JPH07101028B2 - Ignition timing control device - Google Patents

Ignition timing control device

Info

Publication number
JPH07101028B2
JPH07101028B2 JP63054303A JP5430388A JPH07101028B2 JP H07101028 B2 JPH07101028 B2 JP H07101028B2 JP 63054303 A JP63054303 A JP 63054303A JP 5430388 A JP5430388 A JP 5430388A JP H07101028 B2 JPH07101028 B2 JP H07101028B2
Authority
JP
Japan
Prior art keywords
ignition
energization
time
reference position
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63054303A
Other languages
Japanese (ja)
Other versions
JPH01227869A (en
Inventor
雅平 赤須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63054303A priority Critical patent/JPH07101028B2/en
Priority to KR1019890002669A priority patent/KR930005035B1/en
Priority to US07/320,128 priority patent/US5007397A/en
Publication of JPH01227869A publication Critical patent/JPH01227869A/en
Publication of JPH07101028B2 publication Critical patent/JPH07101028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はエンジンの点火時期を電子的に制御する点火
時期制御装置に関する。
The present invention relates to an ignition timing control device for electronically controlling the ignition timing of an engine.

〔従来の技術〕[Conventional technology]

第5図乃至第7図は、従来の点火時期制御装置を示すも
のである。図において(1)は4サイクル4気筒エンジ
ンのクランク軸、(2)はこのクランク軸に固定され軸
回転とともに回転する円板と、この円板の円周上には18
0゜の間隔で離間した位置に磁性体(3A)、(3B)が固
定装置されている。(4C)、(4D)は上記円板(2)の
外周に近接し互いに所定の角度差を持つて配設され、上
記磁性体(3A)、あるいは(3B)と対向した時に基準位
置パルスPc,Pdをそれぞれ発する電磁ピツクアツプで、
電磁ピツクアツプ(4D)はエンジンの点火時期制御角度
範囲の中で最も遅れた点火時期に相当するクランク角度
位置を検出するように設けられ、電磁ピツクアツプ(4
C)は電磁ピツクアツプ(4D)の位置から円板2の外周
方向に沿つて90゜回転した位置に設けられており、クラ
ンク軸1が90゜回転する毎に基準位置パルスPcとPdが交
互に送出されるよう構成されている。(5)はクロツク
パルスCPを出力する発振器、(6)は上記発振器(5)
のクロツクパルスCPに基づいて上記基準位置パルスPcの
時間間隔Tcを計測する周期計測手段、(9)はエンジン
の回転数やマニホールド圧力等の情報Sに基づいて電磁
ピツクアツプ(4D)が検出すべきクランクの基準位置を
基準とした点火進角度値θを算出する点火時期演算手
段、(20)はバツテリ電圧Uより点火コイル(42)の一
次電流が所定の値に達するのに必要な基本通電時間Tlを
演算する基本通電時間演算手段、(10)は上記時間間隔
Tc、及び点火進角θを入力し、基準位置パルスPcが送出
された後点火までの時間Tsを基準位置パルスPcに同期し
て後述する方法で演算し出力する点火時間演算手段であ
る。この時間Tsと点火コイル(42)の基本通電時間Tlと
から通電開始時間演算手段(21)は基準位置パルスPc発
生から点火コイル(42)の通電開始までの時間Toffを求
め、通電指令出力手段(22)はクロツクパルスCP、基準
位置パルスPc、通電開始時間Toffを入力し、規準位置パ
ルスPc発生から開始時間Toff経過後に点火コイル(42)
に通電を開始させる通電指令信号Ponを出力する。上記
点火時間演算手段(10)から出力される時間Ts、クロツ
クパルスCP、及び基準位置パルスPcを入力する第1の点
火指令出力手段(30)は、基準位置パルスPcが入力され
た時点から時間Tsが経過した時に点火コイル(42)の電
流を遮断する点火指令信号Pspkを発生する。一方第2の
点火指令出力手段(31)は基準位置パルスPd入力に同期
して第2の点火指令信号Psdを発生する。点火制御信号
出力手段(40)は通電指令信号Ponに同期して電気的状
態を“L"レベルから“H"レベルに反転し、第1の点火指
令信号Pspkあるいは第2の点火指令信号Psdのいずれか
時間的に先に発生した信号に同期して電気的状態を“H"
レベルから“L"レベルに反転する点火制御信号Psを送出
する点火制御信号出力手段(40)より構成され、この点
火制御信号Psによつて点火装置(41)が作動し点火コイ
ル(42)を駆動してエンジンに点火する。
5 to 7 show a conventional ignition timing control device. In the figure, (1) is a crankshaft of a 4-cycle 4-cylinder engine, (2) is a disk fixed to this crankshaft and rotating with the rotation of the shaft, and 18 is on the circumference of the disk.
Magnetic bodies (3A) and (3B) are fixed at positions separated by 0 °. (4C) and (4D) are arranged close to the outer periphery of the disc (2) with a predetermined angular difference from each other, and when they face the magnetic body (3A) or (3B), the reference position pulse Pc , Pd for each electromagnetic pickup,
The electromagnetic pickup (4D) is provided to detect the crank angle position corresponding to the most delayed ignition timing in the ignition timing control angle range of the engine.
C) is provided at a position rotated 90 ° from the position of the electromagnetic pick-up (4D) along the outer peripheral direction of the disk 2, and the reference position pulses Pc and Pd alternate every time the crankshaft 1 rotates 90 °. It is configured to be delivered. (5) is an oscillator that outputs a clock pulse CP, (6) is the oscillator (5)
A cycle measuring means for measuring the time interval Tc of the reference position pulse Pc based on the clock pulse CP of the crankshaft, and (9) a crank to be detected by the electromagnetic pickup (4D) based on the information S such as the engine speed and the manifold pressure. An ignition timing calculation means for calculating an ignition advance angle value θ with reference to the reference position of (20) is a basic energization time Tl required for the primary current of the ignition coil (42) to reach a predetermined value from the battery voltage U. Basic energization time calculation means for calculating
It is an ignition time calculation means for inputting Tc and the ignition advance angle θ, and calculating and outputting a time Ts until the ignition after the reference position pulse Pc is sent out in synchronization with the reference position pulse Pc by a method described later. From this time Ts and the basic energization time Tl of the ignition coil (42), the energization start time calculating means (21) obtains the time Toff from the generation of the reference position pulse Pc to the start of energization of the ignition coil (42), and the energization command output means (22) inputs the clock pulse CP, the reference position pulse Pc, and the energization start time Toff, and the ignition coil (42) after the start time Toff has elapsed from the generation of the reference position pulse Pc.
An energization command signal Pon for starting energization is output. The first ignition command output means (30) for inputting the time Ts output from the ignition time calculation means (10), the clock pulse CP, and the reference position pulse Pc is the time Ts from the time when the reference position pulse Pc is input. When the time elapses, an ignition command signal Pspk for interrupting the current of the ignition coil (42) is generated. On the other hand, the second ignition command output means (31) generates the second ignition command signal Psd in synchronization with the input of the reference position pulse Pd. The ignition control signal output means (40) inverts the electrical state from the “L” level to the “H” level in synchronization with the energization command signal Pon, and outputs the first ignition command signal Pspk or the second ignition command signal Psd. Either the electrical state is set to "H" in synchronization with the signal generated earlier in time.
It is composed of an ignition control signal output means (40) for sending out an ignition control signal Ps which is inverted from the level to the "L" level, and the ignition device (41) is activated by this ignition control signal Ps to operate the ignition coil (42). Drive and ignite the engine.

いま上記電磁ピツクアツプ(4C)から、送出される基準
位置パルスPcを順次Pc1、Pc2、Pc3(第6図a)とした
場合、上記周期計測手段(6)は基準発振器(5)のク
ロツクパルスCPに基づいて基準位置パルスPc2入力時にP
c1とPc2とのパルス周期Tc2を時間計測する。
Now, when the reference position pulse Pc sent from the electromagnetic pick-up (4C) is sequentially Pc1, Pc2, Pc3 (Fig. 6a), the period measuring means (6) changes to the clock pulse CP of the reference oscillator (5). Based on the reference position pulse Pc2, input P
The pulse period Tc2 of c1 and Pc2 is time-measured.

基準位置パルスPc2が送出されると、点火時間演算手段
(10)は時間間隔Tcと点火進角度値θから次回の点火時
刻までの時間Ts2(第2図c)を次式によつて求める。
When the reference position pulse Pc2 is sent, the ignition time calculation means (10) obtains the time interval Tc and the time Ts2 (FIG. 2c) from the ignition advance value θ to the next ignition time by the following equation.

さきに述べたように、基準位置パルスPc2発生からこの
(1)式で求めた時間Ts2経過後に第1の点火指令出力
手段(30)は点火コイル(42)の電流遮断時期である点
火指令信号Pspk2を発生する。
As described above, the first ignition command output means (30) outputs the ignition command signal, which is the current cutoff timing of the ignition coil (42), after the time Ts2 obtained by the equation (1) has elapsed from the generation of the reference position pulse Pc2. Generates Pspk2.

この点火に対応する点火周期における点火コイル(42)
の通電開始は、通電開始時間演算手段(21)により、基
準位置パルスPc2発生から通電開始までの時間Toffとし
て求められる。すなわち通電開始時間演算手段(21)で
は、先に点火時間演算手段(10)で求めた基準位置パル
スPcから点火までの時間Tsより基本通電時間演算手段
(20)で求めた基本通電時間Tlを差し引き通電開始時間
Toffを演算する。
Ignition coil (42) in the ignition cycle corresponding to this ignition
The energization start is calculated by the energization start time calculating means (21) as the time Toff from the generation of the reference position pulse Pc2 to the energization start. That is, the energization start time calculation means (21) calculates the basic energization time Tl calculated by the basic energization time calculation means (20) from the time Ts from the reference position pulse Pc previously calculated by the ignition time calculation means (10) to the ignition. Subtraction start time
Calculate Toff.

Toff=Ts−tl ・・・・(2) 通電指令出力手段は基準位置パルスPc発生時点に起動さ
れ、上記通電開始時間Toff経過後に通電指令信号(第6
図d)を発生する。点火制御信号出力手段(40)は、こ
の通電指令信号Pon入力時に点火コイル(42)に通電を
開始し、上記第1の点火指令信号Pspkあるいは基準位置
パルスPd(第6図b)に同期した第2の点火指令信号Ps
d(第6図e)のいずれか時間的に先に発生した方の点
火指令信号で点火コイル(42)の電流を遮断しエンジン
に点火させる点火制御信号Ps(第6図f)を発生する。
Toff = Ts-tl (2) The energization command output means is activated at the time when the reference position pulse Pc is generated, and the energization command signal (the sixth value) is passed after the energization start time Toff has elapsed.
Figure d) is generated. The ignition control signal output means (40) starts energizing the ignition coil (42) when the energization command signal Pon is input, and is synchronized with the first ignition command signal Pspk or the reference position pulse Pd (Fig. 6b). Second ignition command signal Ps
An ignition control signal Ps (Fig. 6f) for interrupting the current of the ignition coil (42) and igniting the engine is generated by the ignition command signal of whichever is earlier than d (Fig. 6e). .

第5図の点火時期制御装置はこのように構成され、エン
ジン回転が一定の時に基準位置パルスPcの時間間隔TCが
一定であり、上記第1の点火指令信号Pspkが第2の点火
指令信号Psdより先に発生するので点火は第1の点火指
令信号Pspkにより行なわれる。また第7図に示すような
加速時にはエンジン回転が点火毎に上昇し、基準位置パ
ルスPCの時間間隔Tcが点火毎に縮小するので上記(1)
式により点火時間Tsを求めるときに使用する時間TCより
実際の基準位置パルスPCの時間間隔は短くなる。したが
つて、点火進角度値θがOに近いときには、第1の点火
指令信号Pspk(第7図c)より第2の点火指令信号Psd
(第7図e)が先に発生し、点火を発2の点火指令Psd
すなわち基準位置パルスPdに同期して行なうよう点火制
御信号Psが構成される。(第7図f)。これにより加速
状態においても点火が基準位置パルスPdより遅れること
が防止される。
The ignition timing control device of FIG. 5 is configured as described above, the time interval TC of the reference position pulse Pc is constant when the engine rotation is constant, and the first ignition command signal Pspk is the second ignition command signal Psd. Ignition is performed by the first ignition command signal Pspk because it occurs earlier. Further, at the time of acceleration as shown in FIG. 7, the engine rotation increases with each ignition, and the time interval Tc of the reference position pulse PC decreases with each ignition.
The time interval of the actual reference position pulse PC becomes shorter than the time TC used when the ignition time Ts is calculated by the formula. Therefore, when the ignition advance value θ is close to O, the second ignition command signal Psd (Psd in FIG. 7C) is output from the first ignition command signal Pspk (FIG. 7C).
(Fig. 7e) occurs first, and ignition is issued. Ignition command Psd for 2
That is, the ignition control signal Ps is configured to be performed in synchronization with the reference position pulse Pd. (Fig. 7f). This prevents the ignition from being delayed from the reference position pulse Pd even in the acceleration state.

もしこの第2の点火指令信号Psdによる点火がなく第1
の点火指令信号Pspkのみで点火を行なえば、加速時には
点火指令信号Pspkが第2の基準位置パルスPdよりも時間
的に相当遅れた時点で発生することとなり、異常に遅角
した位置でエンジンに点火がなされエンジンの出力低下
等の問題が発生する。
If there is no ignition due to this second ignition command signal Psd,
If ignition is performed only by the ignition command signal Pspk of, the ignition command signal Pspk will be generated at a time substantially later than the second reference position pulse Pd during acceleration, and the engine will be retarded at an abnormally retarded position. Ignition occurs and problems such as engine output drop occur.

このように、この種の点火時期制御装置において加速時
にも応答性の良い点火制御を実現するためには、この第
2の点火指令信号Psdによる点火制限は適した方法とい
えよう。
In this way, in order to realize the ignition control with good response even during acceleration in this kind of ignition timing control device, it can be said that the ignition restriction by the second ignition command signal Psd is a suitable method.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、第5図の点火時期制御装置は、加速時に第2
の点火指令信号Psdにより異常な遅角を防止している
が、点火コイル(42)の通電開始はそのまま第1の点火
指令信号Pspkより基本通電時間Tl以前に行なつている。
(第7図d)したがつて、通電指令信号Ponによる通電
開始後、第1の点火指令信号Pspkでなく時間的に先に発
生する第2の点火指令信号Psdにより点火する条件下で
は、実質的な通電時間は基本通電時間Tlより短くなる。
(第7図fのPs2) 例えば、通常の運転状態で最も回転数変化の激しいのは
アイドル状態からのレーシング時で、1000rpm付近で1
点火周期で約100rpm程度の回転数上昇をする。第5図の
点火時期制御装置で通電時間の不足が最も顕著に現われ
るのは点火進角度値θが0の場合であり、上記レーシン
グ状態では1000rpm時(Tc=15ms)の点火時間Tsは
(1)式よりTs=15(ms)と演算される。一方エンジン
の回転が上記1点火周期で100rpmの割合で一様に上昇す
るとすれば基準位置パルスPC発生から第2の点火指令信
号Psdまでの時間Tcdは約14.3(ms)であり、Tcd−Ts≒
0.7(ms)の時間差が生じ通電時間は0.7(ms)不足する
ことになる。
By the way, the ignition timing control device of FIG.
Although the abnormal retardation is prevented by the ignition command signal Psd, the energization of the ignition coil (42) is started as it is before the first energization time Tl from the first ignition command signal Pspk.
Therefore, under the condition that after the start of energization by the energization command signal Pon, the second ignition command signal Psd which is generated earlier than the first ignition command signal Pspk is ignited, The typical energization time is shorter than the basic energization time Tl.
(Ps2 in Fig. 7f) For example, in normal operating conditions, the most drastic change in rotation speed occurs when racing from the idle state, and at 1 rpm around 1000 rpm.
The number of revolutions increases by about 100 rpm in the ignition cycle. In the ignition timing control device of FIG. 5, the shortage of energization time is most noticeable when the ignition advance value θ is 0. In the above racing state, the ignition time Ts at 1000 rpm (Tc = 15 ms) is (1 From the formula), Ts = 15 (ms) is calculated. On the other hand, if the rotation of the engine uniformly increases at a rate of 100 rpm in the one ignition cycle, the time Tcd from the generation of the reference position pulse PC to the second ignition command signal Psd is about 14.3 (ms), and Tcd-Ts ≒
A time difference of 0.7 (ms) occurs and the energization time is short of 0.7 (ms).

特に、最近のDOHCエンジンのように最高回転数を高く設
定されたエンジンでは、高回転域での出力電圧を確保す
るため、短い通電時間で所定の二次出力が得られるよう
一次電流立上りの速い点火コイルが使用される。例え
ば、基本通電時間Tlが3(ms)の点火コイルでは、上記
わずか0.7(ms)の通電時間の不足でも二次出力電圧は2
5%ほど低下し、エンジンの性能低下や失火による息つ
き等を発生することがある。
In particular, in engines that have been set to a high maximum speed, such as the recent DOHC engine, in order to secure the output voltage in the high speed range, the primary current rises quickly so that the specified secondary output can be obtained in a short energization time. Ignition coils are used. For example, in an ignition coil with a basic energization time Tl of 3 (ms), the secondary output voltage is 2 even if the energization time of only 0.7 (ms) is insufficient.
It may decrease by about 5% and may cause engine performance deterioration and breathing due to misfire.

基本通電時間演算手段(20)で所定の二次出力を得るた
めに必要な基本通電時間Tlをいかに精度良く演算しても
加速時に縮小されてしまうため点火コイル通電時間不足
は免れない。
No matter how accurately the basic energization time calculation means (20) calculates the basic energization time Tl required to obtain a predetermined secondary output, the ignition coil energization time is inevitably short because it is reduced during acceleration.

この発明は上述のような問題点を解消するためになされ
たものであり、加速によるエンジン回転上昇時に点火時
期の異常な遅角の発生を防止し、かつ点火コイルの通電
時間不足による点火コイル二次出力電圧の不足も防止す
る点火時期制御装置を提供することを目的とする。
The present invention has been made to solve the above-described problems, and prevents the occurrence of an abnormal retardation of the ignition timing when the engine speed increases due to acceleration, and prevents the ignition coil from igniting due to an insufficient energization time of the ignition coil. An object of the present invention is to provide an ignition timing control device that prevents a shortage of the next output voltage.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係る点火時期制御手段はエンジンの回転周期
に応じて点火コイル一次電流の通電時間を補正する通電
時間補正手段を備えたものである。
The ignition timing control means according to the present invention comprises an energization time correction means for correcting the energization time of the ignition coil primary current according to the rotation cycle of the engine.

〔作用〕[Action]

この発明においてはエンジンの回転周期に応じて点火コ
イル一次電流の通電時間が補正されるので、常に充分な
二次電圧を得ることができる。
According to the present invention, since the energization time of the ignition coil primary current is corrected according to the rotation cycle of the engine, a sufficient secondary voltage can always be obtained.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を第1図乃至第4図に基づい
て説明する。第5図と同一部分は同一符号を附して示す
第1図において、(23)は基本通電時間演算手段(20)
で演算された点火コイル(42)の基本通電時間Tlを周期
計測手段(6)の計測周期Tcに応じて補正して点火コイ
ル(42)の通電時間を決定する通電時間補正手段であ
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. In FIG. 1 in which the same parts as those in FIG. 5 are designated by the same reference numerals, (23) is a basic energization time calculating means (20).
It is an energization time correction means for determining the energization time of the ignition coil (42) by correcting the basic energization time Tl of the ignition coil (42) calculated in step 1 according to the measurement cycle Tc of the cycle measuring means (6).

この通電時間補正手段(23)で演算される通電時間補正
量ΔTは、上述の1点火周期で100rpmの回転数上昇の加
速に対して点火コイルの通電時間が不足なく応答するよ
う設定され、また必要以上に補正量を大きくして点火装
置の消費電力や点火コイルの発熱を増大させないよう下
記(3)式により求める。
The energization time correction amount ΔT calculated by the energization time correction means (23) is set so that the energization time of the ignition coil responds sufficiently to the acceleration of the rotation speed increase of 100 rpm in one ignition cycle described above, and It is calculated by the following equation (3) so that the power consumption of the ignition device and the heat generation of the ignition coil are not increased by increasing the correction amount more than necessary.

この演算式(3)は、通電時間設定時の周期Tcより求め
たエンジン回転数をNe(rpm)としたとき、エンジンが9
0゜回転した後の点火時にはNe+50(rpm)相当に回転数
が上昇するとして、通電時間補正がないときの不足時間
Δtを下記のようにして求め、この不足時間を補償する
よう補正量ΔTを設定したものである。
This formula (3) shows that when the engine speed obtained from the cycle Tc when the energization time is set is Ne (rpm), the engine
Assuming that the number of revolutions increases by Ne + 50 (rpm) during ignition after 0 ° rotation, the shortage time Δt without energization time correction is calculated as follows, and the correction amount ΔT is set to compensate for this shortage time. It has been set.

上記通電時間補正量ΔTを1点火周期Tcに対する時間の
率で表わせば第3図のようになる。高回転域ほど補正の
率は小さく、逆に低回転域では補正の率が大きくなる。
FIG. 3 shows the energization time correction amount ΔT in terms of the ratio of time to one ignition cycle Tc. The correction rate is smaller in the higher rotation range, and on the contrary, the correction rate is higher in the low rotation range.

この補正量ΔTにより基本通電時間Tlを補正して実際の
通電時間制御値はTl+ΔTとなる。
The basic energization time Tl is corrected by this correction amount ΔT, and the actual energization time control value becomes Tl + ΔT.

したがつて、点火コイル(42)の通電開始時期を決める
通電開始時間は下記(4)式で表わされる。
Therefore, the energization start time that determines the energization start timing of the ignition coil (42) is expressed by the following equation (4).

Toff=Ts−(Tl+ΔT) ・・・・(4) 第2図は本実施例の加速時の動作を示したものである。
通電開始時間がΔTだけ早くなるため(第2図c)点火
制御信号Psは点火がPsdで行なわれても十分な通電時間
を確保できる。(第2図f) この補正により、上述の(1000rpm付近で1点火周期で1
00rpmの回転数上昇状態を考えれば(3)式より通電時
間の補正量ΔTは0.7(ms)となり前記0.7(ms)の通電
時間不足を補える。
Toff = Ts- (Tl + ΔT) (4) FIG. 2 shows the operation during acceleration according to the present embodiment.
Since the energization start time is advanced by ΔT (FIG. 2c), the ignition control signal Ps can secure a sufficient energization time even if ignition is performed at Psd. (Fig. 2f) With this correction, 1 (1 ignition cycle at around 1000 rpm)
Considering the state where the number of revolutions increases at 00 rpm, the correction amount ΔT of the energization time is 0.7 (ms) from the equation (3), and the lack of the energization time of 0.7 (ms) can be compensated.

このように(3)式によればエンジン回転全域において
通電時間の不足を補え、二次出力電圧の不足によるエン
ジン不調を未然に防止できる。
As described above, according to the equation (3), it is possible to compensate for the lack of the energization time over the entire engine rotation range and to prevent the engine malfunction due to the lack of the secondary output voltage.

さて上記補正式(3)は式としては簡単であるが、この
演算を低レベルのマイクロコンピユータで行なおうとす
ると乗算の実行に処理時間を要しS/W構成上問題となる
こともある。
Although the correction formula (3) is simple as a formula, if it is attempted to perform this calculation by a low-level microcomputer, it may take a processing time to execute the multiplication, which may cause a problem in the S / W structure.

そこで(3)式をより演算し易い式で近似しても良い。
例えば下記(5)式を用いればエンジン回転数500rpmか
ら2200rpmの範囲で上述の加速条件に対して通電時間の
不足を補正できる。
Therefore, equation (3) may be approximated by an equation that is easier to calculate.
For example, by using the following equation (5), it is possible to correct the shortage of energization time under the above-described acceleration condition in the engine speed range of 500 rpm to 2200 rpm.

上記通電時間補正量ΔTを(3)式に関する第3図と同
様、1点火周期Tcに対する時間の率で表わせば第4図と
なる。
The energization time correction amount ΔT is shown in FIG. 4 when expressed as a rate of time for one ignition cycle Tc, as in FIG. 3 relating to the equation (3).

これらの式の以外にもエンジンの加速に対する通電時間
不足をエンジン回転周期により補正する式は考えられ
る。エンジン機種によつて加速の程度にも差があり個々
のエンジンに対して最適な通電時間補正式を設けても本
発明の本質には何等影響を与えるものではない。またこ
の通電時間補正に使用するエンジン回転周期は、エンジ
ンの相異なる所定回転角度間の周期を測定し、その増
加、減少により予測した回転周期としてもよい。
In addition to these equations, an equation that corrects the energization time shortage for engine acceleration by the engine rotation cycle is conceivable. There is a difference in the degree of acceleration depending on the engine model, and even if an optimum energization time correction formula is provided for each engine, it does not affect the essence of the present invention. The engine rotation cycle used for this energization time correction may be the rotation cycle predicted by measuring the cycle between different predetermined rotation angles of the engine and increasing or decreasing the cycle.

さらにクランク基準角度位置を検出するのに上記実施例
ではマグネチツクピツクアツプ(4C)、(4D)の2つの
検出器を用いたが、これは例えば基準位置Pcで低レベル
から高レベルに変化し基準位置Pdで高レベルから低レベ
ルに変化するような角度検出器を用いて2つのクランク
基準位置を検出してもよいし、1つのマグネチツクピツ
クアツプでPc、Pdの両基準位置を時系列的に検出しこれ
とは別の検出器でPc、Pdの判別をするように構成しても
よい。
Further, in order to detect the crank reference angular position, in the above-mentioned embodiment, two detectors of magnetic pickup (4C) and (4D) are used. Two crank reference positions may be detected using an angle detector that changes from a high level to a low level at position Pd, and one magnetic pick-up may be used to chronologically determine both reference positions Pc and Pd. It may be configured to detect and determine Pc and Pd by a detector other than this.

〔発明の効果〕 以上のように本発明によれば、予め演算された点火コイ
ルが所定の二次出力電圧を発生するのに必要な通電時間
を、エンジンの回転周期に応じて増量補正したので、加
速時の回転周期縮小時にも通電時間の不足が発生するこ
とがなく、したがつて点火コイルの二次出力電圧不足に
よるエンジンの性能低下や息つき現象等の発生を未然に
防止できる効果がある。
[Advantages of the Invention] As described above, according to the present invention, the energization time required for the pre-calculated ignition coil to generate a predetermined secondary output voltage is increased and corrected in accordance with the engine rotation cycle. Also, there is no shortage of energization time even when the rotation cycle is reduced during acceleration, and therefore it is possible to prevent the occurrence of engine performance deterioration and breathing phenomenon due to insufficient secondary output voltage of the ignition coil. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例である点火時期制御装置のブ
ロツク図、第2図は第1図の動作を説明する波形図、第
3図と第4図とは第1図の動作を説明する特性図、第5
図は従来例である点火時期制御装置のブロツク図、第6
図と第7図とは第5図の動作を説明する波形図である。 1……クランク軸、2……円板、3A,33……磁性体、4C,
4D……電磁ピツクアツプ、5……発振器、6……周期計
測手段、9……点火時期演算手段、10……点火時間演算
手段、20……基本通電時間演算手段、21……通電開始時
間演算手段、22……通電指令出力手段、23……通電時間
補正手段、30……第1の点火指令出力手段、31……第2
の点火指令出力手段、40……点火制御信号出力手段、41
……点火装置、42……点火コイル
FIG. 1 is a block diagram of an ignition timing control device according to an embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the operation of FIG. 1, and FIGS. 3 and 4 show the operation of FIG. Characteristic diagram to explain, No. 5
FIG. 6 is a block diagram of a conventional ignition timing control device, No. 6
FIG. 7 and FIG. 7 are waveform charts for explaining the operation of FIG. 1 ... Crank shaft, 2 ... Disc, 3A, 33 ... Magnetic material, 4C,
4D: Electromagnetic pickup, 5 ... Oscillator, 6 ... Cycle measuring means, 9 ... Ignition timing calculation means, 10 ... Ignition time calculation means, 20 ... Basic energization time calculation means, 21 ... Energization start time calculation Means, 22 ... energization command output means, 23 ... energization time correction means, 30 ... first ignition command output means, 31 ... second
Ignition command output means, 40 ... Ignition control signal output means, 41
...... Ignition device, 42 ...... Ignition coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エンジンの所定のクランク角度位置で基準
位置信号を発生する基準位置検出手段と、この基準位置
信号に基づいてエンジンの回転周期を求める回転周期計
測手段と、予め点火コイルの一次電流が所定の値に達す
るのに要する基本通電時間を求める基本通電時間演算手
段と、エンジンの運転状態に応じた点火時期を演算する
点火時期演算手段と、上記回転周期と点火時期とに基づ
いて上記基準位置から点火時期までの点火時間を演算す
る点火時間演算手段と、上記点火時間と点火コイルの通
電時間とに基づいて所定の基準位置から点火コイルの通
電開始時期までの通電開始時間を演算する通電開始時間
演算手段と、上記所定の基準位置時点から上記通電開始
時間経過後に点火コイルの通電を開始する通電指令信号
を発生する通電指令出力手段と、上記基準位置信号発生
時点から上記点火時間経過後に点火コイルの通電を遮断
する点火指令信号を発生する点火指令出力手段と、上記
通電指令信号により点火コイルに通電を開始し上記点火
指令信号により点火コイルの通電を遮断する点火制御信
号を点火装置に出力する点火制御信号出力手段とを有す
るものにおいて、上記基本通電時間をエンジンの回転周
期に応じて補正して点火コイルの通電時間を決定する通
電時間補正手段を備えたことを特徴とする点火時期制御
装置。
1. A reference position detecting means for generating a reference position signal at a predetermined crank angle position of an engine, a rotation cycle measuring means for obtaining a rotation cycle of the engine based on the reference position signal, and a primary current of an ignition coil in advance. Based on the rotation cycle and the ignition timing, a basic energization time calculating means for obtaining a basic energization time required to reach a predetermined value, an ignition timing calculating means for calculating an ignition timing according to the operating state of the engine, Ignition time calculating means for calculating an ignition time from the reference position to the ignition timing, and an energization start time from a predetermined reference position to the ignition coil energization start timing based on the ignition time and the ignition coil energization time. Energization start time calculating means and an energization finger that generates an energization command signal for starting energization of the ignition coil after the energization start time has elapsed from the time point of the predetermined reference position. Output means, an ignition command output means for generating an ignition command signal for interrupting the energization of the ignition coil after the ignition time has elapsed from the time when the reference position signal was generated, and an ignition command for starting the energization of the ignition coil by the energization command signal. And a ignition control signal output means for outputting to the ignition device an ignition control signal for interrupting the energization of the ignition coil by a signal, the basic energization time is corrected in accordance with the rotation cycle of the engine to determine the energization time of the ignition coil. An ignition timing control device comprising an energization time correction means for determining.
JP63054303A 1988-03-07 1988-03-07 Ignition timing control device Expired - Lifetime JPH07101028B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63054303A JPH07101028B2 (en) 1988-03-07 1988-03-07 Ignition timing control device
KR1019890002669A KR930005035B1 (en) 1988-03-07 1989-03-03 Ignition timing control apparatus
US07/320,128 US5007397A (en) 1988-03-07 1989-03-07 Ignition timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63054303A JPH07101028B2 (en) 1988-03-07 1988-03-07 Ignition timing control device

Publications (2)

Publication Number Publication Date
JPH01227869A JPH01227869A (en) 1989-09-12
JPH07101028B2 true JPH07101028B2 (en) 1995-11-01

Family

ID=12966804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63054303A Expired - Lifetime JPH07101028B2 (en) 1988-03-07 1988-03-07 Ignition timing control device

Country Status (1)

Country Link
JP (1) JPH07101028B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111166A (en) * 1985-11-08 1987-05-22 Hitachi Ltd Contactless ignitor

Also Published As

Publication number Publication date
JPH01227869A (en) 1989-09-12

Similar Documents

Publication Publication Date Title
JPH0240863B2 (en)
JPS5949429B2 (en) Starting ignition timing control device
JP4510299B2 (en) Ignition control device and ignition control method
US4951628A (en) Ignition timing control device for an internal combustion engine
JPH07101028B2 (en) Ignition timing control device
JPH0786345B2 (en) Ignition timing control device
JPS5941666A (en) Ignition timing control method of internal-combustion engine
JPS635589B2 (en)
JPH0650107B2 (en) Internal combustion engine ignition device
JP2542116B2 (en) Knock control device and method for internal combustion engine
JPS6135378B2 (en)
JP3397698B2 (en) Engine ignition control device
JP2878028B2 (en) Internal combustion engine control device
JPH0826838B2 (en) Ignition timing control method for internal combustion engine
US4945875A (en) Electronic ignition timing control device
JP2641270B2 (en) Ignition timing control device
JPH0772525B2 (en) Ignition timing control device
JP2828255B2 (en) Ignition timing control device
JPH0786344B2 (en) Ignition timing control device
JP2914775B2 (en) Engine ignition timing control device
JPH0826839B2 (en) Ignition timing control method for internal combustion engine
JP2657005B2 (en) Ignition timing control device for internal combustion engine
JPH0436067A (en) Knocking controller of internal combustion engine
JP2781901B2 (en) Ignition timing control device
JPH04362275A (en) Ignition controller for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 13