative electrode, and pores of oxygen gas are generated in the liquid film formed between the catalyst metal such as platinum and the polymer film provided on the outside thereof, which makes accurate measurement impossible. In addition, since a current due to oxygen generation flows between both electrodes, there is a problem that an error occurs in the measured value only for that current.

【0006】本発明はこのような問題点を解消するため
になされたものであり、その目的とするところは、銀と
塩化銀とよりなり多孔性を有する正極と、塩素イオンを
0.1mol/リットル以上かつ5mol/リットル以
下含む電解液と、可燃性ガスの電気化学的酸化反応に有
効でありガス極として働く負極とよりなるガルバニ電池
式可燃性ガスセンサとすることにより、従来のように酸
素ガスの影響を受けることのないガルバニ電池式可燃性
ガスセンサを提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a porous positive electrode made of silver and silver chloride and 0.1 mol / mol of chlorine ions. By using a galvanic cell type combustible gas sensor composed of an electrolytic solution containing liters or more and 5 mol / liter or less and a negative electrode that is effective in the electrochemical oxidation reaction of the flammable gas and acts as a gas electrode, oxygen gas as in the conventional case can be obtained. (EN) Provided is a galvanic cell type combustible gas sensor which is not affected by the above.

【0007】[0007]

【課題を解決するための手段】本発明は、塩素イオン
(Cl−1)を0.1mol/リットル以上かつ5mo
l/リットル以下含む水溶液中での銀と塩化銀の多孔性
電極の電位が、酸素の酸化還元電位よりも卑でかつ酸素
の還元反応が生じる電位よりも貴であることに着目して
なされたものである。即ち、本発明では、正極と、可燃
性ガスの電気化学的酸化反応に有効でありガス極として
働く負極と、電解液とを有する電気化学式可燃性ガスセ
ンサにおいて、該正極は銀と塩化銀とよりなり多孔性を
有するものであり、該電解液は塩素イオンを0.1mo
l/リットル以上かつ5mol/リットル以下含むもの
である、ことを特徴とするガルバニ電池式可燃性ガスセ
ンサを採用した。
According to the present invention, chlorine ions (Cl -1 ) are contained in an amount of 0.1 mol / liter or more and 5 mo.
It was made paying attention to that the potential of the silver and silver chloride porous electrodes in an aqueous solution containing 1 / liter or less is lower than the redox potential of oxygen and higher than the potential at which the oxygen reduction reaction occurs. It is a thing. That is, in the present invention, in an electrochemical combustible gas sensor having a positive electrode, a negative electrode that is effective for an electrochemical oxidation reaction of a combustible gas and acts as a gas electrode, and an electrolyte solution, the positive electrode is composed of silver and silver chloride. The electrolytic solution contains chlorine ions of 0.1 mo
A galvanic cell type combustible gas sensor characterized by containing 1 / liter or more and 5 mol / liter or less was adopted.

【0008】[0008]

【作用】銀と塩化銀とよりなり多孔性を有する正極と、
可燃性ガスの電気化学的酸化反応に有効な白金等の触媒
金属とその外側に位置し可燃性ガスの供給を制限するた
めの有機高分子膜とで構成されるガス極を負極と、塩素
イオン(Cl−1)を0.1mol/リットル以上かつ
5mol/リットル以下含むを電解液とを有する銀/塩
化銀−可燃性ガス電池を可燃性ガスの供給律速下で作動
するよう検出抵抗を介して放電させると、正極では塩化
銀の還元反応が、負極では可燃性ガスの酸化反応のみが
生じる。
[Function] A positive electrode composed of silver and silver chloride and having porosity,
A gas electrode composed of a catalytic metal such as platinum, which is effective for the electrochemical oxidation reaction of flammable gas, and an organic polymer film, which is located outside the catalytic metal and limits the supply of flammable gas, and a negative electrode, and chloride ion A silver / silver chloride-combustible gas battery having an electrolyte solution containing (Cl -1 ) in an amount of 0.1 mol / liter or more and 5 mol / liter or less is detected via a detection resistor so as to operate under the rate-control of the supply of the combustible gas. When discharged, only the reduction reaction of silver chloride occurs in the positive electrode and the oxidation reaction of the flammable gas occurs in the negative electrode.

0009】可燃性ガスの一例として水素ガス雰囲気で
の各電極の反応式を次に示す。 <電解液が酸性の場合> 正極では 2AgCl+2e →2Ag+2Cl 負極では H→2H+2e 全体として2AgCl+H→2Ag+2HCl <電解液がアルカリ性の場合> 正極では 2AgCl+ 2e →2Ag +2Cl 負極では H+2OH→2HO+2e 全体として H+2AgCl+2OH→2Ag+2
Cl+2HOここで、負極において可燃性ガスの酸
化反応のみが生じ酸素の発生はもちろん酸素の還元反応
も生じないのは、正極である銀と塩化銀の混合物の電位
が塩素イオンを0.1mol/リットル以上かつ5mo
l/リットル以下含む溶液中では酸素の酸化還元電位よ
りも卑で、酸素の還元反応の生じる電位よりも貴である
ことによるものである。塩素イオン濃度が上述の範囲を
逸脱すると、負極で酸素の還元反応が生じてしまう。
[0009] In a hydrogen gas atmosphere as an example of flammable gas
The reaction formula of each electrode is shown below. <When the electrolyte is acidic> 2AgCl + 2e → 2Ag + 2Cl for the positive electrode  H at the negative electrodeTwo→ 2H++ 2e 2AgCl + H as a wholeTwo→ 2Ag + 2HCl <When the electrolyte is alkaline> 2AgCl + 2e → 2Ag + 2Cl for the positive electrode  H at the negative electrodeTwo+ 2OH→ 2HTwoO + 2e H as a wholeTwo+ 2AgCl + 2OH→ 2Ag + 2
Cl+ 2HTwoO Here, the acid of the flammable gas in the negative electrode
Oxygen generation reaction as well as oxygen reduction reaction
What does not occur is the potential of the positive electrode mixture of silver and silver chloride.
Has chlorine ion of 0.1 mol / liter or more and 5mo
In a solution containing 1 / liter or less, the oxygen redox potential
Less noble and more noble than the potential at which the oxygen reduction reaction occurs
This is due to the fact. Chloride concentration within the above range
If it deviates, oxygen reduction reaction occurs at the negative electrode.

0010】正極である銀と塩化銀との混合電位は次式
により表される。 EAg=0.2222−0.0591 log([A
g][Cl−1]/[AgCl]) ここで、多孔質な銀と塩化銀とよりなる電極であれば、
電解液と銀および塩化銀の接触界面が無限に存在するた
め銀および塩化銀の活量は、それぞれ1とみなすことが
できる。したがって上式は次式のように表すことがで
き、この電極はその電圧が電解液中の塩素イオン濃度の
みに依存した、長期的に安定したものとなる。 EAg=0.2222−0.0591 log[Cl
−1] [Cl−1]: 塩素イオン濃度 [Ag] : 銀の活量 [AgCl]: 塩化銀の活量 塩化イオン濃度が低いと銀と塩化銀の混合電極の電位は
より貴となり、酸素の酸化還元電位により近づくが、
0.1mol/リットル以下だとそれ以上に酸素の還元
過電圧が小さくより負極において酸素の還元反応が生じ
てしまう。また塩素イオン濃度が高くなると、酸素の還
元過電圧は大きくなるものの、5mol/リットル以上
ではそれ以上に銀と塩化銀の混合物の電位が卑となり、
負極で酸素の反応が生じてしまう。
[0010] mixed potential between silver and silver chloride is a positive electrode is represented by the following equation. EAg = 0.222-0.0591 log ([A
g] [Cl −1 ] / [AgCl]) Here, if the electrode is made of porous silver and silver chloride,
Since the contact interfaces between the electrolytic solution and silver and silver chloride exist infinitely, the activities of silver and silver chloride can be regarded as 1, respectively. Therefore, the above formula can be expressed as the following formula, and this electrode becomes stable for a long period of time because its voltage depends only on the chlorine ion concentration in the electrolytic solution. EAg = 0.222-0.0591 log [Cl
−1 ] [Cl −1 ]: Chloride ion concentration [Ag]: Silver activity [AgCl]: Silver chloride activity If the chloride ion concentration is low, the potential of the mixed electrode of silver and silver chloride becomes more noble and oxygen Closer to the redox potential of
If it is 0.1 mol / liter or less, the reduction overvoltage of oxygen becomes smaller and the reduction reaction of oxygen occurs in the negative electrode. Also, when the chlorine ion concentration becomes higher, the oxygen reduction overvoltage becomes larger, but at 5 mol / liter or more, the potential of the mixture of silver and silver chloride becomes more base,
Oxygen reaction occurs at the negative electrode.

0011】従って、電解液中の塩素イオン濃度は、
0.1mol/リットル以上かつ5mol/リットル以
下としなければならない。かかるセンサでは上記の反応
しか起こらないため、正極から負極に流れる電流から可
燃性ガスの濃度を正確に知ることができる。ここで電流
の検出は、両電極間に接続された抵抗の両端の電圧から
容易に知ることができる。
[0011] Therefore, the concentration of chlorine ions in the electrolyte solution,
It must be 0.1 mol / liter or more and 5 mol / liter or less. Since only the above reaction occurs in such a sensor, the concentration of the combustible gas can be accurately known from the current flowing from the positive electrode to the negative electrode. Here, the detection of the current can be easily known from the voltage across the resistor connected between both electrodes.

0012[ 0012 ]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。図1は本発明の一実施例に係るガルバニ電池式可燃
姓ガスセンサの断面構造図である。本センサはABS樹
脂製の容器本体1とAg板を0.1MHCl中でアノー
ド分極下0.4mA/cmの電流密度で2時間電解す
ることで作成した、銀と塩化銀の多孔質な混合物である
正極2、ポーラスカーボンに白金を電着した負極3、塩
化カリウムと水酸化カリウムの混合水溶液からなる電解
液4、さらにアノードの外側に設けられた4フッ化エチ
レン−6フッ化エチレンプロピレン共重合体膜からなる
隔膜5、より構成されており、正極と負極は検出抵抗6
を介して外部で閉じている。
EXAMPLES The present invention will be described below with reference to preferred examples. FIG. 1 is a sectional structural view of a galvanic cell type combustible gas sensor according to an embodiment of the present invention. This sensor is a porous mixture of silver and silver chloride prepared by electrolyzing a container body 1 made of ABS resin and an Ag plate in 0.1 M HCl for 2 hours at a current density of 0.4 mA / cm 2 under anodic polarization. A positive electrode 2, a negative electrode 3 in which platinum is electrodeposited on porous carbon, an electrolytic solution 4 composed of a mixed aqueous solution of potassium chloride and potassium hydroxide, and tetrafluoroethylene-6-fluoroethylene-propylene copolymer provided outside the anode. It is composed of a diaphragm 5 made of a polymer film, and the positive electrode and the negative electrode are a detection resistor 6
It is closed externally via.

0013】このガルバニ電池式可燃性ガスセンサを可
燃性ガスである、水素(H)または一酸化炭素(C
O)の濃度が2、6、10%の空気中に放置して検出抵
抗6の両端で検出される出力電圧を第2図にプロットし
た。図2より、本発明によるガルバニ電池式可燃性ガス
センサは、水素または一酸化炭素の空気中での濃度に対
し優れた直線性があることがわかる。従来のガルバニ電
池式センサでは、可燃性ガスの低濃度流域に於て、負極
で酸素が発生したが、本発明センサでは酸素の発生がな
いため、低濃度でも測定可能である。
[0013] The galvanic cell type combustible gas sensor is a combustible gas, hydrogen (H 2) or carbon monoxide (C
The output voltage detected at both ends of the detection resistor 6 after being left in the air having a concentration of O) of 2, 6, and 10% is plotted in FIG. From FIG. 2, it is understood that the galvanic cell type combustible gas sensor according to the present invention has excellent linearity with respect to the concentration of hydrogen or carbon monoxide in the air. In the conventional galvanic cell type sensor, oxygen was generated in the negative electrode in the low concentration flow area of the combustible gas, but the sensor of the present invention does not generate oxygen, so that measurement can be performed even in a low concentration.

0014[ 0014 ]

【発明の効果】本発明によるガルバニ電池式可燃性ガス
センサは定電位印加装置用いる必要がないうえ、即座に
気中の可燃性ガス濃度を検出することがでるものであ
る。本センサを使用することにより、取扱いの簡単な可
燃性ガス濃度計や警報器の提供が可能となるので、産業
上に寄与すること非常に大である。
The galvanic cell type combustible gas sensor according to the present invention does not require the use of a constant potential applying device and can immediately detect the concentration of combustible gas in the air. By using this sensor, it is possible to provide a combustible gas concentration meter and an alarm device that are easy to handle, which greatly contributes to the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るガルバニ電池式ガスセ
ンサの断面概要図である。
FIG. 1 is a schematic sectional view of a galvanic cell type gas sensor according to an embodiment of the present invention.

【図2】気中の水素または、一酸化炭素濃度とセンサの
出力電圧との関係を示す図である。
FIG. 2 is a diagram showing a relationship between hydrogen or carbon monoxide concentration in air and an output voltage of a sensor.

【符合の説明】[Explanation of sign]

1 容器の本体 2 正極 3 負極 4 電解液 5 隔膜 6 検出抵抗 1 Main body of container 2 Positive electrode 3 Negative electrode 4 Electrolyte 5 Diaphragm 6 Detection resistance

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 331 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location 331

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極と可燃性ガスの電気化学的酸化反応に
有効でありガス極として働く負極と負極の外側に位置し
可燃性ガスの供給を制限する有機高分子膜と電解液とを
有する電気化学式可燃性ガスセンサにおいて、 該正極は銀と塩化銀とよりなり、多孔性を有すものであ
り、 該電解液は塩素イオンを0.1mol/リットル以上か
つ5mol/リットル以下含むものである、 ことを特徴とするガルバニ電池式可燃性ガスセンサ。
1. A negative electrode which is effective for an electrochemical oxidation reaction between a positive electrode and a combustible gas and which functions as a gas electrode, and is located outside the negative electrode.
In an electrochemical combustible gas sensor having an organic polymer film that restricts the supply of combustible gas and an electrolytic solution, the positive electrode is made of silver and silver chloride and has porosity, and the electrolytic solution is chlorine. A galvanic cell type combustible gas sensor, characterized in that it contains 0.1 mol / liter or more and 5 mol / liter or less of ions.
JP2410229A 1990-12-11 1990-12-11 Galvanic battery type flammable gas sensor Expired - Lifetime JPH07101211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410229A JPH07101211B2 (en) 1990-12-11 1990-12-11 Galvanic battery type flammable gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410229A JPH07101211B2 (en) 1990-12-11 1990-12-11 Galvanic battery type flammable gas sensor

Publications (2)

Publication Number Publication Date
JPH04215058A JPH04215058A (en) 1992-08-05
JPH07101211B2 true JPH07101211B2 (en) 1995-11-01

Family

ID=18519421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410229A Expired - Lifetime JPH07101211B2 (en) 1990-12-11 1990-12-11 Galvanic battery type flammable gas sensor

Country Status (1)

Country Link
JP (1) JPH07101211B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212306B2 (en) * 2009-08-05 2013-06-19 東亜ディーケーケー株式会社 Diaphragm electrochemical sensor

Also Published As

Publication number Publication date
JPH04215058A (en) 1992-08-05

Similar Documents

Publication Publication Date Title
EP1593962B1 (en) Eletrochemical oxygen sensor
EP0124818B1 (en) Electroanalytical method and sensor for hydrogen determination
US4707242A (en) Electrochemical cell for the detection of noxious gases
JP4062447B2 (en) Constant potential oxygen sensor
Baker et al. Determination of microgram quantities of fluoride and cyanide by measurement of current from spontaneous electrolysis
WO2015060328A1 (en) Potentiostatic electrolytic gas sensor
US5256273A (en) Micro fuel-cell oxygen gas sensor
US4859305A (en) Electrochemical cell
JP3106247B2 (en) Electrolytic cell
JP2015083924A (en) Constant potential electrolysis type gas sensor
JPH07101211B2 (en) Galvanic battery type flammable gas sensor
JPH10311815A (en) Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method
US4797180A (en) Method for the detection of noxious gases
EP0230289A2 (en) Electrochemical determination of formaldehyde
US5393392A (en) Polarographic PPB oxygen gas sensor
Yosypchuk et al. Reference electrodes based on solid amalgams
JPH0239740B2 (en)
JPH0769302B2 (en) Galvanic battery type flammable gas sensor
JPH0769301B2 (en) Galvanic battery type flammable gas sensor
Chviruk et al. Galvanic-type electrochemical sensor for determining the content of hydrohalogens in the air
JPH0769303B2 (en) Galvanic battery type flammable gas sensor
JPH0334690Y2 (en)
JPH0625746B2 (en) Electrochemical acid gas detector
JPS58143262A (en) Gas sensor
JPS60100043A (en) Polarograph type oxygen densitometer