JPH0699216A - Hot extruding die - Google Patents

Hot extruding die

Info

Publication number
JPH0699216A
JPH0699216A JP27362992A JP27362992A JPH0699216A JP H0699216 A JPH0699216 A JP H0699216A JP 27362992 A JP27362992 A JP 27362992A JP 27362992 A JP27362992 A JP 27362992A JP H0699216 A JPH0699216 A JP H0699216A
Authority
JP
Japan
Prior art keywords
die
composite material
wear
heat
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27362992A
Other languages
Japanese (ja)
Other versions
JP2950051B2 (en
Inventor
Hiroshi Matsuo
洋 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27362992A priority Critical patent/JP2950051B2/en
Publication of JPH0699216A publication Critical patent/JPH0699216A/en
Application granted granted Critical
Publication of JP2950051B2 publication Critical patent/JP2950051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To reduce deformation and wear by building up a composite material wherein heat and wear resisting compound grains having an average grain diameter each of a special range in a substrate metal made from heat resisting alloy are dispersed at a rate of a special range on the inner surface containing at least a bearing part of a die body. CONSTITUTION:A die body 10 is constituted of alloy tool steel and on the inner surface containing at least the bearing part is built up the composite material 20 wherein heat and wear resisting compound grains having an average grain diameter each 50-100mum are dispersed at a rate of 10-50wt.%. The base metal of the composite material 20 is made Ni base heat resisting alloy and the compound grain is made NbC. In this way, the bearing part of a hot extruding die is poor in deformation and wear and since the die itself is free from deformation, many repeated uses can be made. Since composite material is used partially to refrain deformation and wear, the die itself can be reduced in cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間押出しによる継目
無管等の製造に使用する熱間押出し用ダイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot extrusion die used for producing a seamless pipe or the like by hot extrusion.

【0002】[0002]

【従来の技術】熱間押出しによる継目無管の製造は、図
1に示すように、加熱された中空の材料1をコンテナ2
内に装入した後、材料1を貫通してダイス3内にマンド
レル4を通し、この状態で材料1を前方へ押圧すること
により製造される。即ち、押圧された材料1は、ダイス
3とマンドレル4の間に形成された環状の隙間から前方
へ管状に押出される。ここで、ダイス3はダイホルダー
5内に収容され、押出し方向前方からダイバッカー6に
て支持されている。
2. Description of the Related Art As shown in FIG. 1, a seamless hollow tube is manufactured by hot extrusion.
It is manufactured by inserting the mandrel 4 into the die 3 after passing through the material 1 and pressing the material 1 forward in this state. That is, the pressed material 1 is extruded in a tubular shape forward through an annular gap formed between the die 3 and the mandrel 4. Here, the die 3 is housed in the die holder 5, and is supported by the die backer 6 from the front in the extrusion direction.

【0003】このような熱間押出し製管に使用されるダ
イスの材質としては、変形および摩耗が少ないSKD6
1等の合金工具鋼が一般的であり、最近では高温での強
度および耐摩耗性が更に優れたMo基、Ni基の耐熱合
金製の一体ダイスも使用されている。
As a material of a die used for such a hot extrusion pipe, SKD6 is less likely to be deformed and worn.
Alloy tool steels such as No. 1 are common, and recently, an integral die made of a Mo-based or Ni-based heat-resistant alloy that is more excellent in strength and wear resistance at high temperatures is also used.

【0004】[0004]

【発明が解決しようとする課題】しかし、ダイスと材料
が接触するダイスの所謂ベアリング部は、材料との摩耗
や材料からの伝熱により900〜1100℃の高温にな
り、しかも大きな圧縮力および剪断力を受ける。
However, the so-called bearing portion of the die, in which the die and the material come into contact with each other, has a high temperature of 900 to 1100 ° C. due to abrasion with the material and heat transfer from the material, and a large compressive force and shearing force. Receive power.

【0005】そのため、合金工具鋼からなるダイスで
は、小径薄肉管等の押出し条件の厳しい場合や、材料が
難加工性材料の場合には、1回の加工で0.5〜2.0mm
程度の摩耗や変形がベアリング部に生じる。その結果、
成品管の寸法精度が悪化する。また、ダイス寿命が短く
なり、製管コストが上昇する。
Therefore, in the case of a die made of alloy tool steel, if the extrusion conditions such as a small-diameter thin-walled pipe are severe, or if the material is a difficult-to-process material, it is possible to perform 0.5-2.0 mm in one processing.
Some degree of wear and deformation occurs in the bearing. as a result,
The dimensional accuracy of the product pipe deteriorates. Further, the die life is shortened and the pipe manufacturing cost is increased.

【0006】これに対し、耐熱合金からなる一体ダイス
では、ベアリング部の摩耗や変形は少ない。しかし、M
o基の耐熱合金は高価であり、摩耗や変形が抑制されて
も製管コストの上昇を抑えることは困難である。その
点、Ni基の耐熱合金は比較的安価であり、通常はこの
一体ダイスが用いられる。
On the other hand, the integral die made of the heat-resistant alloy has less wear and deformation of the bearing portion. But M
O-based heat-resistant alloys are expensive, and it is difficult to suppress an increase in pipe manufacturing cost even if abrasion and deformation are suppressed. In that respect, the Ni-based heat-resistant alloy is relatively inexpensive, and this integral die is usually used.

【0007】しかし、Ni基の耐熱合金は、合金工具鋼
に比べると常温での強度が劣る。ダイスは、図1に示し
たようにダイホルダー5内にダイバッカー6などにより
支持されており、その支持部は加工中も内面ほど高温に
ならない。そのため、押出し力によってはダイス自体が
変形するおそれがある。ダイスそのものが変形すると、
製品管の寸法が極端に低下し、ダイスの再使用も困難と
なる。また、ベアリング部の変形や摩耗も、最近の厳し
い押出し条件の下では充分と言えなくなりつつある。
However, Ni-base heat-resistant alloys are inferior in strength at room temperature to alloy tool steels. As shown in FIG. 1, the die is supported in the die holder 5 by the die backer 6 and the like, and its supporting portion does not become as hot as the inner surface during processing. Therefore, the die itself may be deformed depending on the pushing force. When the die itself deforms,
The size of the product pipe is extremely reduced, and it becomes difficult to reuse the die. Further, the deformation and wear of the bearing portion are becoming insufficient under the recent severe extrusion conditions.

【0008】本発明の目的は、最近の厳しい押出し条件
下でもベアリング部の変形や摩耗が少なく、しかもダイ
ス自体に変形の生じるおそれがない熱間押出し用ダイス
を提供することにある。
An object of the present invention is to provide a hot extrusion die in which the deformation and wear of the bearing portion are small even under the recent severe extrusion conditions, and the die itself is not likely to be deformed.

【0009】[0009]

【課題を解決するための手段】本発明の熱間押出し用ダ
イスは、ダイス本体が合金工具鋼により構成され、その
少なくともベアリング部を含む内面に、耐熱合金からな
る基体金属中に平均粒径が50〜100μmの耐熱耐摩
耗性化合物粒子を10〜50質量%の割合で分散させた
複合材が肉盛りされてなることを特徴とする。
In the hot extrusion die of the present invention, the die main body is made of alloy tool steel, and the inner surface including at least the bearing portion has an average grain size in the base metal made of a heat-resistant alloy. It is characterized in that a composite material in which heat resistant and abrasion resistant compound particles of 50 to 100 μm are dispersed at a ratio of 10 to 50% by mass is built up.

【0010】[0010]

【作用】本発明の熱間押出し用ダイスにおいては、耐熱
合金からなる基体金属中に耐熱耐摩耗性の化合物粒子を
分散させた複合材が、ベアリング部を含む内面に肉盛り
されているので、ベアリング部の変形および摩耗が耐熱
合金の一体ダイスよりも更に少ない。
In the hot extrusion die of the present invention, since the composite material in which the heat resistant and wear resistant compound particles are dispersed in the base metal made of the heat resistant alloy is built up on the inner surface including the bearing portion, The deformation and wear of the bearing part are even less than those of the heat resistant alloy integrated die.

【0011】また、ダイス本体が常温強度の優れた合金
工具鋼で構成されているので、耐熱合金の一体ダイスで
問題となるダイス自体の変形が生じない。
Further, since the die body is made of alloy tool steel having excellent strength at room temperature, deformation of the die itself, which is a problem with the integrated die of heat resistant alloy, does not occur.

【0012】更に、複合材料が肉盛りによりダイス本体
に一体化されているので、この部分がダイス本体から離
脱するおそれがない。熱間押出し製管では押出し終了後
にマンドレルを後方に引き抜くので、ベアリング部が前
後両方向の強い力を受け、複合材リングの嵌合等ではこ
れが離脱するおそれがある。
Further, since the composite material is integrated with the die body by padding, there is no possibility that this portion will come off from the die body. Since the mandrel is pulled out rearward after the extrusion is completed in the hot-extrusion pipe making, the bearing part receives a strong force in both the front and rear directions, and there is a possibility that it will come off when the composite material ring is fitted.

【0013】複合材に使用する基体金属は、Mo基、N
i基等の耐熱合金とし、ハステロイC276,インコネ
ル718(いずれも商品名)等のNi基耐熱合金の方が
経済的で望ましい。
The base metal used in the composite material is Mo-based, N-based.
As a heat-resistant alloy such as i-based, a Ni-based heat-resistant alloy such as Hastelloy C276 and Inconel 718 (both are trade names) is more economical and desirable.

【0014】基体金属に分散させる化合物粒子として
は、例えばNbC,WC等を用いることができる。これ
らは高温での硬度および耐摩耗性が高いだけでなく、基
体金属と同等の比重を持ち、肉盛り時に化合物粒子の分
散を促進する上でも好都合である。
As the compound particles dispersed in the base metal, for example, NbC, WC or the like can be used. These not only have high hardness and high wear resistance at high temperatures, but also have a specific gravity equivalent to that of the base metal and are advantageous in promoting dispersion of the compound particles during buildup.

【0015】化合物粒子の含有量は、質量比で10〜5
0%とする。10%未満では、高温での強度および耐摩
耗性の改善効果が少なく、50%を超えると複合材の靱
性が低下し、肉盛り時や押出し時に割れが発生する危険
性を生じる。
The content of the compound particles is 10-5 by mass ratio.
0% If it is less than 10%, the effect of improving the strength and wear resistance at high temperature is small, and if it exceeds 50%, the toughness of the composite material decreases, and there is a risk of cracking during padding or extrusion.

【0016】化合物粒子の粒径は平均で50〜100μ
mとする。50μm未満では粒子の分散が難しく、10
0μmを超えると複合材の靱性が著しく低下する。
The average particle size of the compound particles is 50-100 μm.
m. If it is less than 50 μm, it is difficult to disperse the particles, and 10
If it exceeds 0 μm, the toughness of the composite material is significantly reduced.

【0017】肉盛りは、特にその種類を問わず、例えば
基体金属の粉末と化合物粉末を混合したものをプラズマ
肉盛溶射することによって実施できる。また、基体金属
からなる金属チューブの中に化合物粉末を充填したワイ
ヤを用いたガスシールドアーク溶接によっても実施でき
る。
The build-up can be carried out regardless of the kind, for example, by plasma-buildup thermal spraying of a mixture of the powder of the base metal and the compound powder. It can also be carried out by gas shielded arc welding using a wire in which a compound powder is filled in a metal tube made of a base metal.

【0018】肉盛りの範囲は、ダイス本体内面のベアリ
ング部を必須とする。ベアリング部の前後のアプローチ
部、逃げ部については必要に応じて肉盛りすればよい。
The range of build-up requires the bearing portion on the inner surface of the die body. The front and rear approach parts and the relief part of the bearing part may be padded if necessary.

【0019】肉盛り代は、2mm以上とするのが良い。
即ち、2mm未満では複合材中に溶け込む合金工具鋼の
成分比率が大きくなり、複合材の本来の高温強度が得ら
れない懸念があるからである。なお、上限は特に制限す
る必要はないが、肉盛り代の増加に伴い、肉盛り回数が
増加して合金工具鋼の熱影響部の強度が低下する危険性
があるので、強度低下が生じない程度とするのが望まし
く、これは使用する合金工具鋼の成分組成に応じて異な
るから、適宜実験によってその限界を求め、この限界を
超えないようにするのが良い。
The surplus allowance is preferably set to 2 mm or more.
That is, if it is less than 2 mm, the component ratio of the alloy tool steel that dissolves in the composite material becomes large, and there is a concern that the original high temperature strength of the composite material may not be obtained. The upper limit does not need to be particularly limited, but as the build-up allowance increases, there is a risk that the heat-affected zone of the alloy tool steel will have a decreased strength due to an increase in the build-up frequency, so that no decrease in strength occurs. It is desirable to set the degree to a certain degree, which varies depending on the composition of the alloy tool steel to be used. Therefore, it is preferable to determine the limit by an experiment appropriately so as not to exceed the limit.

【0020】[0020]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0021】表1に示す押出管を同じく表1に示す条件
で製造するにあたり、3種類のダイスを使用した。
In producing the extruded tube shown in Table 1 under the same conditions shown in Table 1, three kinds of dies were used.

【0022】第1のダイスは、表2に成分組成を示す合
金工具鋼SKD61(JIS G4404)からなる一
体ダイスである。第2のダイスは、表2に成分組成を示
すNi基耐熱合金(ハステロイC276)からなる一体
ダイスである。第3のダイスは、図2に示すように、ダ
イス本体10のベアリング部を含む内面全体に複合材2
0を肉盛し、その内面を切削加工により仕上げたもので
ある。ダイス本体10は上記合金工具鋼により製作し、
複合材10はプラズマ肉盛溶射により被覆した。複合材
10の基本金属は上記Ni基耐熱合金とし、化合物粒子
はNbCとした。NbC粒子の径は平均で100μmと
し、含有量は0〜60質量%の範囲で種々変化させた。
ベアリング部における複合材の肉盛り代は3mmとし、
切削加工により1mm除去した。
The first die is an integrated die made of alloy tool steel SKD61 (JIS G4404) whose composition is shown in Table 2. The second die is an integral die made of a Ni-base heat-resistant alloy (Hastelloy C276) whose composition is shown in Table 2. As shown in FIG. 2, the third die has a composite material 2 over the entire inner surface including the bearing portion of the die body 10.
0 is built up and the inner surface is finished by cutting. The die body 10 is made of the above alloy tool steel,
The composite material 10 was coated by plasma overlaying spraying. The basic metal of the composite material 10 was the above Ni-based heat-resistant alloy, and the compound particles were NbC. The diameter of the NbC particles was 100 μm on average, and the content was variously changed in the range of 0 to 60 mass%.
The build-up allowance of the composite material in the bearing part is 3 mm,
1 mm was removed by cutting.

【0023】各ダイスの使用結果を表3に示す。内径変
動量とは、1回の押出しによるベアリング部の内径変動
量であり、繰り返し回数とは、この内径変動量が1.0m
m以上になるまでの押出し繰り返し回数である。
Table 3 shows the results of using each die. The inner diameter variation is the inner diameter variation of the bearing part by one extrusion, and the number of repetitions is 1.0 m of this inner diameter variation.
This is the number of times extrusion is repeated until m or more.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】工具鋼一体ダイスは、内径変動量が0.5m
mと大きく、繰り返し回数は2回に過ぎない。耐熱合金
一体ダイスは、加工1回当りの内径変動量は小さいが、
その1回の加工によりダイス自体が変形したため、繰り
返し使用ができなかった。これらに対し、耐熱合金と化
合物粉末の複合材を肉盛りしたダイスは、化合物粉末量
が適正である限り、内径変動量が耐熱合金一体ダイスよ
り更に小さい。また、ダイス自体の変形がなく、複合材
の剥離もないため、繰り返し回数が大幅に増大する。更
に、複合材が局部使用され、本体が安価な工具鋼で製作
されているため、ダイス自体のコストも安い。従って、
製品の寸法精度向上と合わせて、製管コストの低減が達
成される。
The tool steel integrated die has an inner diameter variation of 0.5 m.
m is large and the number of repetitions is only two. The heat-resistant alloy integrated die has a small variation in inner diameter per machining,
Since the die itself was deformed by the single processing, it could not be used repeatedly. On the other hand, the die having the composite of the heat-resistant alloy and the compound powder has a smaller inner diameter variation than the heat-resistant alloy integrated die as long as the amount of the compound powder is appropriate. Moreover, since the die itself is not deformed and the composite material is not peeled off, the number of repetitions is significantly increased. Further, since the composite material is locally used and the main body is made of inexpensive tool steel, the cost of the die itself is low. Therefore,
Along with the improvement of the dimensional accuracy of the product, the reduction of the pipe manufacturing cost is achieved.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
の熱間押出し用ダイスは、ベアリング部の変形や摩耗が
少なく、また、ダイス自体の変形がないため、多数回の
繰り返し使用が可能である。更に、変形や摩耗を抑える
複合材を局部的に使用しているので、ダイス自体のコス
トも安い。従って、製品製造コストに占めるダイスコス
トの比率を低下させ、製造コストの大幅引下げを図る。
As is apparent from the above description, the hot extrusion die of the present invention has little deformation and wear of the bearing portion, and since the die itself is not deformed, it can be repeatedly used many times. Is. Furthermore, since the composite material that suppresses deformation and wear is locally used, the cost of the die itself is low. Therefore, the ratio of the die cost to the product manufacturing cost is reduced, and the manufacturing cost is significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間押出し製管法の概要を示す断面図である。FIG. 1 is a cross-sectional view showing an outline of a hot extrusion pipe manufacturing method.

【図2】本発明ダイスの構成例を模式的に示す断面図で
ある。
FIG. 2 is a cross-sectional view schematically showing a configuration example of a die of the present invention.

【符号の説明】[Explanation of symbols]

10 ダイス本体 20 複合材 10 Dice body 20 Composite material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ダイス本体が合金工具鋼により構成さ
れ、その少なくともベアリング部を含む内面に、耐熱合
金からなる基体金属中に平均粒径が50〜100μmの
耐熱耐摩耗性化合物粒子を10〜50質量%の割合で分
散させた複合材が肉盛りされてなることを特徴とする熱
間押出し用ダイス。
1. A die body is made of an alloy tool steel, and 10 to 50 heat resistant and abrasion resistant compound particles having an average particle size of 50 to 100 μm are contained in a base metal made of a heat resistant alloy on an inner surface including at least a bearing portion thereof. A die for hot extrusion, characterized in that a composite material dispersed in a mass% ratio is piled up.
JP27362992A 1992-09-16 1992-09-16 Die for hot extrusion Expired - Lifetime JP2950051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27362992A JP2950051B2 (en) 1992-09-16 1992-09-16 Die for hot extrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27362992A JP2950051B2 (en) 1992-09-16 1992-09-16 Die for hot extrusion

Publications (2)

Publication Number Publication Date
JPH0699216A true JPH0699216A (en) 1994-04-12
JP2950051B2 JP2950051B2 (en) 1999-09-20

Family

ID=17530373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27362992A Expired - Lifetime JP2950051B2 (en) 1992-09-16 1992-09-16 Die for hot extrusion

Country Status (1)

Country Link
JP (1) JP2950051B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173156A (en) * 2010-02-25 2011-09-08 Bridgestone Corp Metal drawing die, and method for drawing steel cord
JP2013519527A (en) * 2010-02-12 2013-05-30 ノルスク・ヒドロ・アーエスアー Modular extrusion die
JP2013107106A (en) * 2011-11-21 2013-06-06 Nippon Steel & Sumitomo Metal Corp Method of manufacturing seamless tube
CN104772360A (en) * 2015-03-31 2015-07-15 广东龙丰精密铜管有限公司 Drawing outer die with highly hard work surface
EP2813311A3 (en) * 2013-06-10 2015-11-04 WEFA Singen GmbH Method for producing a strand pressing tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519527A (en) * 2010-02-12 2013-05-30 ノルスク・ヒドロ・アーエスアー Modular extrusion die
JP2011173156A (en) * 2010-02-25 2011-09-08 Bridgestone Corp Metal drawing die, and method for drawing steel cord
JP2013107106A (en) * 2011-11-21 2013-06-06 Nippon Steel & Sumitomo Metal Corp Method of manufacturing seamless tube
EP2813311A3 (en) * 2013-06-10 2015-11-04 WEFA Singen GmbH Method for producing a strand pressing tool
CN104772360A (en) * 2015-03-31 2015-07-15 广东龙丰精密铜管有限公司 Drawing outer die with highly hard work surface

Also Published As

Publication number Publication date
JP2950051B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
EP1514630B1 (en) Resistance welding electrode and method for its manufacture
JP5610101B1 (en) Hot pipe plug
JP2006328539A (en) Coated cemented carbide, and tool
JPH0699216A (en) Hot extruding die
EP1327007B1 (en) Tool for coldforming operations
JP5083930B2 (en) Spot welding electrode
JPH06316743A (en) Die for forging
JPH03204106A (en) Plug for manufacturing hot seamless tube
JPS63192504A (en) Plug for seamless steel tube manufacturing
JP5255809B2 (en) Stepped metal tube manufacturing method and tube expansion plug
JP2001150247A (en) Electrode wire for wire electric discharge machining
JP4736773B2 (en) Seamless steel pipe manufacturing method
JP2000263105A (en) Manufacture of iron base dispersion strengthening alloy tube
JP3748636B2 (en) Material for gas shielded arc welding nozzle and manufacturing method thereof
JPH08132132A (en) Die
JPH10230362A (en) Member for welding torch and its manufacture
JPH0669595B2 (en) Joining type tool
JP7152119B2 (en) Friction stir welding tool
JPH06114435A (en) Die for hot extrusion tube making
US20020112523A1 (en) Method and tool of tungsten/heavy metal alloy for hot-forging copper and copper alloys
JPH03229837A (en) Ti-base alloy for hot working tool and its manufacture
JPH06315704A (en) Two layer film formed tool for hot working
JP2017511753A (en) Brazing and soldering alloy wire
JP2564826B2 (en) Method for manufacturing dispersion-strengthened alloy thin-walled pipe
CN117206746A (en) Flux-cored wire for WC ceramic particle reinforced titanium-based composite material and preparation method thereof