JPH07100907A - Novel extrusion blow molding method - Google Patents

Novel extrusion blow molding method

Info

Publication number
JPH07100907A
JPH07100907A JP5250311A JP25031193A JPH07100907A JP H07100907 A JPH07100907 A JP H07100907A JP 5250311 A JP5250311 A JP 5250311A JP 25031193 A JP25031193 A JP 25031193A JP H07100907 A JPH07100907 A JP H07100907A
Authority
JP
Japan
Prior art keywords
mold
parison
heat
temperature
blow molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5250311A
Other languages
Japanese (ja)
Inventor
Hiroshi Kataoka
紘 片岡
Isao Umei
勇雄 梅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5250311A priority Critical patent/JPH07100907A/en
Publication of JPH07100907A publication Critical patent/JPH07100907A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C2049/2404Lining or labelling inside the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain an excellent mold surface-reproducibility and uniform surface glossiness by coating the mold surface forming the cavity of a main mold having specific conductivity with a heat insulating layer composed of a heat resistant polymer and having specific heat conductivity and specific thickness and cooling the main mold to temp. lower than the softening temp. of a resin by specific temp. CONSTITUTION:In a mold consisting of main molds 1, 2 composed of a metal whose heat conductivity at room temp. is 0.05cal/cm.sec. deg.C or more, the mold surfaces forming the cavities 3, 4 of the main molds 1, 2 are coated with heat insulating layers 5, 6 each composed of a heat-resistant polymer with heat conductivity of 0.002cal/cm.sec. deg.C or less and having a thickness of 0.05-2mm. The main molds 1, 2 are cooled to temp. lower than the softening temp. of a resin by 20 deg.C or lower and the thickness of each of the heat insulating layers 5, 6 is set so as to make the surface temp. of a molded product obtained by pressing an extruded heated parison to the mold surfaces by high pressure blow gas lower than the softening temp. of the resin by 10 deg.C or lower. Then, the parison is extruded to be set to the cavity 3 and the molds are clamped to perform the blow molding of the parison.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂の押出ブ
ロー成形に関するものであり、特に押出ブロー成形にお
いて使用する主金型のキャビティを形成する型壁面を断
熱層で被覆した金型を用いて押出ブロー成形する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to extrusion blow molding of a thermoplastic resin, and in particular, it uses a mold in which a mold wall forming a cavity of a main mold used in extrusion blow molding is covered with a heat insulating layer. And extrusion blow molding.

【0002】[0002]

【従来の技術】熱可塑性樹脂の押出ブロー成形に於い
て、成形品に対する型表面の形状状態の付与における再
現性を良くし、成形品の艶を良くすることは、通常、金
型温度や樹脂温度を高くしたり、ブローガス圧力を高く
する等の成形条件を選ぶことによりある程度達成でき
る。
2. Description of the Related Art In extrusion blow molding of a thermoplastic resin, it is usually necessary to improve the reproducibility in imparting the shape condition of the mold surface to the molded product and to improve the luster of the molded product. It can be achieved to some extent by selecting molding conditions such as increasing the temperature and increasing the blow gas pressure.

【0003】これらの要因の中で最も大きな影響のある
のは金型温度であり、金型温度を高くする程好ましい。
しかし、金型温度を高くすると、可塑化された樹脂の冷
却固化に必要な冷却時間が長くなり成形能率が下がる。
このため、金型温度を高くすることなく型表面の再現性
を良くし、又金型温度を高くしても必要な冷却時間が長
くならない方法が要求されている。金型に加熱用、冷却
用の孔をそれぞれとりつけておき交互に熱媒、冷媒を流
して金型の加熱、冷却を繰り返す方法も行われている
が、この方法は熱の消費量も多く、冷却時間が長くな
る。
The mold temperature has the greatest effect among these factors, and the higher the mold temperature, the better.
However, if the mold temperature is increased, the cooling time required for the cooling and solidification of the plasticized resin becomes longer, and the molding efficiency is lowered.
Therefore, there is a demand for a method that improves the reproducibility of the mold surface without increasing the mold temperature and that does not increase the required cooling time even if the mold temperature is increased. There is also a method in which heating and cooling holes are attached to the mold and heating and cooling of the mold are repeated by alternately flowing a heat medium and a refrigerant, but this method also consumes a lot of heat, Cooling time becomes longer.

【0004】金型キャビティを形成する型壁面を熱伝導
率の小さい物質で被覆することにより金型表面再現性を
良くする方法は米国特許第3544518号明細書で射
出成形について開示されている。押出ブロー成形につい
ても、同様に型壁面を熱伝導率の小さい物質で被覆する
方法が米国特許第5041247号明細書に開示されて
いる。
A method for improving mold surface reproducibility by coating a mold wall forming a mold cavity with a substance having a low thermal conductivity is disclosed in US Pat. No. 3,544,518 for injection molding. Also in extrusion blow molding, a method of coating the mold wall surface with a substance having a small thermal conductivity is disclosed in US Pat. No. 5,041,247.

【0005】押出ブロー成形では射出成形に比較して、
押出されたパリソンの樹脂温度が低い、パリソンが高粘
度である、パリソンを金型壁面に押しける圧力が射出圧
力に比べて大巾に低い、あるいは、パリソンの一部分は
金型に接触してから金型壁面に押し付けられる圧力がか
かるまでの時間が長い等の理由により型壁面を熱伝導率
の小さい物質で被覆する効果は現れにくい。
In extrusion blow molding, compared with injection molding,
The resin temperature of the extruded parison is low, the viscosity of the parison is high, the pressure that pushes the parison against the mold wall is much lower than the injection pressure, or a part of the parison contacts the mold. The effect of coating the mold wall surface with a substance having a small thermal conductivity is unlikely to appear due to the reason that it takes a long time to apply pressure to the mold wall surface.

【0006】従来の押出ブロー成形では、パリソンは真
っすぐ下向きに垂れ下がった形をしており、これをもし
曲がりくねった形状のキャビティを有する金型ではさん
で型締めしたとすればパリソンの相当部分がキャビティ
外にはみ出してしまう。例えば、最近需要が伸長してい
る自動車空調部品等の凹凸の激しい複雑な変形長尺ダク
トを成形する場合、以上のような理由から多量のフラッ
シュが発生し、材料の有効利用率が極めて悪い。型開き
した金型の下側金型の上に、NC制御装置等に従ってパ
リソンが所要軌跡をたどって、パリソンを下側金型キャ
ビティに沿って横置きし、次いで型締してブローすると
フラッシュの発生を最小に押さえることができ、この様
な成形法が使用されている。
In the conventional extrusion blow molding, the parison has a shape in which the parison hangs straight downward. It will stick out. For example, when molding a complicated deformed long duct with severe irregularities such as automobile air-conditioning parts for which demand has recently been increasing, a large amount of flash occurs due to the above reasons, and the effective utilization rate of materials is extremely poor. The parison follows the required path on the lower mold of the mold that has been opened according to the NC control device, etc., and lays the parison laterally along the lower mold cavity. Occurrence can be suppressed to a minimum, and such a molding method is used.

【0007】円形パリソンから円形ボトル、円形ドラム
等の円形ブロー成形品をブロー成形する場合には、パリ
ソンはブローされて金型に接触すると同時にブロー圧力
の高圧を受け、樹脂は型壁面に高圧で押し付けられる。
この様な場合、型壁面を熱伝導率の小さい物質で被覆す
る効果は顕著に現れる。しかし、もっと複雑な形状の成
形品、一般に三次元ブロー成形品といわれる様な複雑な
形状の形品が成形される場合には、押出されたパリソン
の一部は金型を閉じる前に金型壁面に接触する。すなわ
ち、下側金型の型キャビティに沿って上からパリソンを
押し出して、該パリソンを該型キャビティに寝かせて置
き、次いでブロー成形される場合、金型上に押し出され
て金型に接触したパリソンは直ちに冷却が始まる。型壁
面を熱伝導率の小さい物質で被覆してもこの様な場合に
はその効果がバランス良く現れにくい。すなわち、均一
な外観をもつ成形品が得られにくい。
When a circular blow molding product such as a circular bottle or a circular drum is blow-molded from the circular parison, the parison is blown and comes into contact with the mold, and at the same time, the high pressure of the blow pressure is applied, and the resin is applied to the mold wall at a high pressure. It is pressed.
In such a case, the effect of coating the mold wall surface with a substance having a small thermal conductivity is remarkable. However, when a molded product with a more complicated shape, which is generally called a three-dimensional blow molded product, is molded, a part of the extruded parison is molded before the mold is closed. Contact the wall. That is, a parison is extruded from above along the mold cavity of the lower mold, and the parison is laid in the mold cavity and then, when blow molding is performed, the parison that is extruded onto the mold and comes into contact with the mold. Begins cooling immediately. Even if the mold wall surface is coated with a substance having a small thermal conductivity, in such a case, the effect is difficult to appear in a well-balanced manner. That is, it is difficult to obtain a molded product having a uniform appearance.

【0008】近年、ブロー成形品では、自動車エンジン
回りのエアーインテークダクト等の三次元に屈曲したパ
イプ状成形品が成形されている。この成形法として、パ
リソンを下側金型の型キャビティに沿って寝かせて置
き、次いで型締めし、ブロー成形される。この様な場
合、押出されたパリソンの一部が金型を閉じた時に金型
壁面に接触する。そして、接触したパリソンは直ちに冷
却が始まる。型壁面を均一厚みの断熱層で被覆しただけ
ではこの様な場合には均一な外観の成形品が得にくい。
本発明者等は、これを解決するブロー成形法について研
究を重ねた結果、本発明に至る。
In recent years, as blow molded products, three-dimensionally bent pipe-shaped molded products such as air intake ducts around automobile engines have been formed. As this molding method, the parison is laid down along the mold cavity of the lower mold, then the mold is clamped, and blow molding is performed. In such a case, a part of the extruded parison comes into contact with the mold wall surface when the mold is closed. Then, the contacted parison immediately begins cooling. In such a case, it is difficult to obtain a molded product having a uniform appearance simply by covering the mold wall surface with a heat insulating layer having a uniform thickness.
The present inventors arrived at the present invention as a result of repeated research on a blow molding method for solving this problem.

【0009】パリソンを下側金型キャビティに寝かせる
ブロー成形では、パリソンが金型に接してからパリソン
がブロー用高圧ガスにより型壁面に押し付けられるまで
に、5〜10秒程度かかる。下側金型にパリソンが最も
早く接触する部分程、その時間は長くなる。又、大型ブ
ロー成形品程その時間は長くなる。従って、下側金型の
型キャビティに置かれたパリソンの一部分が、ブロー用
高圧ガスにより型壁面に押し付けられるまでの時間は5
〜10秒程度かかることになる。パリソンの該部分の表
面は5〜10秒の間に金型から冷却を受け、冷却された
状態で型壁面に押し付けられるため、その部分の型表面
再現性が悪くなる。
In blow molding in which the parison is laid in the lower mold cavity, it takes about 5 to 10 seconds after the parison comes into contact with the mold and before it is pressed against the mold wall surface by the high pressure gas for blowing. The time the parison comes into contact with the lower die earliest becomes longer. Also, the larger the blow-molded product, the longer the time. Therefore, the time required for a part of the parison placed in the mold cavity of the lower mold to be pressed against the mold wall surface by the high pressure gas for blowing is 5
It will take about 10 seconds. The surface of the part of the parison receives cooling from the mold in 5 to 10 seconds and is pressed against the mold wall surface in a cooled state, so that the mold surface reproducibility of the part deteriorates.

【0010】[0010]

【発明が解決しようとする課題】押出しブロー成形法に
おいて、三次元ブロー成形品であっても、型表面再現性
にすぐれ、表面の均一な光沢に優れたブロー成形品を得
る方法を提供することにある。
PROBLEM TO BE SOLVED: To provide a method for obtaining a blow-molded product having excellent mold surface reproducibility and excellent surface gloss even in a three-dimensional blow-molded product in an extrusion blow molding method. It is in.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明は、熱
可塑性樹脂の押出ブロー成形に於いて、(1)室温に於
ける熱伝導率が0.05cal/cm・sec・℃以上
の金属からなる主金型の金型キャビティを形成する型壁
面を、熱伝導率が0.002cal/cm・sec・℃
以下の耐熱性重合体からなる断熱層で0.05〜2mm
厚に被覆した金型を用い、(2)該主金型の温度は、樹
脂の軟化温度より20℃低い温度以下に冷却され、
(3)該断熱層の厚みは、押出された加熱パリソンが型
締された型内でブロー用高圧ガスにより型壁面に押し付
けられた直後に於ける成形品表面温度が樹脂の軟化温度
より10℃低い温度以上となる厚みであり、、(4)パ
リソンは型開きした下側金型の型キャビティに沿って上
から押し出されて該型キャビティに置かれ、次いで型締
めしてブロー成形する押出ブロー成形法である。更に本
発明は、押し出されたパリソンが型締された型内でブロ
ー用高圧ガスにより型壁面に押し付けられた直後に於け
る成形品表面温度分布差が30℃以内にある上記の押出
ブロー成形法である。また、更に本発明は、三次元に屈
曲したパイプ状成形品を成形する上記の押出ブロー成形
法である。
Means for Solving the Problems In the extrusion blow molding of a thermoplastic resin according to the present invention, (1) a metal having a thermal conductivity of 0.05 cal / cm · sec · ° C. or more at room temperature is used. The heat conductivity of the mold wall forming the mold cavity of the main mold is 0.002 cal / cm · sec · ° C.
Insulating layer consisting of the following heat-resistant polymer 0.05-2mm
Using a thickly coated mold, (2) the temperature of the main mold is cooled to a temperature lower than the softening temperature of the resin by 20 ° C. or lower,
(3) The thickness of the heat insulating layer is such that the surface temperature of the molded product immediately after being pressed against the mold wall surface by the high pressure gas for blowing in the mold where the extruded heated parison is clamped is 10 ° C. higher than the softening temperature of the resin. (4) The thickness of the parison is not less than a low temperature, and (4) the parison is extruded from above along the mold cavity of the opened lower mold and placed in the mold cavity, and then the mold is clamped and blow-molded for extrusion molding. It is a molding method. Furthermore, the present invention provides the extrusion blow molding method as described above, wherein the difference in the surface temperature distribution of the molded product is within 30 ° C. immediately after the extruded parison is pressed against the mold wall surface by the high pressure gas for blowing in the clamped mold. Is. Further, the present invention is the above extrusion blow molding method for molding a three-dimensionally bent pipe-shaped molded article.

【0012】以下に本発明について詳しく説明する。本
発明の押出ブロー成形に使用できる合成樹脂は一般の押
出ブロー成形に使用できる熱可塑性樹脂である。例え
ば、スチレン重合体、ABS樹脂、あるいはその共重合
体、ポリエチレン、ポリプロピレン等オレフィン重合
体、変性ポリフェニレンエーテル樹脂、塩化ビニール重
合体又はその共重合体、ポリカーボネート、ポリアミ
ド、ポリエステル等の一般に押出ブロー成形に使用され
る熱可塑性樹脂が使用できる。
The present invention will be described in detail below. The synthetic resin that can be used in the extrusion blow molding of the present invention is a thermoplastic resin that can be used in general extrusion blow molding. For example, in general, extrusion blow molding of styrene polymer, ABS resin or its copolymer, olefin polymer such as polyethylene and polypropylene, modified polyphenylene ether resin, vinyl chloride polymer or its copolymer, polycarbonate, polyamide, polyester and the like. The thermoplastic resin used can be used.

【0013】これ等の樹脂に、各種強化材や各種充填物
を配合した場合、あるいはポリマーアロイ等とした場合
は特に大きい効果が得られる。例えば、上記の樹脂に、
ゴム、ガラス繊維、アスベスト、炭酸カルシウム、タル
ク、硫酸カルシウム、木粉等の1種又は2種以上を配合
することができる。本発明で断熱層に用いる耐熱性重合
体とはガラス転移温度が150℃以上、好ましくは19
0℃以上、及び/又は融点が250℃以上、好ましくは
280℃以上の耐熱性重合体である。耐熱性重合体の熱
伝導率は0.002cal/cm・sec・℃以下であ
り、一般の重合体はこの熱伝導率以下である。又、該耐
熱性重合体の破断伸度は10%以上の強靭な重合体が好
ましい。破断伸度の測定法はASTMD638に準じて
行い、測定時の引っ張り速度は5mm/分である。
When these resins are mixed with various reinforcing materials or various fillers, or when they are polymer alloys or the like, a particularly great effect is obtained. For example, in the above resin,
One or more kinds of rubber, glass fiber, asbestos, calcium carbonate, talc, calcium sulfate, wood powder and the like can be blended. The heat-resistant polymer used in the heat insulating layer in the present invention has a glass transition temperature of 150 ° C. or higher, preferably 19
It is a heat resistant polymer having a temperature of 0 ° C. or higher and / or a melting point of 250 ° C. or higher, preferably 280 ° C. or higher. The heat conductivity of the heat resistant polymer is 0.002 cal / cm · sec · ° C. or less, and that of a general polymer is less than this heat conductivity. A tough polymer having a breaking elongation of 10% or more is preferable. The breaking elongation is measured according to ASTM D638, and the tensile speed at the time of measurement is 5 mm / min.

【0014】本発明で断熱層として良好に使用できる重
合体は、主鎖に芳香環を有する耐熱性重合体であり、有
機溶剤に溶解する各種非結晶性耐熱重合体、各種ポリイ
ミド等が良好に使用できる。非結晶性耐熱重合体として
は、ポリスルホン、ポリエーテルスルホン、ポリアリル
スルホン、ポリアリレート、ポリフェニレンエーテル、
ポリベンツイミダゾール等である。これ等の代表的な耐
熱性重合体の繰り返し単位を次に示す。
Polymers that can be favorably used as the heat insulating layer in the present invention are heat-resistant polymers having an aromatic ring in the main chain, and various amorphous heat-resistant polymers soluble in organic solvents, various polyimides and the like are favorably used. Can be used. As the non-crystalline heat resistant polymer, polysulfone, polyether sulfone, polyallyl sulfone, polyarylate, polyphenylene ether,
Examples thereof include polybenzimidazole. The repeating units of these typical heat resistant polymers are shown below.

【0015】[0015]

【化1】 [Chemical 1]

【0016】[0016]

【化2】 [Chemical 2]

【0017】[0017]

【化3】 [Chemical 3]

【0018】[0018]

【化4】 [Chemical 4]

【0019】[0019]

【化5】 [Chemical 5]

【0020】ポリイミドは各種あるが、直鎖型高分子量
ポリイミドが良好に使用できる。一般に直鎖型高分子量
ポリイミドは破断伸度が大きく、耐久性に優れている。
本発明に良好に使用できる直鎖型の高分子量ポリイミド
の例を表1に示した。なお、Tgはガラス転移温度、
又、nはくりかえし単位の数を表わす。
Although there are various kinds of polyimide, a straight chain type high molecular weight polyimide can be favorably used. Generally, a straight chain type high molecular weight polyimide has a large breaking elongation and excellent durability.
Examples of linear high molecular weight polyimides that can be favorably used in the present invention are shown in Table 1. In addition, Tg is a glass transition temperature,
Also, n represents the number of repeating units.

【0021】[0021]

【表1】 [Table 1]

【0022】直鎖型ポリイミドのTgは構成成分によっ
て異り、その例を表2および表3に示した。Tgが15
0℃以上の重合体が使用され、好ましくは190℃以
上、更に好ましくは230℃以上である。
The Tg of the straight-chain polyimide differs depending on the constituents, examples of which are shown in Tables 2 and 3. Tg is 15
A polymer of 0 ° C. or higher is used, preferably 190 ° C. or higher, more preferably 230 ° C. or higher.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】本発明に良好に使用できる、溶剤に溶解で
きる各種可溶性ポリイミドを表4に示す。
Table 4 shows various soluble polyimides which can be favorably used in the present invention and can be dissolved in a solvent.

【0026】[0026]

【表4】 [Table 4]

【0027】射出成形は複雑な形状の成形品を一度の成
形で得られるところに経済的価値がある。この複雑な金
型表面を耐熱性重合体で被覆し、且つ強固に密着させる
には、耐熱性重合体溶液、及び/又は耐熱性重合体前駆
体溶液を塗布し、次いで加熱して耐熱性重合体を形成さ
せることが最も好ましい。従って、本発明の耐熱性重合
体、あるいは耐熱性重合体前駆体は溶剤に溶解できるこ
とが好ましい。
Injection molding has an economic value in that a molded product having a complicated shape can be obtained by molding once. In order to coat the surface of this complicated mold with the heat-resistant polymer and firmly adhere it, the heat-resistant polymer solution and / or the heat-resistant polymer precursor solution is applied and then heated to heat-resistant polymer. Most preferably, a coalescence is formed. Therefore, it is preferable that the heat resistant polymer or the heat resistant polymer precursor of the present invention can be dissolved in a solvent.

【0028】前記の非結晶性耐熱性重合体、可溶性ポリ
イミド、あるいはポリイミド前駆体はテトラヒドロフラ
ン、ジメチルフォルムアミド、ジメチルアセトアミド、
N−メチルピロリドン等の各種溶剤に溶解し、本発明に
使用される。直鎖型ポリイミド前駆体は、例えば芳香族
ジアミンと芳香族テトラカルボン酸二無水物を開環重付
加反応させることにより合成される。
The above-mentioned non-crystalline heat-resistant polymer, soluble polyimide, or polyimide precursor is tetrahydrofuran, dimethylformamide, dimethylacetamide,
It is dissolved in various solvents such as N-methylpyrrolidone and used in the present invention. The linear polyimide precursor is synthesized, for example, by subjecting an aromatic diamine and an aromatic tetracarboxylic dianhydride to a ring-opening polyaddition reaction.

【0029】[0029]

【化6】 [Chemical 6]

【0030】これ等ポリイミド前駆体は加熱して脱水環
化反応させることによりポリイミドを形成する。最も好
ましい直鎖型ポリイミド前駆体はポリアミド酸でありそ
の代表例の繰り返し単位と、それをイミド化したポリイ
ミドの繰り返し単位を次に示す。
These polyimide precursors are heated to undergo a dehydration cyclization reaction to form a polyimide. The most preferable linear polyimide precursor is polyamic acid, and the repeating unit of a typical example thereof and the repeating unit of polyimide obtained by imidizing the same are shown below.

【0031】[0031]

【化7】 [Chemical 7]

【0032】[0032]

【化8】 [Chemical 8]

【0033】[0033]

【化9】 [Chemical 9]

【0034】[0034]

【化10】 [Chemical 10]

【0035】上記のポリイミド前駆体のポリマーはN−
メチルピロリドン等の溶媒に溶かし、金型壁面に塗布さ
れる。これら耐熱性重合体溶液、あるいは耐熱性重合体
前駆体溶液には、コーティング時の粘度を調整したり、
溶液の表面張力を調整、チキソトロピー性を調整するた
めの添加物を加えたり、及び/又は金型との密着性を上
げるための微少の添加物を加えることができる。
The polymer of the above polyimide precursor is N-
It is dissolved in a solvent such as methylpyrrolidone and applied on the wall surface of the mold. These heat-resistant polymer solution, or heat-resistant polymer precursor solution, to adjust the viscosity at the time of coating,
Additives for adjusting the surface tension of the solution and thixotropy can be added, and / or a small amount of additives for improving the adhesion to the mold can be added.

【0036】断熱層に使用する耐熱性重合体は、非結晶
性耐熱性重合体、ポリイミドの他に、可とう性が付与さ
れたエポキシ樹脂、シリコーン系樹脂等が成形条件等に
よっては使用できる。本発明の耐熱性重合体皮膜と主金
型との密着力が大きいことが好ましい、室温で0.5k
g/10mm巾以上、好ましくは0.8kg/10mm
巾以上、更に好ましくは1kg/10mm巾以上であ
る。これは密着した断熱層を10mm巾に切り、接着面
と直角方向に20mm/分の速度で引張った時の剥離力
である。この剥離力は測定場所、測定回数によりかなり
バラツキが見られるが、最小値が大きいことが重要であ
り、安定して大きい剥離力であることが好ましい。本発
明に述べる密着力は金型の主要部の密着力の最小値であ
る。
As the heat-resistant polymer used for the heat insulating layer, in addition to the amorphous heat-resistant polymer and polyimide, an epoxy resin and a silicone resin having flexibility are used depending on molding conditions. It is preferable that the heat-resistant polymer film of the present invention and the main mold have a large adhesive force, and 0.5 k at room temperature.
g / 10mm width or more, preferably 0.8kg / 10mm
The width is more than or equal to the width, and more preferably the width is 1 kg / 10 mm or more. This is the peeling force when the adherent heat insulating layer is cut into a width of 10 mm and pulled at a speed of 20 mm / min in the direction perpendicular to the adhesive surface. Although the peeling force varies considerably depending on the measurement place and the number of times of measurement, it is important that the minimum value is large, and it is preferable that the peeling force is stable and large. The adhesion force described in the present invention is the minimum value of the adhesion force of the main part of the mold.

【0037】ポリイミド等の断熱材の薄層の表面の平滑
性等を更に向上させるため、あるいは表面の耐擦傷性を
更に向上させるため、あるいは離型性を良くするため、
ポリイミド層等の厚みの1/10付近より薄い別材質を
ポリイミド表面等に塗布することも必要に応じてでき、
本発明に含まれる。合成樹脂のシートや型物の表面に、
耐擦傷性向上のために使用されている、一般にハードコ
ートと言われている塗料を塗布することもできる。例え
ば、熱硬化型のシリコーン系ハードコート剤、特に、シ
リコーン系ハードコート剤にエポキシ系物質を配合した
密着性に優れたハードコート剤は良好に使用できる。
又、離型性を良くするためにフッ素樹脂やシリコーン系
重合体を塗布することも良好にできる。
In order to further improve the smoothness of the surface of a thin layer of a heat insulating material such as polyimide, to further improve the scratch resistance of the surface, or to improve the releasability.
If necessary, another material thinner than about 1/10 of the thickness of the polyimide layer can be applied to the polyimide surface,
Included in the present invention. On the surface of synthetic resin sheets and molds,
A paint generally referred to as a hard coat, which is used to improve scratch resistance, can also be applied. For example, a thermosetting type silicone hard coating agent, in particular, a hard coating agent having excellent adhesiveness in which an epoxy substance is mixed with a silicone type hard coating agent can be favorably used.
It is also possible to apply a fluororesin or a silicone-based polymer in order to improve the releasability.

【0038】本発明の押出ブロー成形では、下側金型の
型キャビティに沿って上からパリソンを押し出して該型
キャビティに寝かせて置き、次いで型締してブロー成形
される。金型及び/又はパリソンを適度に移動させなる
ことにより、押し出されたパリソンは下側金型(型キャ
ビティは上を向いている)の型キャビティに沿って寝か
せて置かれる。
In the extrusion blow molding of the present invention, the parison is extruded from above along the mold cavity of the lower mold to lay it in the mold cavity, and then the mold is clamped for blow molding. By appropriately moving the mold and / or the parison, the extruded parison is laid down along the mold cavity of the lower mold (the mold cavity is facing up).

【0039】本発明に於ける樹脂の軟化温度とは合成樹
脂が容易に変形し得る温度であり、非結晶性樹脂ではビ
カット軟化温度(ASTM D1525)、硬質結晶性
樹脂では熱変形温度(ASTM D648 荷重18.
6kg/cm2 )、軟質結晶性樹脂では熱変形温度(A
STM D648 荷重4.6kg/cm2 )でそれぞ
れ示す温度とする。硬質結晶性樹脂とは、ポリオキシメ
チレン、ナイロン6、ナイロン66等であり、軟質結晶
性樹脂とは、各種ポリエチレン、ポリプロピレン等であ
る。
The softening temperature of the resin in the present invention is the temperature at which the synthetic resin can be easily deformed. For the amorphous resin, the Vicat softening temperature (ASTM D1525) and for the hard crystalline resin, the heat deformation temperature (ASTM D648). Load 18.
6 kg / cm 2 ), the heat distortion temperature (A
STM D648 load 4.6 kg / cm 2 ) and the temperature shown in each. The hard crystalline resin is polyoxymethylene, nylon 6, nylon 66, etc., and the soft crystalline resin is various polyethylene, polypropylene, etc.

【0040】本発明では、パリソンがブロー用高圧ガス
により型壁面に押し付けられた直後に於ける成形品表面
温度を樹脂の軟化温度より10℃低い温度以上にするだ
けの断熱層を主金型表面に設ける。ここに述べる成形品
表面温度とは、当然のことながら、型壁面に接触する成
形品表面温度である。下側金型の壁面部分には断熱層を
厚く被覆して、パリソンがブロー用高圧ガスにより型壁
面に押し付けられた直後に於ける型表面温度を樹脂の軟
化温度付近以上にする成形法である。パリソンがブロー
されて型壁面に接して変形が止まった後に、金型内ブロ
ーガス圧力は急上昇する。ブローガス圧力を測定すれ
ば、パリソンがブローされて型壁面に押し付けられたこ
とを検知できる。従って、パリソンが型締時に型壁面に
接触する部分のパリソンが、型壁面に接触してから型壁
面に高圧で押し付けられるまでの時間は、型内ブローガ
ス圧力が急上昇するまでの時間で表すことができる。
In the present invention, a heat insulating layer is provided only on the surface of the main mold so that the surface temperature of the molded product immediately after the parison is pressed against the mold wall surface by the high pressure gas for blowing is 10 ° C. or more lower than the softening temperature of the resin. To be installed. The surface temperature of the molded product described here is, of course, the surface temperature of the molded product in contact with the mold wall surface. This is a molding method in which the wall surface of the lower mold is thickly covered with a heat insulating layer so that the mold surface temperature immediately after the parison is pressed against the mold wall by the high-pressure gas for blowing is above the softening temperature of the resin. . After the parison is blown and comes into contact with the mold wall surface to stop the deformation, the blow gas pressure in the mold rises sharply. By measuring the blow gas pressure, it can be detected that the parison is blown and pressed against the mold wall. Therefore, the time from the contact of the parison to the mold wall surface when the parison is in contact with the mold wall surface until it is pressed against the mold wall surface with high pressure can be expressed as the time until the blow gas pressure in the mold rises sharply. it can.

【0041】本発明でブロー用高圧ガスにより型壁面に
押し付けられた直後とは、金型内のブローガス圧力が設
定ブローガス圧力の80%以上の圧力に達した時点であ
る。金型が閉じる前にパリソンが金型に接触しない上側
金型の型壁面部分は、型締によりパリソンが型壁面に接
触し、直ちに高圧ガスで押し付けられ、一般には0.5
〜4秒後の短時間に高圧で押し付けられ、従って、断熱
層の厚みは薄くても成形品表面温度は軟化温度以上に保
たれる。本発明では、パリソンが型壁面に接触してから
ブロー用高圧ガスにより型壁面に押し付けられるまでの
時間により主金型表面の断熱層の厚みを調整することに
より、型壁面に高圧で押し付けられた直後に於けるパリ
ソン表面温度分布差を30℃以内にすることによりのブ
ロー成形品の外観を均一にする。
The term "immediately after being pressed against the mold wall surface by the high pressure gas for blowing" in the present invention means a time point when the blow gas pressure in the mold reaches 80% or more of the set blow gas pressure. Before the mold is closed, the parison does not come into contact with the mold. The mold wall portion of the upper mold comes into contact with the parison due to mold clamping and is immediately pressed with high pressure gas.
It is pressed at a high pressure in a short time after about 4 seconds, so that the surface temperature of the molded product is kept above the softening temperature even if the thickness of the heat insulating layer is thin. In the present invention, the parison is pressed against the mold wall surface at a high pressure by adjusting the thickness of the heat insulating layer on the surface of the main mold by the time from the contact with the mold wall surface until the parison is pressed against the mold wall surface by the blowing high pressure gas. Immediately after that, the appearance of the blow-molded product is made uniform by keeping the difference in temperature distribution of the parison surface within 30 ° C.

【0042】パリソン表面温度、あるいは型表面温度は
本発明では計算により算出した数値を用いることとす
る。型表面温度とは、主金型の表面に被覆された断熱層
の表面温度であり、パリソン表面温度と一致する。該表
面温度は主金型、樹脂、断熱層等の初期温度、比熱、熱
伝導率、結晶化潜熱等から計算でき、該計算値を用いる
こととする。計算方法は有限要素法(一般の偏微分方程
式で表現される物理問題を変分原理を用いることで多次
元連立方程式として解く方法)による熱伝導解析により
計算できる。
In the present invention, the numerical value calculated by calculation is used as the parison surface temperature or the mold surface temperature. The mold surface temperature is the surface temperature of the heat insulating layer coated on the surface of the main mold, and coincides with the parison surface temperature. The surface temperature can be calculated from the initial temperature of the main mold, resin, heat insulating layer, etc., specific heat, thermal conductivity, latent heat of crystallization, etc., and the calculated value is used. The calculation method can be calculated by heat conduction analysis by the finite element method (a method of solving a physical problem represented by a general partial differential equation as a multidimensional simultaneous equation by using the variational principle).

【0043】ブロー成形時、樹脂層と断熱層の間に空気
が残留して空気のたまり(以後エアートラップと称す
る)が発生することがあるが、これはパリソンの形状、
ブローガスの吹き込み方法等を調整したり、真空キャビ
ティを使用したりすることによりエアートラップを低減
することが可能であり、本発明ではこれらの方法を必要
に応じて使用する。また、断熱層に微細な多数の細孔を
あけて、エアートラップのガスを型外へ放出する方法等
も必要に応じて使用できる。
At the time of blow molding, air may remain between the resin layer and the heat insulating layer to form a pool of air (hereinafter referred to as an air trap).
It is possible to reduce air traps by adjusting the blowing gas blowing method and the like, or by using a vacuum cavity, and in the present invention, these methods are used as necessary. Further, a method in which a large number of fine pores are opened in the heat insulating layer and the gas in the air trap is discharged out of the mold can be used as required.

【0044】押し出されたパリソンが型締めされた型内
でブロー用高圧ガスにより型壁面に押し付けられた直後
に於ける成形品表面温度分布差が小さい程、成形品の外
観は均一になる。本発明ではパリソンが型壁面に早く接
触する下側金型には断熱層を厚くし、上側金型には断熱
層を薄くして成形品表面温度分布差を小さくする。又、
同じ下側金型でもパリソンが早く接触する部分の断熱層
を厚くする。該表面温度分布差は30℃以内が好まし
く、更に好ましくは20℃以内である。
The smaller the difference in the surface temperature distribution of the molded product immediately after the extruded parison is pressed against the mold wall surface by the high pressure gas for blowing in the clamped mold, the more uniform the appearance of the molded product is. In the present invention, the heat insulating layer is made thicker in the lower mold and the heat insulating layer is made thinner in the upper mold in which the parison comes into quick contact with the wall surface of the mold to reduce the difference in surface temperature distribution of the molded product. or,
Even in the same lower mold, thicken the heat insulating layer in the part where the parison contacts quickly. The difference in surface temperature distribution is preferably within 30 ° C, more preferably within 20 ° C.

【0045】本発明を図面を用いて説明する。図1は三
次元に屈曲したパイプ状成形品を本発明の方法で押出ブ
ロー成形する図を示す。図2は図1に示す押出ブロー成
形の金型の本発明に係わる部分の断面のみを示す。
The present invention will be described with reference to the drawings. FIG. 1 shows a diagram in which a three-dimensionally bent pipe-shaped molded article is extrusion blow molded by the method of the present invention. FIG. 2 shows only a cross section of a portion of the extrusion blow molding die shown in FIG. 1 according to the present invention.

【0046】図1及び図2に於いて、金属からなる主金
型1及び2の金型キャビティ3及び4を形成する型壁面
に、耐熱性重合体からなる断熱層4及び5で0.05〜
2mm厚に被覆した金型を用い、主金型温度を樹脂の軟
化温度より20℃低い温度以下に冷却し、加熱パリソン
が型締された金型内でブロー用高圧ガスにより型壁面に
押し付けられた直後に於ける成形品表面温度が樹脂の軟
化温度より10℃低い温度以上となる厚みの断熱層5及
び6を被覆した金型を使用し、型開きした下側金型1の
型キャビティ3に沿って上からパリソン7を押出ダイ8
より押し出して、型キャビティ3に寝かせて置き、次い
で型締めしてブロー成形する押出ブロー成形である。下
側金型1では押し出されたパリソン7がより長時間接触
した後に高圧ガスによりブローされる。従って、下側金
型1の断熱層5は上側金型2の断熱層6より厚肉にな
り、一般に1.5倍以上の厚みになる。
In FIGS. 1 and 2, the heat-insulating layers 4 and 5 made of a heat-resistant polymer are formed on the mold wall surfaces forming the mold cavities 3 and 4 of the main molds 1 and 2 made of a metal by 0.05. ~
Using a mold coated to a thickness of 2 mm, the main mold temperature is cooled to 20 ° C or lower than the softening temperature of the resin, and the heated parison is pressed against the mold wall surface by the high pressure gas for blowing in the clamped mold. Immediately after the molding, the mold cavity 3 of the lower mold 1 is used, in which the mold is covered with the heat-insulating layers 5 and 6 having a thickness of 10 ° C. or more lower than the softening temperature of the resin. Extrude the parison 7 from above along the die 8
It is extrusion blow molding in which it is further extruded, laid down in the mold cavity 3 and then clamped and blow molded. In the lower mold 1, the extruded parison 7 is blown by the high pressure gas after being in contact for a longer time. Therefore, the heat insulating layer 5 of the lower mold 1 is thicker than the heat insulating layer 6 of the upper mold 2, and is generally 1.5 times or more thicker.

【0047】図3〜図6は、型壁面に樹脂が接触した時
の、型表面付近の温度の経時変化の計算値である。70
℃の主金型に220℃のABS樹脂が接触した時の型表
面付近の温度分布変化を示す。図7はポリイミドを被覆
した鋼鉄製金型にABS樹脂が接触した時に、型表面
(ポリイミド表面)温度をABS樹脂の軟化温度にする
ために必要な、接触時間とポリイミド厚みの関係を示
す。
3 to 6 are calculated values of changes with time in temperature near the mold surface when the resin comes into contact with the mold wall surface. 70
The change in temperature distribution near the mold surface when the ABS resin at 220 ° C. comes into contact with the main mold at ° C. is shown. FIG. 7 shows the relationship between the contact time and the polyimide thickness necessary to bring the mold surface (polyimide surface) temperature to the softening temperature of the ABS resin when the ABS resin contacts the steel mold covered with polyimide.

【0048】図3は鋼鉄製主金型にABS樹脂が直接接
触した時の型表面付近の温度分布の経時変化を示す。図
中の数字は接触してからの秒数を示す。図4は鋼鉄製主
金型の表面に0.2mm厚のポリイミドを被覆した金型
にABS樹脂が接触した時の型表面付近の温度分布の経
時変化を示す。図5は鋼鉄製主金型の表面に0.4mm
厚のポリイミドを被覆した金型にABS樹脂が接触した
時の型表面付近の温度分布の経時変化を示す。
FIG. 3 shows the change over time in the temperature distribution near the mold surface when the ABS resin directly contacts the steel main mold. The numbers in the figure indicate the number of seconds after contact. FIG. 4 shows the change over time in the temperature distribution near the mold surface when the ABS resin contacts the mold in which the surface of the steel main mold is coated with 0.2 mm thick polyimide. Figure 5 shows 0.4mm on the surface of the steel main mold
The time-dependent change of the temperature distribution near the mold surface when the ABS resin contacts a mold coated with a thick polyimide is shown.

【0049】図6は鋼鉄製主金型の表面にポリイミドを
被覆した金型にABS樹脂が接触した時の、型表面(ポ
リイミド表面)の温度変化を示す。図中の数字はポリイ
ミドの厚みを示す。図7はポリイミドを被覆した鋼鉄製
金型にABS樹脂が接触した時に、型表面(ポリイミド
表面)温度をABS樹脂の軟化温度付近(105℃,9
5℃)にするために必要な、接触時間とポリイミド厚み
の関係を示す。
FIG. 6 shows the temperature change of the mold surface (polyimide surface) when the ABS resin comes into contact with the mold in which the surface of the steel main mold is coated with polyimide. The numbers in the figure indicate the thickness of the polyimide. FIG. 7 shows the mold surface (polyimide surface) temperature near the softening temperature of the ABS resin (105 ° C., 9 ° C., 9 ° C. when the ABS resin comes into contact with the steel mold coated with polyimide).
The relationship between the contact time and the thickness of the polyimide, which is necessary to reach 5 ° C), is shown.

【0050】図3〜図7の図は、ADINA及びADI
NAT(マサチューセッツ工科大学で開発されたソフト
ウェア)を用い、非線形有限要素法による非定常熱伝導
解析により計算した値である。図中の各曲線の数値は加
熱樹脂が冷却された型壁面に接触してからの時間(秒)
を示す。これ等の図から、型壁面を被覆する断熱層の厚
みをきめることができる。断熱層の厚みを適度にきめる
ことにより、パリソンがブロー用高圧ガスにより型壁面
に押し付けられた直後に於ける型表面温度分布差を30
℃以内にすることができる。
FIGS. 3 to 7 show ADINA and ADI.
It is a value calculated by unsteady heat conduction analysis by a nonlinear finite element method using NAT (software developed at Massachusetts Institute of Technology). The value of each curve in the figure is the time (seconds) after the heated resin comes into contact with the cooled mold wall.
Indicates. From these figures, the thickness of the heat insulating layer that covers the mold wall surface can be determined. By appropriately adjusting the thickness of the heat insulating layer, the difference in the mold surface temperature distribution immediately after the parison is pressed against the mold wall surface by the high pressure gas for blowing is reduced to 30.
It can be within ℃.

【0051】下側金型はパリソンが接触してから高圧ガ
スのブロー成形により型壁面に押し付けられるまでの時
間が長くなり、断熱層厚みを厚くするが、更に必要に応
じて主金型温度も高くして成形される。断熱層を被覆し
ないと、主金型温度を著しく高くする必要があり、本発
明では結果的に成形サイクルタイムが短縮できることに
なる。
In the lower mold, the time from the contact of the parison to the pressing against the mold wall surface by blow molding of the high pressure gas becomes long, and the thickness of the heat insulating layer is increased. It is molded high. If the heat insulating layer is not covered, the temperature of the main mold needs to be remarkably increased, which results in shortening the molding cycle time in the present invention.

【0052】[0052]

【実施例】図1及び図2に示した金型で、押出ブロー成
形を行う。主金型は、熱伝導率は0.2cal/cm・
sec・℃の鋼材(S55C)で硬質クロムメッキされ
た鏡面状で、三次元に屈曲したパイプ状型キャビティ3
を有する。断熱層として、主金型表面にはポリイミドが
被覆されている。ポリイミドは直鎖型PMDAポリイミ
ド前駆体溶液「トレニース#3000」(東レ(株)商
品名)を塗布し、次いで加熱硬化してポリイミドを形成
し、次いで該表面を研磨して鏡面状ポリイミド層を形成
し、次いで該表面を研磨して鏡面状ポリイミド層を形成
する。上側金型には0.25mm厚、下側金型には0.
4mm厚のポリイミドを形成する。該ポリイミドのTg
は300℃、熱伝導率は0.0007cal/cm・s
ec・℃である。
EXAMPLE Extrusion blow molding is performed with the mold shown in FIGS. The main mold has a thermal conductivity of 0.2 cal / cm
Pipe-shaped cavity 3 that is mirror-like and is three-dimensionally bent and hard-chrome plated with a steel material (S55C) of sec.
Have. As a heat insulating layer, the surface of the main mold is covered with polyimide. As the polyimide, a linear PMDA polyimide precursor solution "Treney # 3000" (trade name of Toray Industries, Inc.) is applied and then heat-cured to form a polyimide, and then the surface is polished to form a mirror-like polyimide layer. Then, the surface is polished to form a mirror-like polyimide layer. The upper mold has a thickness of 0.25 mm, and the lower mold has a thickness of 0.
Form a 4 mm thick polyimide. Tg of the polyimide
Is 300 ° C, thermal conductivity is 0.0007 cal / cm · s
ec · ° C.

【0053】熱可塑性樹脂はABS樹脂、スタイラック
ABS A4593(旭化成工業(株)商品名)(ビカ
ット軟化温度 105℃)を用いた。主金型上側温度7
0℃、主金型下側温度80℃、ABS樹脂押出温度22
0℃、ブロー成形ガス圧6kg/cm2 Gとし、円形パ
リソンを押出し、下側金型の型キャビティに沿って寝か
せて置き、直ちに型締めしてブロー成形する。
As the thermoplastic resin, ABS resin, Stylak ABS A4593 (trade name of Asahi Chemical Industry Co., Ltd.) (Vicat softening temperature 105 ° C.) was used. Main mold upper temperature 7
0 ℃, main mold lower temperature 80 ℃, ABS resin extrusion temperature 22
At 0 ° C., blow molding gas pressure of 6 kg / cm 2 G, a circular parison is extruded, laid down along the mold cavity of the lower mold, and immediately clamped for blow molding.

【0054】金型内に高圧ブローガス圧が吹き込まれて
から、金型内ブローガス圧が5kg/cm2 以上に達す
る時間を約0.4秒とし、金型が閉められてから、金型
内ブローガス圧が5kg/cm2 以上に達する時間は約
4秒、パリソンが下側金型に接触してから金型内ブロー
ガス圧力が5kg/cm2 以上に達する時間は約8秒で
あった。ブロー成形品は、良好で、全体が均一に光沢し
た表面であった。
After the high pressure blow gas pressure is blown into the mold, the time for the blow gas pressure in the mold to reach 5 kg / cm 2 or more is set to about 0.4 seconds, and after the mold is closed, the blow gas in the mold is blown. time pressure reaches 5 kg / cm 2 or more is about 4 seconds, the parison is time to mold the blow gas pressure reaches 5 kg / cm 2 or more from the contact with the lower mold was about 8 seconds. The blow-molded article had a good and uniformly glossy surface throughout.

【0055】[0055]

【発明の効果】本発明の方法により、型表面再現性に優
れた三次元に屈曲したパイプ状成形品等のブロー成形品
が得られる。
According to the method of the present invention, a blow molded product such as a three-dimensionally bent pipe-shaped molded product having excellent mold surface reproducibility can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】三次元に屈曲したパイプ状成形品を本発明の方
法で押出ブロー成形する図を示す。
FIG. 1 is a view showing extrusion blow molding of a three-dimensionally bent pipe-shaped molded product by the method of the present invention.

【図2】図1に示す押出ブロー成形の金型の断面を示
す。
FIG. 2 shows a cross section of the extrusion blow molding die shown in FIG.

【図3】鋼鉄製金型にABS樹脂が接触した時の温度分
布の経時変化(図中の数字は樹脂が型壁面に接してから
の秒数)
[Fig. 3] Time-dependent change in temperature distribution when the ABS resin contacts the steel mold (the numbers in the figure are the number of seconds after the resin contacts the mold wall).

【図4】0.2mm厚のポリイミドを被覆した鋼鉄製金
型にABS樹脂が接触した時の温度分布の経時変化(図
中の数字は樹脂が型壁面に接してからの秒数)
FIG. 4 Time-dependent change in temperature distribution when ABS resin contacts a steel mold coated with 0.2 mm thick polyimide (the numbers in the figure are the number of seconds after the resin contacts the mold wall surface)

【図5】0.4mm厚のポリイミドを被覆した鋼鉄製金
型にABS樹脂が接触した時の温度分布の経時変化(図
中の数字は樹脂が型壁面に接してからの秒数)
FIG. 5: Time-dependent change in temperature distribution when ABS resin contacts a 0.4 mm thick polyimide-coated steel mold (the numbers in the figure are the number of seconds after the resin contacts the mold wall surface)

【図6】ポリイミドを被覆した鋼鉄製金型にABS樹脂
が接触した時の温度分布の型表面(ポリイミド表面)の
温度変化(図中の数字はポリイミドの厚さを示す)
[Fig. 6] Temperature change of mold surface (polyimide surface) of temperature distribution when ABS resin comes into contact with a steel mold covered with polyimide (the numbers in the figure indicate the thickness of polyimide)

【図7】ポリイミドを被覆した鋼鉄製金型にABS樹脂
が接触した時に、型表面(ポリイミド表面)温度をAB
S樹脂の軟化温度付近(105℃、95℃)にするため
に必要な、接触時間とポリイミド厚みの関係
FIG. 7 shows the mold surface (polyimide surface) temperature AB when the ABS resin comes into contact with a steel mold coated with polyimide.
Relationship between contact time and polyimide thickness required to reach the softening temperature of S resin (105 ° C, 95 ° C)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂の押出ブロー成形に於い
て、(1)室温に於ける熱伝導率が0.05cal/c
m・sec・℃以上の金属からなる主金型の金型キャビ
ティを形成する型壁面を、熱伝導率が0.002cal
/cm・sec・℃以下の耐熱性重合体からなる断熱層
で0.05〜2mm厚に被覆した金型を用い、(2)該
主金型の温度は、樹脂の軟化温度より20℃低い温度以
下に冷却され、(3)該断熱層の厚みは、押出された加
熱パリソンが型締された型内でブロー用高圧ガスにより
型壁面に押し付けられた直後に於ける成形品表面温度が
樹脂の軟化温度より10℃低い温度以上となる厚みであ
り、(4)パリソンは型開きした下側金型の型キャビテ
ィに沿って上から押し出されて該型キャビティに置か
れ、次いで型締めしてブロー成形する押出ブロー成形
法。
1. In extrusion blow molding of a thermoplastic resin, (1) the thermal conductivity at room temperature is 0.05 cal / c.
The heat conductivity is 0.002 cal on the mold wall forming the mold cavity of the main mold made of metal of m · sec · ° C or higher.
Using a mold coated with a heat-insulating layer made of a heat-resistant polymer having a temperature of not more than / cm · sec · ° C to a thickness of 0.05 to 2 mm, (2) the temperature of the main mold is 20 ° C lower than the softening temperature of the resin (3) The thickness of the heat insulating layer is such that the surface temperature of the molded product immediately after the extruded heated parison is pressed against the mold wall surface by the high pressure gas for blowing in the mold where the mold is clamped. (4) The parison is extruded from above along the mold cavity of the lower mold with the mold opened and placed in the mold cavity, and then the mold is clamped. Extrusion blow molding method for blow molding.
【請求項2】 押し出されたパリソンが型締された型内
でブロー用高圧ガスにより型壁面に押し付けられた直後
に於ける成形品表面温度分布差が30℃以内にある請求
項1記載の押出ブロー成形法。
2. The extrusion according to claim 1, wherein the difference in the surface temperature distribution of the molded product immediately after the extruded parison is pressed against the mold wall surface by the high pressure gas for blowing in the clamped mold is within 30 ° C. Blow molding method.
【請求項3】 三次元に屈曲したパイプ状成形品を成形
する請求項1又は2記載の押出ブロー成形法。
3. The extrusion blow molding method according to claim 1, wherein a pipe-shaped molded product bent in three dimensions is molded.
JP5250311A 1993-10-06 1993-10-06 Novel extrusion blow molding method Withdrawn JPH07100907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5250311A JPH07100907A (en) 1993-10-06 1993-10-06 Novel extrusion blow molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5250311A JPH07100907A (en) 1993-10-06 1993-10-06 Novel extrusion blow molding method

Publications (1)

Publication Number Publication Date
JPH07100907A true JPH07100907A (en) 1995-04-18

Family

ID=17206025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5250311A Withdrawn JPH07100907A (en) 1993-10-06 1993-10-06 Novel extrusion blow molding method

Country Status (1)

Country Link
JP (1) JPH07100907A (en)

Similar Documents

Publication Publication Date Title
JP2673623B2 (en) Synthetic resin molding method
JPH07100907A (en) Novel extrusion blow molding method
JP2522683B2 (en) Polyarylene sulfide resin sheet and method for producing the same
JPH06328549A (en) New extrusion blow molding method
JPH07156279A (en) Method for molding transparent glass fiber reinforced resin
JPH07266343A (en) Synthetic resin molded form with matte surface
JPH0872086A (en) Low-pressure injection molding method
JPH07205259A (en) Synthetic resin molding method
JPH07178765A (en) Insert molding method
JPH07156301A (en) Molding of air spoiler
JPH07178753A (en) Forming of extremely thin molded article
JP3268067B2 (en) Mold for synthetic resin molding
JPH07227854A (en) Molding of synthetic resin
JPH06270236A (en) Extrusion blow molding method
JPH07186208A (en) Plastic hook produced by injection molding
JPH07214587A (en) Surface hydrophilic synthetic resin molding
JPH0752163A (en) Novel mold for molding of synthetic resin
JPH071463A (en) Mold and manufacture thereof
JPH05111937A (en) Injection molding method for synthetic resin
JP3387578B2 (en) Manufacturing method of synthetic resin mold
JPH08197549A (en) Manufacture of polyimide-covered mold
JPH07276370A (en) Synthetic resin sanitary article
JPH05245881A (en) New injection molding method
JPH07186174A (en) Injection-molded roller
JP2727303B2 (en) Molding method for synthetic resin molded products

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226