JPH0699215A - Manufacture of three-dimensional fine parts - Google Patents

Manufacture of three-dimensional fine parts

Info

Publication number
JPH0699215A
JPH0699215A JP23918492A JP23918492A JPH0699215A JP H0699215 A JPH0699215 A JP H0699215A JP 23918492 A JP23918492 A JP 23918492A JP 23918492 A JP23918492 A JP 23918492A JP H0699215 A JPH0699215 A JP H0699215A
Authority
JP
Japan
Prior art keywords
die
shape
extruded
speed
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23918492A
Other languages
Japanese (ja)
Inventor
Masatoshi Kanamaru
昌敏 金丸
雄二 ▲吉▼富
Yuji Yoshitomi
Takeshi Harada
武 原田
Kazuo Sato
佐藤  一雄
Akiomi Kono
顕臣 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23918492A priority Critical patent/JPH0699215A/en
Publication of JPH0699215A publication Critical patent/JPH0699215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To obtain parts high in precision and excellent in productivity by giving torsional torque to a member by synchronizaing the speed of the member extruded from a molding die with an extruding speed in a method of inserting a material to be worked into an extrusion molding die for extrusion molding. CONSTITUTION:A shape to mold a fine gear or a fan, etc., is molded on a die 2. Wire electric discharge machining or wet etching is preferred to be used as a method to work an arbitrary shape on the die. The material 1 to be worked is inserted into a container 3 fixed with a die 2, a ram 4 is advanced at a fixed speed to extrude the material 1 to be worked. At this time, when the torsional torque is given to the member extruded by synchronizing its speed with the extruding speed, the straight extruded member can be molded into the shape of a screw. In this way, it is easy to mold the member into the shape of either a screw or a a straight line and the torsional pitch can be selected freely in the shape of the screw.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微小なファン,タービ
ン,スクリューベーンロータ等の三次元微小部品を多量
生産できる製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method capable of mass-producing three-dimensional minute parts such as minute fans, turbines and screw vane rotors.

【0002】[0002]

【従来の技術】従来、腕時計に使用されている歯車等の
微小な三次元部品を形成する場合、一般には機械加工に
よって製造している。また、特開平1−268805 号公報に
記載のように、1mm以下の直径の歯車の複雑な輪郭を有
する腕時計用マグネットロータは金型を用いた射出成形
法で製作されている。さらに、マイクロタービン,マイ
クロロータ等を形成する場合、機械加工では小さくなる
ほど困難となるが、日本の科学と技術(1991,Vol.
32,No.263)に記載のように、ワイヤ放電研削加
工法もしくはマイクロ型彫放電加工等の特殊な方法を用
いて製作されている。
2. Description of the Related Art Conventionally, when forming minute three-dimensional parts such as gears used in wristwatches, they are generally manufactured by machining. Further, as described in JP-A-1-268805, a wristwatch magnet rotor having a complicated contour of a gear having a diameter of 1 mm or less is manufactured by an injection molding method using a mold. Furthermore, when forming micro turbines, micro rotors, etc., the smaller the machining becomes, the more difficult it becomes. However, Japanese science and technology (1991, Vol.
32, No. 263), it is manufactured by using a special method such as a wire electric discharge grinding method or a micro die-sinking electric discharge machining.

【0003】一方、押出し成形加工を用いて微小な三次
元部品を形成した例はないが、類似例として歯車を形成
した例がある。例えば、塑性加工春季大会講演論文集
(平成元年)に記載のように、はすば歯車の形成に冷間
押出し法を用いている。はすば歯車とは一般の平歯車と
は異なり歯すじは軸に平行ではなく、軸に対しねじれた
歯車である。つまり、はすば歯車の押出し加工に用いる
押出し成形用ダイスも同様にねじれた歯が形成されてい
る。
On the other hand, there is no example in which a minute three-dimensional part is formed by using extrusion molding, but there is an example in which a gear is formed as a similar example. For example, the cold extrusion method is used for forming helical gears, as described in the Proc. Spring Conference Lecture Collection (1989). Unlike a general spur gear, a helical gear is a gear in which a tooth line is not parallel to the shaft but twisted with respect to the shaft. In other words, the extrusion molding die used for extrusion processing of the helical gear is also formed with twisted teeth.

【0004】[0004]

【発明が解決しようとする課題】上記の従来技術は多品
種の歯車もしくはマイクロタービン等の生産性について
考慮されておらず、射出成形法を用いた技術では金型を
用いて腕時計用マグネットロータ等を製作しているた
め、製造プロセスが複雑になる問題があった。さらに、
マイクロタービン等の三次元曲率を有する加工が技術的
に困難である問題があった。また、ワイヤ放電加工法を
用いている技術では、単品生産となり量産性がなくコス
ト高になる問題があった。
The above-mentioned prior art does not consider the productivity of various kinds of gears, micro turbines, etc., and the technology using the injection molding method uses a mold to use a magnet rotor for a wristwatch or the like. Since it is manufactured, there is a problem that the manufacturing process becomes complicated. further,
There has been a problem that it is technically difficult to process a micro turbine having a three-dimensional curvature. In addition, the technique using the wire electric discharge method has a problem that the cost is high because it is a single item production and mass production is not possible.

【0005】さらに、冷間押出し法を用いた技術では微
小なはすば歯車を成形する場合、押出し成形用ダイスに
微小でしかもねじれた歯を形成しなければならないが、
小径になるほどダイスの製作が困難になるという問題が
あった。例えば、直径50mmのはすば歯車の成形は非常
に困難である。
Further, in the technique using the cold extrusion method, when forming a minute helical gear, it is necessary to form minute and twisted teeth on the extrusion die.
There was a problem that the smaller the diameter, the more difficult it was to manufacture a die. For example, it is very difficult to form a helical gear having a diameter of 50 mm.

【0006】本発明の目的は、高精度でしかも生産性に
優れた三次元微小部品の製造方法を提供することにあ
る。
An object of the present invention is to provide a method of manufacturing a three-dimensional micro component which is highly accurate and excellent in productivity.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は押出し成形用ダイスに被加工材を挿入し押
出し成形加工する方法において、押出し成形用ダイスよ
り押し出された部材に押出し速度と同期させて前記部材
にねじりトルクを付与する。
In order to achieve the above object, the present invention provides a method of inserting a work material into an extrusion molding die and performing extrusion molding, wherein an extrusion speed is applied to a member extruded from the extrusion molding die. A torsion torque is applied to the member in synchronization with.

【0008】[0008]

【作用】上記のように構成された押出し加工装置では、
押し出された部材は押出しダイス形状にかかわらず、三
次元曲率を有する加工及び直線的に押出す加工が可能で
ある。
In the extrusion processing apparatus configured as described above,
The extruded member can be processed with a three-dimensional curvature and linearly extruded regardless of the shape of the extrusion die.

【0009】換言すると、押出しダイス内部の形状は押
出し方向に対して真直に加工すれば良く、たとえ、はす
ば歯車を形成する場合であっても、ダイスにねじれた歯
形を形成する必要がない。
In other words, the shape of the inside of the extrusion die may be processed straight in the extrusion direction, and even if a helical gear is formed, it is not necessary to form a twisted tooth profile on the die. .

【0010】[0010]

【実施例】以下、本発明の各実施例を図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】〈実施例1〉図1は本発明の実施例の三次
元微小部品の製造方法の説明図である。
<Embodiment 1> FIG. 1 is an explanatory view of a method for manufacturing a three-dimensional micro component according to an embodiment of the present invention.

【0012】図1において、1は押出し加工用の被加工
材、2はダイス、3はコンテナ、4はラム、5は押し出
された部材に押出し方向と同方向に張力を与える機構
(同図P)及び押出し速度と同期させて部材にねじりト
ルクを付与する機構(同図N)を示す。
In FIG. 1, 1 is a material to be extruded, 2 is a die, 3 is a container, 4 is a ram, and 5 is a mechanism for applying tension to the extruded member in the same direction as the extruding direction (see P in the same figure). ) And a mechanism for imparting a twisting torque to the member in synchronization with the extrusion speed (N in the figure).

【0013】ダイス2,コンテナ3,ラム4の材質は工
具鋼を用いることが好ましいが、押出し加工用の被加工
材1によっては構造用鋼もしくはステンレス鋼を用いて
も良い。
Tool steel is preferably used as the material of the die 2, container 3 and ram 4, but structural steel or stainless steel may be used depending on the material 1 to be extruded.

【0014】ダイス2には微小な歯車もしくはファン等
を成形するための形状が形成されている。ダイスに任意
形状を加工するための方法としてはワイヤ放電加工もし
くはウェットエッチングを用いるのが良い。
The die 2 is formed with a shape for molding a minute gear, a fan, or the like. Wire electric discharge machining or wet etching is preferably used as a method for processing an arbitrary shape on the die.

【0015】本発明における三次元微小部品の製造は次
のようにして行う。
The manufacture of the three-dimensional micro component in the present invention is performed as follows.

【0016】図1において、ダイス2を固定したコンテ
ナ3に被加工材1を挿入する。その後、ラム4を一定の
速度によって前進させる。その際ダイス2に設けられた
形状にしたがって、被加工材1は押し出される。この
時、押出し速度と同期させて押し出された部材にねじり
トルクを付与することにより、真直に押し出された部材
をスクリュー形状に形成することができる。
In FIG. 1, the work material 1 is inserted into a container 3 to which a die 2 is fixed. Then, the ram 4 is advanced at a constant speed. At this time, the work piece 1 is extruded according to the shape provided on the die 2. At this time, by applying a torsion torque to the extruded member in synchronization with the extruding speed, the extruded member can be formed into a screw shape.

【0017】本加工法は押出し加工法の真直な部材を別
工程でねじって仕上げる加工とは本質的に異なる。すな
わち、ダイスの出口において塑性状態にある被加工物は
極くわずかの力で容易に変形様態を変えてねじることが
できるのに対し、一旦、加工された材料を改めてねじる
には弾性状態から塑性状態に持ち込むのに大きなトルク
を必要とするからである。
This processing method is essentially different from the processing of twisting and finishing a straight member in the extrusion processing in a separate step. That is, the work piece in the plastic state at the exit of the die can be easily changed in shape and twisted with very little force, whereas once the processed material is twisted again, it will change from the elastic state to the plastic state. This is because a large torque is required to bring it into the state.

【0018】なお、好ましくは本発明の実施において、
ねじりトルクを付与すると同時に、押出し方向と同方向
に張力を与えながら押出し加工を行うと、スクリュー形
状の加工品の軸の真直度を高めることができる。
Preferably, in the practice of the present invention,
When the extrusion process is performed while applying a torsion torque and a tension in the same direction as the extrusion direction, the straightness of the shaft of the screw-shaped processed product can be increased.

【0019】また、本発明は押出し加工では冷間,熱間
加工のどちらの加工法にも適用することができる。
The present invention can be applied to both cold and hot working methods in extrusion.

【0020】図2ないし図3は本発明を用いて成形した
三次元微小成形品の一例を示す。
2 to 3 show an example of a three-dimensional micro-molded product molded by using the present invention.

【0021】図2(a)に示したファン形状を押出し成
形する場合、翼の曲率半径がRA,RBと内側と外側で
異なる場合は図2の(b)に示したように自然にねじれ
て押しだされる。
When the fan shape shown in FIG. 2 (a) is extruded and the blades have different radii of curvature RA and RB from the inside to the outside, they naturally twist as shown in FIG. 2 (b). Pushed out.

【0022】その理由について次に説明する。ファン翼
部の曲率が異なる場合は、ダイス内において被加工材1
の押しだされる流れの速度が変化する。そのため、押し
出された部材は自然にねじれて出てくる。
The reason will be described below. When the fan blades have different curvatures, the work piece 1 is processed in the die.
The velocity of the pushed flow of is changed. Therefore, the extruded member naturally twists and comes out.

【0023】本発明では、図3(a)に示したファン形
状について押出し成形を行う場合、翼の曲率半径がR
A,RBと内側と外側で異なる場合は、前記に記載した
ように押し出された部材は自然にねじれるが、押し出さ
れた部材にねじれ方向と逆方向にねじりトルクを付与す
ることにより、図3(b)に示したようなねじれのない
直線的な部材が得られる。
In the present invention, when extrusion molding is performed on the fan shape shown in FIG. 3A, the blade has a radius of curvature of R.
When A and RB are different from the inner side and the outer side, the extruded member naturally twists as described above, but by applying a torsion torque to the extruded member in the direction opposite to the twisting direction, the result of A straight member having no twist as shown in b) is obtained.

【0024】以上のような製造方法に基づいて外径3m
m,羽根数8枚,羽根の厚さ0.2mmの遠心式マイクロフ
ァン用羽根部品が成形できた。
Based on the above manufacturing method, the outer diameter is 3 m.
We were able to mold a blade part for a centrifugal microfan with m, 8 blades, and a blade thickness of 0.2 mm.

【0025】〈実施例2〉図4は本発明の実施例に係る
貫流ファン部品の製造工程の説明図である。
<Embodiment 2> FIG. 4 is an explanatory view of a manufacturing process of a cross-flow fan component according to an embodiment of the present invention.

【0026】図4において、本発明を適用して、(a)
に示した押出し部品6を成形した。押出し部品6は翼の
形状が内側と外側で異なる場合でも同様の場合でも直線
的に形成することができる。本実施例では素材をアルミ
ニウムとした。次に(b)に示したように押出し部品6
の両側にアルミニウム円盤7を拡散接合した。この場
合、接合方法は拡散接合以外の接合方法を用いても良
い。(c)に示したように翼部分を残して、中心部の部
材を機械加工により削除する。その後、(d)に示した
ようにシャフト8を拡散接合した。この場合も前述と同
様、接合方法は拡散接合以外の接合方法を用いても良
い。
In FIG. 4, the present invention is applied to (a)
The extruded part 6 shown in was molded. The extruded part 6 can be formed linearly in the case where the shape of the blade is different from that of the inside and outside of the blade. In this embodiment, the material is aluminum. Next, as shown in FIG.
Aluminum disks 7 were diffusion-bonded to both sides of. In this case, the joining method may be a joining method other than the diffusion joining. As shown in (c), the member at the center is removed by machining, leaving the blade portion. Then, as shown in (d), the shaft 8 was diffusion-bonded. In this case as well, similar to the above, the joining method may be a joining method other than the diffusion joining.

【0027】このような方法で外径9mmの貫流ファン部
品が形成できた。
A through-flow fan component having an outer diameter of 9 mm could be formed by such a method.

【0028】図5は本発明の実施例で形成した貫流ファ
ン部品を装備した貫流ファンの外観を示す。
FIG. 5 shows an external appearance of a cross-flow fan equipped with a cross-flow fan component formed according to an embodiment of the present invention.

【0029】図5において、筐体11に支持された貫流
ファン部品9はモータ10によって回転する。吸入口1
2から吸引された空気は吐出口13より吐出される。
In FIG. 5, the cross-flow fan component 9 supported by the housing 11 is rotated by the motor 10. Inhalation port 1
The air sucked from 2 is discharged from the discharge port 13.

【0030】〈実施例3〉図6は油圧ポンプ部品に本発
明を適用した実施例である。
<Embodiment 3> FIG. 6 shows an embodiment in which the present invention is applied to a hydraulic pump component.

【0031】実施例1と同様にして油圧ポンプ内に内接
する歯車式のロータを形成した。図6(a)に該油圧ポ
ンプの断面図を示す。この方式は油圧ポンプ内に内接す
る二つの歯車ロータ14が油を圧縮してポンプとして働
く。
In the same manner as in Example 1, a gear type rotor inscribed in the hydraulic pump was formed. FIG. 6A shows a sectional view of the hydraulic pump. In this system, the two gear rotors 14 inscribed in the hydraulic pump compress oil and work as a pump.

【0032】図6(b),(c)には歯先円直径3.2mm,
モジュール0.2,基準圧力角20゜の該歯車ロータ1
4の異なる形状のものを押出し成形によって加工した例
である。この他にもトロコイド曲線歯形を用いたトロコ
イドポンプの歯形も成形できた。
6 (b) and 6 (c), the tip circle diameter is 3.2 mm,
Module 0.2, the gear rotor 1 with a standard pressure angle of 20 °
In this example, four different shapes are processed by extrusion molding. In addition to this, a tooth profile of a trochoid pump using a trochoid curve tooth profile could be formed.

【0033】[0033]

【発明の効果】本発明によれば、一つの押出し成形用ダ
イスにより押し出される部材はスクリュー形状でも直線
形状でもどちらの形状にも成形が容易である。しかも、
スクリュー形状ではねじれのピッチを自由に選定するこ
とが可能である。本方法においては微小部品を成形する
場合であっても、スクリュー形状の微小部品が容易にで
きる。
According to the present invention, a member extruded by one extrusion molding die can be easily molded into a screw shape, a linear shape or any shape. Moreover,
With the screw shape, the pitch of twist can be freely selected. In this method, a screw-shaped minute component can be easily formed even when a minute component is molded.

【0034】さらに貫流ファン部品もしくはマイクロ油
圧ポンプの歯車ロータ部品等の成形が容易でしかも生産
性に優れている。
Further, the through-flow fan part or the gear rotor part of the micro hydraulic pump can be easily formed and the productivity is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す三次元微小部品の製造
方法の説明図。
FIG. 1 is an explanatory view of a method for manufacturing a three-dimensional micro component showing an embodiment of the present invention.

【図2】本発明を用いて成形した三次元微小成形品の一
例の説明図。
FIG. 2 is an explanatory view of an example of a three-dimensional micro-molded product molded by using the present invention.

【図3】本発明を用いて成形した三次元微小成形品の一
例の説明図。
FIG. 3 is an explanatory view of an example of a three-dimensional micro-molded product molded by using the present invention.

【図4】本発明の一実施例を示す貫流ファン部品の製造
工程の説明図。
FIG. 4 is an explanatory view of a manufacturing process of a cross-flow fan component showing an embodiment of the present invention.

【図5】本発明の一実施例を示す貫流ファン部品を装備
した貫流ファンの斜視図。
FIG. 5 is a perspective view of a cross-flow fan equipped with a cross-flow fan component according to an embodiment of the present invention.

【図6】油圧ポンプに本発明を適用した実施例の断面図
(a)および斜視図(b)(c)。
FIG. 6 is a sectional view (a) and a perspective view (b) (c) of an embodiment in which the present invention is applied to a hydraulic pump.

【符号の説明】[Explanation of symbols]

1…押出し加工用の被加工材、2…ダイス、3…コンテ
ナ、4…ラム、5…張力を与える機構及びねじりトルク
を付与する機構。
1 ... Workpiece for extrusion processing, 2 ... Die, 3 ... Container, 4 ... Ram, 5 ... Mechanism for applying tension and mechanism for applying torsion torque.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 一雄 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 河野 顕臣 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Sato 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd.Mechanical Research Laboratory (72) Inventor Akemi Kono 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Co., Ltd. Machinery Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】押出し成形用ダイスに被加工材を挿入し、
押出し成形加工する方法において、前記成形用ダイスよ
り押し出された部材に押出し速度と同期させて前記部材
にねじりトルクを付与することを特徴とする三次元微小
部品の製造方法。
1. A work material is inserted into an extrusion molding die,
A method for producing a three-dimensional micropart, which comprises applying a twisting torque to a member extruded from the forming die in synchronism with an extrusion speed in the extrusion molding method.
JP23918492A 1992-09-08 1992-09-08 Manufacture of three-dimensional fine parts Pending JPH0699215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23918492A JPH0699215A (en) 1992-09-08 1992-09-08 Manufacture of three-dimensional fine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23918492A JPH0699215A (en) 1992-09-08 1992-09-08 Manufacture of three-dimensional fine parts

Publications (1)

Publication Number Publication Date
JPH0699215A true JPH0699215A (en) 1994-04-12

Family

ID=17040971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23918492A Pending JPH0699215A (en) 1992-09-08 1992-09-08 Manufacture of three-dimensional fine parts

Country Status (1)

Country Link
JP (1) JPH0699215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039231A1 (en) * 2002-10-31 2004-05-13 Toshiba Tec Kabushiki Kaisha Method and device for manufacturing mounting member for rotary cleaning body
CN100407975C (en) * 2002-10-31 2008-08-06 东芝泰格有限公司 Method and apparatus for producing mounting member of rotary cleaning member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039231A1 (en) * 2002-10-31 2004-05-13 Toshiba Tec Kabushiki Kaisha Method and device for manufacturing mounting member for rotary cleaning body
CN100407975C (en) * 2002-10-31 2008-08-06 东芝泰格有限公司 Method and apparatus for producing mounting member of rotary cleaning member

Similar Documents

Publication Publication Date Title
JP2879336B2 (en) Method and apparatus for manufacturing herringbone gear
US20050106023A1 (en) Method of making complex twisted blades with hollow airfoil cross section and the turbines based on such
Chaubey et al. State-of-art review of past research on manufacturing of meso and micro cylindrical gears
JP2002138995A (en) Method for manufacturing long rhombus vane for axial flow fluid machinery and raw material thereof
JPH03184726A (en) Method for manufacturing impeller or rotor having not less than one vanes for turbine pump application using electrical discharge machining and device manufactured thereby
JP3168865B2 (en) Impeller for multistage centrifugal compressor and method of manufacturing the same
JPH0699215A (en) Manufacture of three-dimensional fine parts
US6348022B1 (en) Planetary gear transmission apparatus
KR20030051670A (en) Method for providing assemblies with gearings and profiles
JPS5910436A (en) Method and device for swaging long tapered metallic pipe
CN213728724U (en) High-precision low-cost equal-wall-thickness single-screw pump hollow rotor forming equipment
JP2645261B2 (en) Screw rotor
GB1576354A (en) Method of building up pressure in a material using multi-shaft screw machine
JPS6181591A (en) Vane pump rotor
JPH09155442A (en) Manufacture of three dimensional parts of dissimilar section shape
GB2137909A (en) Forming dies for the manufacture of screw-shaped bodies from tubular semi-products
CN2571531Y (en) High-speed rotation friction tooth extruding machine
HU193674B (en) Method and mechanism for decreasing streem losses of fluid mechanics machines and apparatuses
JP4979086B2 (en) Manufacturing method of rotor for gear pump
JP3291212B2 (en) Conical gear and hourglass worm and method of making the same
CN217831384U (en) Integrated into one piece&#39;s helicopter exhaust elbow mould
JPH01142298A (en) Spiral case for centrifugal pump
CN215203360U (en) Tail end cutting device of extruder
CN113028029B (en) Cylindrical ring surface combined worm, transmission pair and design and forming method thereof
CN107627076A (en) A kind of cycloid hydraulic motor unitary stator processing technology