JPH07100818B2 - Method for producing cold-rolled steel sheet excellent in normal temperature non-aging property and bake hardenability - Google Patents

Method for producing cold-rolled steel sheet excellent in normal temperature non-aging property and bake hardenability

Info

Publication number
JPH07100818B2
JPH07100818B2 JP193287A JP193287A JPH07100818B2 JP H07100818 B2 JPH07100818 B2 JP H07100818B2 JP 193287 A JP193287 A JP 193287A JP 193287 A JP193287 A JP 193287A JP H07100818 B2 JPH07100818 B2 JP H07100818B2
Authority
JP
Japan
Prior art keywords
amount
steel sheet
aging
rolled steel
aging property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP193287A
Other languages
Japanese (ja)
Other versions
JPS63171832A (en
Inventor
肇 斎藤
浩作 潮田
弘 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP193287A priority Critical patent/JPH07100818B2/en
Publication of JPS63171832A publication Critical patent/JPS63171832A/en
Publication of JPH07100818B2 publication Critical patent/JPH07100818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は常温非時効性及び焼付硬化性が優れ、さらに良
好な加工性を有する冷延鋼板の製造方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a method for producing a cold-rolled steel sheet which is excellent in non-aging at room temperature and bake hardenability and has good workability.

(従来の技術) 自動車の外板用素材として用いられる冷延鋼板は、深絞
り性、張出し性、形状性及び常温非時効性に優れている
ことが要求されるが、近年では耐デント性を向上させる
ために自動車製造工程中の塗装焼付(通常170℃前後)
後、鋼板の降伏応力が上昇する特性、すなわち焼付硬化
性が要求されることが多くなっている。
(Prior Art) Cold-rolled steel sheets used as materials for outer panels of automobiles are required to have excellent deep drawability, bulging properties, shape properties, and non-aging at room temperature. Paint baking (usually around 170 ° C) during automobile manufacturing process to improve
After that, the property that the yield stress of the steel sheet increases, that is, bake hardenability, is often required.

ところで、常温時効と焼付硬化はともに鋼板出荷時に鋼
板中に残存している固溶Cが拡散し、転位に偏析するこ
とによって起こる現象である。従って、焼付硬化量を増
加させるために固溶Cを多く残存させると常温非時効性
は劣化してしまう。常温非時効で高焼付硬化という相矛
盾した特性を得るために今日まで幾多の技術が開発され
てきたが、それらの多くには共通の技術思想が見い出さ
れる。
By the way, both normal temperature aging and bake hardening are phenomena that occur when solid solution C remaining in the steel sheet at the time of shipping the steel sheet diffuses and segregates into dislocations. Therefore, if a large amount of solid solution C is left in order to increase the amount of bake hardening, the room temperature non-aging property deteriorates. Many techniques have been developed to date to obtain the contradictory characteristics of non-aging at normal temperature and high bake hardening, but many of them have a common technical idea.

すなわち、鋼が硬化したりあるいはストレッチャー・ス
トレインが発生するにはある程度の量の固溶Cが転位ま
で拡散しなければならない。100℃×1時間(常温非時
効性を評価するときの熱処理条件)におけるCの拡散距
離は1300Åであるが、170℃×20分(焼付硬化性を評価
するときの熱処理条件)では5700Åとなる。つまり、同
量の固溶Cが残存していれば、後者の場合により多くの
固溶Cが転位に到達できるわけである。従って、焼鈍後
適当量の固溶Cを残存させると100℃×1時間ではスト
レッチャ・ストレインの発生は起こらないが、170℃×2
0分では、焼付硬化の生じることが可能な固溶C量が存
在する。過去の技術の多くは、この適当量の固溶Cを残
存させる方法について検討したものである。
That is, a certain amount of solute C must diffuse to dislocations in order for the steel to harden or stretcher strain to occur. The diffusion distance of C at 100 ° C x 1 hour (heat treatment condition when evaluating non-aging at room temperature) is 1300Å, but at 170 ° C x 20 minutes (heat treatment condition when evaluating bake hardenability) it becomes 5700Å . That is, if the same amount of solute C remains, more solute C can reach the dislocation in the latter case. Therefore, if an appropriate amount of solid solution C remains after annealing, stretcher strain does not occur at 100 ° C x 1 hour, but 170 ° C x 2
At 0 minutes, there is an amount of solid solution C capable of causing bake hardening. Most of the techniques in the past have examined methods for leaving this appropriate amount of solid solution C.

具体的な例をあげれば、特公昭59−2726号公報は焼鈍温
度を2相域で行ない、セメンタイトを凝集させ冷却後の
Cの析出サイトを減らすことによって適当量の残存固溶
Cを得る技術である。さらに特公昭57−57937号公報で
は冷却速度をも規定した方法が示されている。また、特
公昭60−17004号公報ではNb添加極低炭素鋼を用い連続
焼鈍後650℃までの冷却速度を制御することによって適
当量の固溶Cを残存させる方法が示されている。
As a specific example, Japanese Patent Publication No. 59-2726 discloses a technique for obtaining an appropriate amount of residual solid solution C by annealing at a two-phase region and coagulating cementite to reduce the precipitation site of C after cooling. Is. Furthermore, Japanese Patent Publication No. 57-57937 discloses a method in which the cooling rate is also defined. Further, Japanese Patent Publication No. 60-17004 discloses a method of using Nb-added ultra-low carbon steel to control a cooling rate up to 650 ° C. after continuous annealing so that an appropriate amount of solute C remains.

(発明が解決しようとする問題点) しかしながら、従来のかかる技術では常温非時効性は良
好であるが、焼付硬化量が小さくユーザーの要求を十分
満足させることはできない。
(Problems to be Solved by the Invention) However, although such a conventional technique has a good non-aging property at room temperature, it has a small bake hardening amount and cannot sufficiently satisfy the user's requirements.

(問題点を解決するための手段) そこで、本発明者らはかかる問題を解決するため詳細な
研究を行なった結果、通常のアルミキルド鋼にMo,Sn,Sb
のうちいずれか1種を添加することによって常温非時効
性を保ちながら従来よりも高い焼付硬化性を得ることを
見い出したのである。
(Means for Solving Problems) Therefore, the inventors of the present invention have conducted detailed studies to solve the above problems, and as a result, have found that Mo, Sn, and Sb are added to ordinary aluminum-killed steel.
It has been found that by adding any one of them, a higher bake hardenability than before can be obtained while maintaining non-aging at room temperature.

すなわち、本発明の要旨とするところは、 重量%で C:0.01〜0.04%,Mn:0.05〜0.4%,P:0.03%以下,Total A
l:0.02〜0.08%, かつ(イ)Mo:0.06〜0.35% (ロ)Sn:0.01〜0.1% (ハ)Sb:0.01〜0.1% のうちいずれか1種を含有し、残部はFe及び不可避的不
純物からなる熱延鋼板を冷間圧延した後再結晶温度以上
Ar3点以下の温度範囲での加熱、冷却、250℃以上400℃
以下の温度範囲での過時効処理のそれぞれを施こす連続
焼鈍を行ない、次いで調質圧延することを特徴とする常
温非時効性及び焼付硬化性の優れた冷延鋼板の製造方法
にある。
That is, the gist of the present invention is that C: 0.01 to 0.04%, Mn: 0.05 to 0.4%, P: 0.03% or less by weight%, Total A
l: 0.02 to 0.08%, and (a) Mo: 0.06 to 0.35% (b) Sn: 0.01 to 0.1% (c) Sb: 0.01 to 0.1%, and the balance contains Fe and unavoidable Recrystallization temperature or higher after cold rolling of hot-rolled steel sheet containing mechanical impurities
Heating and cooling in a temperature range of 3 points or less of Ar, 250 ° C to 400 ° C
A method for producing a cold rolled steel sheet excellent in normal temperature non-aging property and bake hardenability, which comprises performing continuous annealing in which each of the overaging treatments is performed in the following temperature range and then temper rolling.

以下に本発明を詳細に説明する。最初に本発明の対象と
する鋼における各成分の限定理由について述べる。
The present invention will be described in detail below. First, the reasons for limiting each component in the steel targeted by the present invention will be described.

まず、Cは0.01%以上存在しないと連続焼鈍後Cの過飽
和度が足りなくなり、常温非時効性が劣化する。また、
0.04%を超えるとr値や延性の劣化をもたらすので、C
は0.01〜0.04%とした。
First, if C is not present in an amount of 0.01% or more, the degree of supersaturation of C becomes insufficient after continuous annealing, and the room-temperature non-aging property deteriorates. Also,
If it exceeds 0.04%, the r-value and ductility are deteriorated.
Was 0.01 to 0.04%.

Mnはその量が低い程、r値が向上する。従ってできる限
り低い方が好ましいが、熱間脆性を引き起こすSを無害
化するため0.05〜0.4%にする必要がある。
The lower the amount of Mn, the higher the r value. Therefore, it is preferably as low as possible, but it is necessary to set it to 0.05 to 0.4% in order to make S that causes hot brittleness harmless.

Pもその量が低い程r値が向上するので、0.03%以下と
する。
The lower the amount of P, the better the r value, so 0.03% or less.

Total Alは強力な脱酸剤としての役割を有するのみなら
ず、鋼中のNをAlNとして固定し固溶Nによる常温時効
を防止する働きがあるので0.02%以上は必要である。し
かしながら0.08%を超えるとr値が劣化するためTotal
Alは0.02〜0.08%とする。
Total Al not only has a role as a strong deoxidizer, but also fixes N in steel as AlN to prevent normal temperature aging due to solid solution N, so 0.02% or more is necessary. However, if it exceeds 0.08%, the r-value will deteriorate, so Total
Al is 0.02 to 0.08%.

次に本発明における最も重要な特徴であるMo,Sn,Sb添加
理由について述べる。
Next, the reason for adding Mo, Sn, and Sb, which are the most important features in the present invention, will be described.

前述したように出荷時に残存している固溶C量によって
常温非時効性と焼付硬化量が一義的に定まるが、本発明
者らは従来と同程度の常温非時効性を保ちつつより高い
焼付硬化性を有するような添加元素を見い出した。すな
わち、供試材として第1表に示すような成分を有する鋼
について通常の手段により製鋼、造塊、熱延(仕上げ温
度880℃、巻取り温度710℃)、冷延(圧下率75%)等を
行ない厚さ0.8mmの冷延板とした後、810℃で70秒間加熱
し、約100℃/secで冷却し、次いで350℃で4分間の過時
効処理を行なった後、1%のスキンパスを施した。
As mentioned above, the room temperature non-aging property and the bake hardening amount are uniquely determined by the amount of solid solution C remaining at the time of shipment, but the inventors of the present invention maintain higher room temperature non-aging property while maintaining the same room temperature non-aging property. An additive element having a curability was found. That is, for steels having the components shown in Table 1 as test materials, steelmaking, ingot making, hot rolling (finishing temperature 880 ° C, winding temperature 710 ° C), cold rolling (75% reduction) Etc. After forming a cold-rolled sheet with a thickness of 0.8 mm, heat at 810 ° C for 70 seconds, cool at about 100 ° C / sec, and then perform overaging treatment at 350 ° C for 4 minutes, then 1% I applied a skin pass.

各試料について人工時効処理(100℃×1時間)後の降
伏伸びによって常温非時効性を評価した。これは降伏伸
びが0.2%以下まではストレッチャ・ストレインが発生
しないという対応関係があるからである。また、焼付硬
化性は〔2%引張−170℃×20分熱処理後の降伏応力〕
−〔2%引張時の応力〕をもって評価した。各元素の添
加量に対する焼付硬化量を第1図に、また人工時効後の
降伏伸びを第2図に示す。両図からわかるようにアムミ
キルド鋼にこれらの元素を添加すると、焼付硬化量は増
加していくが、人工時効後の降伏伸びは0.2%以下のま
まほとんど変化しない。第1図から焼付硬化量が顕著に
増加しはじめるのは、Moの場合0.06%以上、Snの場合は
0.01%以上、またSbの場合は0.01%以上である。これら
の元素の添加量を増す程焼付硬化量は上昇するが、一方
加工性は劣化していく。r値への影響を示したのが第3
図である。同図からr値が急激に劣化するのは、Moの場
合は0.35%超、Snでは0.1%超、Sbでは0.1%超である。
以上よりMoは0.06%〜0.35%、Snは0.01〜0.1%、Sbは
0.01〜0.1%とした。
For each sample, non-aging at room temperature was evaluated by yield elongation after artificial aging treatment (100 ° C x 1 hour). This is because the stretcher strain does not occur until the yield elongation is 0.2% or less. Also, the bake hardenability is [Yield stress after 2% tensile-170 ° C x 20 minutes heat treatment].
-[Stress at 2% tension] was used for evaluation. FIG. 1 shows the amount of bake hardening with respect to the added amount of each element, and FIG. 2 shows the yield elongation after artificial aging. As can be seen from both figures, when these elements are added to Ammikilled steel, the amount of bake hardening increases, but the yield elongation after artificial aging remains at 0.2% or less and hardly changes. It can be seen from Fig. 1 that the bake-hardening amount starts to increase remarkably when Mo is 0.06% or more and when Sn is Sn.
It is 0.01% or more, and in the case of Sb, it is 0.01% or more. As the amount of these elements added increases, the amount of bake hardening increases, but the workability deteriorates. Third is the effect on r-value.
It is a figure. From the same figure, the r value rapidly deteriorates in the case of Mo exceeding 0.35%, Sn exceeding 0.1%, and Sb exceeding 0.1%.
From the above, Mo is 0.06% to 0.35%, Sn is 0.01 to 0.1%, and Sb is
It was set to 0.01 to 0.1%.

Mo,Sn,Sbを添加することによって焼付硬化量が増加する
という現象の原因を調べるために、本実験に用いた試験
材に残存する固溶C量を内部摩擦法によって測定したと
ころ、各添加元素が増えるほど固溶C量が増加し、かつ
固溶C量と焼付硬化量との対応関係は従来から報告され
ている関係と一致することがわかった。従って、各添加
元素の増量によって焼付硬化量が上昇したのは、残存固
溶Cが増加したためであるといえる。残存固溶C量が増
加する理由についてはさだかではないが、これら元素
が、Cの拡散を遅らせること、あるいは炭化物の析出の
進行を抑制すること、などがありうると思われる。ま
た、これらの添加元素を増量することによって焼付硬化
量が上昇(すなわち残存固溶C量が増加)するにもかか
わらず、常温非時効性が劣化しない理由についても現在
のところ明らかではないが、本発明者らは以下のように
推測している。
In order to investigate the cause of the phenomenon that the bake hardening amount increases by adding Mo, Sn, Sb, the amount of solid solution C remaining in the test material used in this experiment was measured by the internal friction method. It was found that the amount of solid solution C increased as the number of elements increased, and the correspondence relationship between the amount of solid solution C and the bake hardening amount was in agreement with the previously reported relationship. Therefore, it can be said that the increase in the bake-hardening amount due to the increase in the amount of each additional element is due to the increase in the residual solid solution C. The reason why the amount of residual solid solution C increases is not critical, but it is considered that these elements may delay the diffusion of C or suppress the progress of carbide precipitation. Further, although the baking hardening amount is increased (that is, the amount of residual solid solution C is increased) by increasing the amount of these additive elements, the reason why the room temperature non-aging property is not deteriorated is not clear at present. The present inventors presume as follows.

すなわち、一般に鋼を軽加工する場合鋼中に転位の移動
の障害となるものが存在するとそうでない場合に比べて
同じ加工度に対する転位密度が高くなる。これは鋼に加
えられた全歪量を確保するのに転移の移動距離でかせげ
ない分を転位密度の上昇によって、補わなければならな
いからである。Mo,Sn,SbはいずれもFeに比べてその原子
半径が大きい。これらの元素が固溶していると転位の移
動の障害となり、スキンパス圧延時の転位密度の増加分
が大きくなる。残存固溶Cの増加にもかかわらず、常温
非時効性が劣化しないのはこのためであると考えられ
る。
That is, in general, when light-working a steel, if there is an obstacle in the movement of dislocations in the steel, the dislocation density becomes higher for the same workability as compared with the case where it does not. This is because in order to secure the total amount of strain applied to the steel, the amount that cannot be obtained by the moving distance of dislocation must be compensated by increasing the dislocation density. Mo, Sn, and Sb all have larger atomic radii than Fe. When these elements form a solid solution, they hinder the movement of dislocations and increase the dislocation density during skin pass rolling. It is considered that this is the reason why the room-temperature non-aging property does not deteriorate despite the increase in the residual solid solution C.

次に、製造条件の限定理由について述べる。まず、通常
の熱延を終了した後の冷延における冷延圧下率は、加工
性とくにr値を確保するためには6.0%以上が望まし
い。連続焼鈍における加熱温度を再結晶温度以上とする
のは鋼を軟質化するための必要条件である。またAr3
を超えて焼鈍するとr値が劣化するので加熱温度は再結
晶温度以上Ar3点以下とする。加熱時間は特に限定しな
いが、長時間加熱すると異常粒成長が起こり肌荒れの原
因となる恐れがあるので5分以内が望ましい。加熱後の
冷却速度は特に限定しないが、過時効処理の時間を短縮
するためには5℃/sec以上が望ましい。
Next, the reasons for limiting the manufacturing conditions will be described. First, the cold rolling reduction rate in the cold rolling after the completion of the normal hot rolling is preferably 6.0% or more in order to secure the workability, particularly the r value. Setting the heating temperature in the continuous annealing to the recrystallization temperature or higher is a necessary condition for softening the steel. The heating temperature because r value deteriorates when annealed beyond the Ar 3 point is less than the recrystallization temperature Ar 3 point. The heating time is not particularly limited, but if heated for a long time, abnormal grain growth may occur and rough skin may be caused. The cooling rate after heating is not particularly limited, but 5 ° C./sec or more is desirable in order to shorten the time of overaging treatment.

過時効処理についてはその温度を400℃超にすると残存
固溶C量が多くなりすぎ常温非時効性が劣化するため40
0℃以下とする。また、250℃未満の温度では過時効処理
の時間を長くしなければならない。従って、過時効処理
の温度は250℃以上400℃以下とする。過時効処理の時間
は特に限定しないが、連続焼鈍の性質上、30分以内が望
ましい。調質圧延はストレッチャ・ストレインを消すた
めに欠かせない工程である。圧下率は特に限定しない
が、1%程度が望ましい。
For overaging treatment, if the temperature exceeds 400 ℃, the amount of residual solid solution C will increase too much and the room temperature non-aging property will deteriorate.
Set to 0 ° C or less. Also, at temperatures below 250 ° C, the overaging time must be extended. Therefore, the temperature of the overaging treatment should be 250 ° C or higher and 400 ° C or lower. The time of overaging treatment is not particularly limited, but is preferably 30 minutes or less due to the nature of continuous annealing. Temper rolling is an essential process to eliminate stretcher strain. Although the rolling reduction is not particularly limited, it is preferably about 1%.

なお、本発明法に用いられる鋼は通常の製鋼、連鋳ある
いは普通造塊、分塊、熱延、冷延の各種工程を経て冷延
鋼板とすることができる。
The steel used in the method of the present invention can be made into a cold-rolled steel sheet through various steps of ordinary steelmaking, continuous casting or ordinary ingot casting, slabbing, hot rolling and cold rolling.

次に、実施例により本発明の効果をさらに具体的に示
す。
Next, the effects of the present invention will be described more specifically with reference to Examples.

(実施例) 第2表に示す鋼について通常の工程を経て厚さ0.8mmの
冷延板を製造した後、第3表に示す条件で、連続焼鈍及
び過時効処理を行ない、1%のスキンパスを施し、しか
るのち、第3表に示す時効前の機械的性質を調べ、さら
に人工時効処理(100℃×1時間)後の降伏伸び及び焼
付硬化量を〔2%歪−170℃×20分後の降伏応力〕−
〔2%歪時の応力〕の条件で測定した。なお、これら機
械的特性値はすべてJIS 5号試験片をインストロン型引
張試験機により測定した値である。
(Example) After the cold-rolled sheet having a thickness of 0.8 mm was manufactured through the normal process for the steel shown in Table 2, continuous annealing and overaging treatment were performed under the conditions shown in Table 3 to obtain a 1% skin pass. After that, the mechanical properties before aging shown in Table 3 are examined, and the yield elongation and the bake hardening amount after artificial aging treatment (100 ° C x 1 hour) are [2% strain -170 ° C x 20 minutes. Later yield stress] −
It was measured under the condition of [stress at 2% strain]. In addition, all these mechanical characteristic values are values measured by JIS No. 5 test pieces by an Instron type tensile tester.

第3表において試番No.1〜No.11は本発明例、No.12〜N
o.18が比較例である。本発明例はいずれも人工時効後の
降伏伸びが0.2%以下とストレッチャ・ストレインが発
生しない条件を満たし、かつ焼付硬化量は4.8kg f/mm2
〜6.2kg f/mm2と高い値になっている。またr値も1.4以
上あり加工性も優れている。これに対して比較例No.15,
No.17及びNo.18は人工時効後の降伏伸びは0.2%以下で
あるが、焼付硬化量は3.7kg f/mm2〜4.0kg f/mm2と低
い。また、No.16は焼付硬化量は5.2kg f/mm2と高いが、
人工時効後の降伏伸びが0.5%もあり常温非時効性を満
足していない。比較例No.12〜No.14は添加元素を多量に
含有するため常温非時効でかつ高い焼付硬化性を有する
がr値が劣化した例である。
In Table 3, trial numbers No. 1 to No. 11 are examples of the present invention, and No. 12 to N.
o.18 is a comparative example. All of the examples of the present invention satisfy the condition that the yield elongation after artificial aging is 0.2% or less and the stretcher strain does not occur, and the bake hardening amount is 4.8 kg f / mm 2
It is as high as ~ 6.2kg f / mm 2 . Moreover, the r value is 1.4 or more, and the workability is excellent. On the other hand, Comparative Example No. 15,
No.17 and No.18 are the yield elongation after artificial aging is below 0.2%, bake hardenability amount as low as 3.7kg f / mm 2 ~4.0kg f / mm 2. In addition, No. 16 has a high bake hardening amount of 5.2 kg f / mm 2 ,
Yield elongation after artificial aging is 0.5%, which does not satisfy room temperature non-aging. Comparative Examples No. 12 to No. 14 are examples in which the additive element is contained in a large amount so that they are not aged at room temperature and have high bake hardenability, but the r value is deteriorated.

(発明の効果) 以上の実施例からも明らかなように、本発明によれば常
温非時効性に優れかつ高い焼付硬化性を有する冷延鋼板
の製造が可能となり産業上の効果は極めて顕著である。
(Effects of the Invention) As is clear from the above examples, according to the present invention, it is possible to manufacture a cold-rolled steel sheet having excellent non-aging at room temperature and high bake hardenability, and the industrial effect is extremely remarkable. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は焼付硬化量に及ぼすMo,Sn,Sb各元素の添加量の
影響を示した図、第2図は人工時効後の降伏伸びに及ぼ
すMo,Sn,Sb各元素の添加量の影響を示した図、第3図は
r値に及ぼすMo,Sn,Sb各元素の添加量の影響を示した図
である。
Figure 1 shows the effect of the addition amount of each element of Mo, Sn and Sb on the bake hardening amount, and Figure 2 shows the effect of the addition amount of each element of Mo, Sn and Sb on the yield elongation after artificial aging. FIG. 3 and FIG. 3 are diagrams showing the influence of the addition amounts of Mo, Sn, and Sb elements on the r value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で C:0.01〜0.04%,Mn:0.05〜0.4%, P:0.03%以下,Total Al:0.02〜0.08%, かつ(イ)Mo:0.06〜0.35% (ロ)Sn:0.01〜0.1% (ハ)Sb:0.01〜0.1% のうちいずれか1種を含有し、残部はFe及び不可避的不
純物からなる熱延鋼板を冷間圧延した後再結晶温度以上
Ar3点以下の温度範囲での加熱、冷却、250℃以上400℃
以下の温度範囲での過時効処理のそれぞれを施こす連続
焼鈍を行ない、次いで調質圧延することを特徴とする常
温非時効性及び焼付硬化性の優れた冷延鋼板の製造方
法。
1. By weight%, C: 0.01 to 0.04%, Mn: 0.05 to 0.4%, P: 0.03% or less, Total Al: 0.02 to 0.08%, and (a) Mo: 0.06 to 0.35% (b) Sn : 0.01-0.1% (c) Sb: 0.01-0.1%, and the balance is at least the recrystallization temperature after cold rolling the hot-rolled steel sheet consisting of Fe and unavoidable impurities.
Heating and cooling in a temperature range of 3 points or less of Ar, 250 ° C to 400 ° C
A method for producing a cold-rolled steel sheet excellent in normal temperature non-aging property and bake hardenability, which comprises performing continuous annealing in which each is overaged in the following temperature range, and then temper rolling.
JP193287A 1987-01-09 1987-01-09 Method for producing cold-rolled steel sheet excellent in normal temperature non-aging property and bake hardenability Expired - Lifetime JPH07100818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP193287A JPH07100818B2 (en) 1987-01-09 1987-01-09 Method for producing cold-rolled steel sheet excellent in normal temperature non-aging property and bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP193287A JPH07100818B2 (en) 1987-01-09 1987-01-09 Method for producing cold-rolled steel sheet excellent in normal temperature non-aging property and bake hardenability

Publications (2)

Publication Number Publication Date
JPS63171832A JPS63171832A (en) 1988-07-15
JPH07100818B2 true JPH07100818B2 (en) 1995-11-01

Family

ID=11515380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP193287A Expired - Lifetime JPH07100818B2 (en) 1987-01-09 1987-01-09 Method for producing cold-rolled steel sheet excellent in normal temperature non-aging property and bake hardenability

Country Status (1)

Country Link
JP (1) JPH07100818B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544538B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Bake Hardening Steel Sheet With Good Workability and Non Aging Property at Room Temperature and A Method for Manufacturing Thereof
EP1960562B1 (en) * 2005-12-09 2015-08-26 Posco High strenght cold rolled steel sheet having excellent formability and coating property, zinc-based metal plated steel sheet made of it and the method for manufacturing thereof
JP5765116B2 (en) * 2010-09-29 2015-08-19 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in deep drawability and stretch flangeability and method for producing the same

Also Published As

Publication number Publication date
JPS63171832A (en) 1988-07-15

Similar Documents

Publication Publication Date Title
JP6843244B2 (en) Ultra-high-strength steel sheet with excellent bending workability and its manufacturing method
EP0475096A1 (en) High strength steel sheet adapted for press forming and method of producing the same
JPS6111296B2 (en)
JP3383017B2 (en) Method of manufacturing bake hardenable high strength cold rolled steel sheet with excellent workability
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPH07100818B2 (en) Method for producing cold-rolled steel sheet excellent in normal temperature non-aging property and bake hardenability
JPH02194126A (en) Manufacture of steel sheet having baking hardenability
JPS5830374B2 (en) Manufacturing method of hard cold rolled steel sheet for drawing
JPH02232316A (en) Production of cold rolled steel sheet for working having good baking hardenability and cold non-aging property
JPH07188856A (en) Cold rolled steel sheet excellent in delayed aging characteristic at ordinary temperature and baking hardenability
JPH10204588A (en) Ferritic stainless steel sheet excellent in workability and roping characteristic, and its manufacture
JP2778429B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP3111462B2 (en) Manufacturing method of high-strength bake hardenable steel sheet
JP3309893B2 (en) Method for producing steel plate excellent in bake hardenability after biaxial tensile deformation
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH04120243A (en) High tensile strength cold rolled steel sheet and its production
JPS6330970B2 (en)
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JP2953323B2 (en) Manufacturing method of low carbon cold rolled steel sheet
JPH0784618B2 (en) Method for producing cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JPS634626B2 (en)
JPH1161274A (en) Manufacture of steel sheet for extra deep drawing, excellent in baking hardenability
JPH0525549A (en) Production of cold rolled steel sheet excellent in baking hardenability
JPH0625753A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPH05105985A (en) Cold rolled steel sheet with baking hardenability and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term