JPH0699037A - Method for recovering gaseous co2 in alkaline liquid - Google Patents

Method for recovering gaseous co2 in alkaline liquid

Info

Publication number
JPH0699037A
JPH0699037A JP3013500A JP1350091A JPH0699037A JP H0699037 A JPH0699037 A JP H0699037A JP 3013500 A JP3013500 A JP 3013500A JP 1350091 A JP1350091 A JP 1350091A JP H0699037 A JPH0699037 A JP H0699037A
Authority
JP
Japan
Prior art keywords
liquid
carbon dioxide
exchange membrane
anode
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3013500A
Other languages
Japanese (ja)
Inventor
Akira Kakimoto
朗 柿本
Hitoshi Miyamoto
均 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3013500A priority Critical patent/JPH0699037A/en
Publication of JPH0699037A publication Critical patent/JPH0699037A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To recover gaseous CO2 with good efficiency and large diffusivity by separating gaseous CO2 from alkaline liquid with dissolved gaseous CO2 by electrodialysis. CONSTITUTION:After nonvolatile acid such as sulfuric acid is added to liquid with absorbed carbon dioxide, the mixture is transferred to a gas-liquid separator 3 and the gaseous CO2 gasified there is separated. Next, the liquid from which carbon dioxide has been separated is fed to an electrodialysis tank 2. In the tank a cation exchange membrane 7 and an anion exchange membrane 6 are installed on the cathode 5 side and on the anode 4 side respectively. First the liquid is put in between the ion exchange membranes 6, 7 each. Then, cations in the liquid is attracted to the cathode 5 side and permeates the cation exchange membrane 7 to move to the cathode 5 side. And since nonvolatile acid radicals, carbonate radicals and bicarbonate radicals in the liquid are cations, they permeate the anion exchange membrane 6 to move to the anode 4 side. On the anode 4 side, the carbonate radicals and bicarbonate radicals that remain with the increase in acid are turned into gaseous CO2. And the liquid and liquid leaving the anode 5 side are recycled as additional acid and an absorbent respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭酸ガス(以下、CO2
と略す)を溶解したアルカリ液からCO2 を回収する方
法に関する。
The present invention relates to carbon dioxide gas (hereinafter referred to as CO 2
Abbreviated) is recovered from the alkaline solution in which CO 2 is recovered.

【0002】[0002]

【従来の技術】ガス中の炭酸ガスを分離回収する方法の
一方法として、図6に示すようにアルカリやアミンを用
いた吸収器により炭酸ガスを液に吸収する炭酸ガス吸収
装置と、その吸収液から放散させる炭酸ガス放散装置か
ら構成されている。
2. Description of the Related Art As one method for separating and recovering carbon dioxide gas in a gas, as shown in FIG. 6, a carbon dioxide gas absorption device for absorbing carbon dioxide gas into a liquid by an absorber using an alkali or amine, and its absorption. It is composed of a carbon dioxide emission device that emits from the liquid.

【0003】炭酸ガスを吸収液から放散させる方法とし
て、温度を上げることにより溶存炭酸ガスの溶解度を低
下させて揮散させる方法や、吸収圧力より低い圧力とし
て放散させる方法があり、また温度および圧力以外の方
法としては、酸を添加して炭酸根のガス化を促進する方
法が考えられている。
As a method of releasing carbon dioxide gas from the absorbing liquid, there are a method of lowering the solubility of dissolved carbon dioxide gas by raising the temperature and volatilizing it, and a method of releasing it at a pressure lower than the absorption pressure. As the above method, a method of adding an acid to promote gasification of carbonate radicals is considered.

【0004】[0004]

【発明が解決しようとする課題】従来の吸収炭酸ガスの
放散方法には、以下のような問題があった。 (1)圧力変化による放散方法のうち、例えば高圧にて
吸収して定圧にして放散させる方法は厖大なガス量を加
圧するために必要なエネルギーが大きいという問題があ
り、また常圧にて吸収して減圧して放散させる方法は減
圧することにより水蒸気が発生するため、液とガスの炭
酸ガスの分圧差が大きく取れないために効率が悪いとい
う問題がある。
The conventional methods for releasing absorbed carbon dioxide gas have the following problems. (1) Among the diffusion methods by pressure change, for example, the method of absorbing at a high pressure and releasing at a constant pressure has a problem that the energy required to pressurize a huge gas amount is large, and the absorption at a normal pressure is also required. In the method of decompressing and then dissipating, since steam is generated by decompressing, there is a problem that efficiency is poor because a large partial pressure difference between carbon dioxide gas of liquid and gas cannot be obtained.

【0005】(2)低温にて吸収し、高温にて放散させ
る方法は放散させる温度が120℃程度と高いため、水
蒸気の発生が起こり効率が悪いという問題のほか、また
吸収剤としてアミン類などを用いるため、溶媒が高価
で、しかも溶媒が劣化するという問題がある。
(2) In the method of absorbing at low temperature and dissipating at high temperature, since the dissipating temperature is as high as about 120 ° C., there is a problem that steam is generated and efficiency is low, and amines such as absorbents are used. Therefore, there is a problem that the solvent is expensive and the solvent is deteriorated.

【0006】(3)酸を用いる方法は酸および炭酸ガス
吸収液を多量に必要とするためランニングコストが大き
いという問題がある。
(3) The method using an acid has a problem that the running cost is high because a large amount of the acid and the carbon dioxide absorbing solution are required.

【0007】本発明は上記技術水準に鑑み、従来技術に
おけるような問題点の少ないアルカリ液に吸収されたC
2 回収方法を提供しようとするものである。
[0007] In view of the above-mentioned state of the art, the present invention is a method of absorbing C absorbed in an alkaline solution which has few problems as in the prior art.
It is intended to provide an O 2 recovery method.

【0008】[0008]

【課題を解決するための手段】本発明は、 (1)炭酸ガスを溶解したアルカリ液を電気透析によっ
て炭酸ガスを分離することを特徴とするアルカリ液中の
炭酸ガスの回収方法
The present invention provides (1) a method for recovering carbon dioxide gas in an alkaline liquid, wherein the carbon dioxide gas is separated from the alkaline liquid in which the carbon dioxide gas is dissolved by electrodialysis.

【0009】(2)炭酸ガスを溶解したアルカリ液に非
揮発性酸を添加して部分的に炭酸ガスを分離回収し、残
アルカリ液を電気透析によって炭酸ガスを分離すること
を特徴とするアルカリ液中の炭酸ガスの回収方法
(2) An alkali characterized in that a non-volatile acid is added to an alkaline solution in which carbon dioxide is dissolved to partially separate and recover the carbon dioxide, and the residual alkaline solution is electrodialyzed to separate the carbon dioxide. Recovery method of carbon dioxide in liquid

【0010】(3)陽イオン交換膜及び/又は陰イオン
交換膜を組込んだ電解透析を用いることを特徴とする上
記1又は2記載のアルカリ液中の炭酸ガスの回収方法で
ある。
(3) The method for recovering carbon dioxide gas in an alkaline liquid according to the above 1 or 2, wherein electrolytic dialysis incorporating a cation exchange membrane and / or an anion exchange membrane is used.

【0011】[0011]

【作用】一般的にCO2 は吸収塔で吸収液(NaOH,
KOHなど)と下記式のように反応させられ、吸収液に
吸収される。 CO2 +MOH → MHCO3 (但し、M:アルカリ
金属) この生成したMHCO3 溶液は電気透析槽で電気透析さ
れて分解し、CO2 溶解液とアルカリ液に分離される。
生成したCO2 溶解液に気液分離槽でCO2 は気体とし
て回収され、CO2 を回収された後の液とアルカリ液は
合流してCO2の吸収用に再使用される。
[Function] In general, CO 2 is absorbed in the absorption tower (NaOH,
(KOH etc.) as shown in the following formula, and is absorbed by the absorbing liquid. CO 2 + MOH → MHCO 3 (M: alkali metal) The MHCO 3 solution thus produced is electrodialyzed in an electrodialysis tank to decompose and is separated into a CO 2 solution and an alkaline solution.
CO 2 is recovered as a gas in the produced CO 2 solution in the gas-liquid separation tank, and the solution after recovering CO 2 and the alkaline solution are combined and reused for absorbing CO 2 .

【0012】CO2 を吸収して生成したMHCO3 溶液
を直接上記のように電気透析する前に、非揮発性酸(塩
酸,硫酸,硝酸,弗酸など)を添加して、下記式のよう
に反応して大部分のCO2 を揮散させた後、電気透析す
ることもできる。 MHCO3 +HAc → MAc+HCO3 - +H
+ (但し、Ac:酸) HCO3 - +H+ → CO2 +H2
Before electrodialyzing the MHCO 3 solution formed by absorbing CO 2 as described above, a non-volatile acid (hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, etc.) is added to obtain the following formula. It is also possible to volatilize most of the CO 2 in response to the above and then electrodialyze. MHCO 3 + HAc → MAc + HCO 3 - + H
+ (Where, Ac: acid) HCO 3 - + H + → CO 2 + H 2 O

【0013】電気透析によると液中の陽イオンは陰極側
に、また酸として残留する炭酸根は陽極側に移動してC
2 溶解液とアルカリ液に分離される。これらイオンの
移動、分離を助けるためで電気透析槽には陽イオン交換
膜及び/又は陰イオン交換膜を設けることが好ましい。
According to electrodialysis, the cations in the liquid move to the cathode side, and the carbonate radicals remaining as acid move to the anode side.
Separated into O 2 solution and alkaline solution. It is preferable to provide a cation exchange membrane and / or an anion exchange membrane in the electrodialysis tank in order to assist the movement and separation of these ions.

【0014】[0014]

【実施例】【Example】

(例1)以下、本発明をその実施例を示す図面に基いて
具体的に説明する。図1は、本発明に係わる処理方法を
示す基本フロー図であり、1は炭酸ガスの吸収塔、2は
電気透析槽、3は気液分離器を示している。
(Example 1) Hereinafter, the present invention will be specifically described with reference to the drawings showing an embodiment thereof. FIG. 1 is a basic flow chart showing the treatment method according to the present invention, wherein 1 is a carbon dioxide absorption tower, 2 is an electrodialysis tank, and 3 is a gas-liquid separator.

【0015】図2,図3及び図4は本発明の実施例の電
気透析槽2と気液分離器3の組合せ図であり、図2〜図
4中、1〜3は図1と同一部を示し、4は陽極、5は陰
極、6は陰イオン交換膜、7は陽イオン交換膜である。
図2〜図4の陰イオン交換膜6は正に帯電しているた
め、陰イオンは透過し易いが陽イオンは透過し難い特性
をもち、また、陽イオン交換膜7は負に帯電しているた
め、陽イオンは透過し易いが陰イオンは透過し難い特性
をもち、この組み合わせにより図2〜図4の方式が考え
られる。
FIGS. 2, 3 and 4 are combination diagrams of the electrodialysis tank 2 and the gas-liquid separator 3 according to the embodiment of the present invention. In FIGS. 2 to 4, 1 to 3 are the same parts as FIG. 4 is an anode, 5 is a cathode, 6 is an anion exchange membrane, and 7 is a cation exchange membrane.
Since the anion exchange membrane 6 of FIGS. 2 to 4 is positively charged, it has a characteristic that anions easily pass but cations do not pass easily, and the cation exchange membrane 7 is negatively charged. Therefore, it has a characteristic that cations easily permeate but anions hardly permeate, and the combinations of FIGS. 2 to 4 can be considered by this combination.

【0016】図2は炭酸ガスを吸収した液を陰イオン交
換膜6を組み込んだ電気透析槽2に供給する方式を示し
ており、供給液中の炭酸根や重炭酸根は陰イオンのた
め、陰イオン交換膜6を透過して陽極4側に移動し、そ
の結果、陽極4側では炭酸根の濃度が高くなり一部が気
体となる。
FIG. 2 shows a method of supplying a liquid having absorbed carbon dioxide gas to an electrodialysis tank 2 having an anion exchange membrane 6 incorporated therein. Since carbonate radicals and bicarbonate radicals in the supplied liquid are anions, After passing through the anion exchange membrane 6 and moving to the side of the anode 4, as a result, the concentration of carbonate groups becomes high on the side of the anode 4 and a part thereof becomes gas.

【0017】図3は炭酸ガスを吸収して液を陽イオン交
換膜7を組み込んだ電解透析槽2に供給する方式を示し
ており、供給液中のアルカリ金属イオン等の陽イオンは
陽イオン交換膜7を透過して陰極5側に移動し、その結
果、陽極4側のpHが低下して炭酸根がガス化する。
FIG. 3 shows a system in which carbon dioxide gas is absorbed and the liquid is supplied to an electrolytic dialysis tank 2 in which a cation exchange membrane 7 is incorporated, and cations such as alkali metal ions in the supplied liquid are cation exchanged. It permeates through the membrane 7 and moves to the cathode 5 side. As a result, the pH on the anode 4 side decreases and the carbonate radical is gasified.

【0018】図4は陽イオン交換膜7を2枚組み込んだ
電気透析槽2に供給する方式を示しており、2枚の陽イ
オン交換膜7の間に供給した液中の陽イオンは、陽イオ
ン交換膜7を透過して陰極5側に移動するが、炭酸根お
よび重炭酸根は陽イオン交換膜7を透過し難いため何れ
の方向にも移動しない。そのため、陽極4では水の電解
により水素イオンが生成し、その水素イオンが陽イオン
交換膜7を透過して炭酸根および重炭酸根の存在する膜
の間に移動し、その結果、pHが高くなり炭酸ガスが生成
する。この方式では前2種の方式に較べ陽極4にて生成
する酸素ガスが炭酸ガスに混入し難いことが利点であ
る。
FIG. 4 shows a system for supplying to the electrodialysis tank 2 in which two cation exchange membranes 7 are incorporated. The cations in the liquid supplied between the two cation exchange membranes 7 are cations. Although it permeates the ion exchange membrane 7 and moves to the cathode 5 side, carbonate and bicarbonate do not easily permeate the cation exchange membrane 7 and therefore do not move in any direction. Therefore, at the anode 4, hydrogen ions are generated by electrolysis of water, and the hydrogen ions permeate the cation exchange membrane 7 and move between the membranes in which carbonate radicals and bicarbonate radicals exist, resulting in high pH. Then carbon dioxide gas is generated. The advantage of this method is that the oxygen gas generated at the anode 4 is less likely to be mixed in the carbon dioxide gas as compared with the previous two methods.

【0019】(例2)本発明の他の実施例を示す図5に
基いて具体的に説明する。図5中、図2〜図4と同一部
分には同一符号を付してある。
EXAMPLE 2 Another example of the present invention will be specifically described with reference to FIG. 5, those parts which are the same as those corresponding parts in FIGS. 2 to 4 are designated by the same reference numerals.

【0020】炭酸ガスを吸収した液は硫酸(後述)等の
非揮発性酸を添加した後、気液分離器3に入りガス化し
た炭酸ガスを分離する。炭酸ガスを分離後の液は電気透
析槽2に給液する。電気透析槽2は陰極5側に陽イオン
交換膜7を、また陽極4側には陰イオン交換膜6を装着
しており、液は先ず各イオン交換膜の間に入る。液中の
陽イオンは陰極5側に引っ張られるため、陽イオン交換
膜7を透過して陰極5側に移動する。また液中の非揮発
性酸基と炭酸根、重炭酸根は陰イオンのため陰イオン交
換膜6を透過して陽極4側に移動する。陽イオンおよび
陰イオンとも除去された液は陽極4および陰極5への供
給液とする。
The liquid which has absorbed the carbon dioxide gas is added with a non-volatile acid such as sulfuric acid (described later) and then enters the gas-liquid separator 3 to separate the gasified carbon dioxide gas. The liquid after separation of carbon dioxide is supplied to the electrodialysis tank 2. The electrodialysis tank 2 is equipped with a cation exchange membrane 7 on the cathode 5 side and an anion exchange membrane 6 on the anode 4 side, and the liquid first enters between the ion exchange membranes. Since the cations in the liquid are pulled toward the cathode 5 side, they penetrate the cation exchange membrane 7 and move to the cathode 5 side. Further, since the non-volatile acid group, carbonate group and bicarbonate group in the liquid are anions, they permeate the anion exchange membrane 6 and move to the anode 4 side. The liquid from which both the cations and the anions have been removed is used as the supply liquid to the anode 4 and the cathode 5.

【0021】陽極4側では、酸の増大により残留した炭
酸根および重炭酸根が炭酸ガスとなるため、陽極4側か
らでる液を気液分離器3に入り、炭酸ガスを分離回収
し、液は炭酸ガス吸収液への添加用の酸(例えば硫酸)
として用い、陰極5側をでた液は炭酸ガスの吸収液とし
てリサイクルする。
On the side of the anode 4, the carbonic acid and bicarbonate remaining due to the increase in the acid become carbon dioxide gas. Therefore, the liquid produced from the side of the anode 4 enters the gas-liquid separator 3 to separate and recover the carbon dioxide gas, Is an acid (eg sulfuric acid) for addition to the carbon dioxide gas absorbent
The liquid discharged from the cathode 5 side is recycled as a carbon dioxide absorbing liquid.

【0022】なお、陽極4では酸素が発生する可能性が
あるが、この酸素は陰イオン交換膜6と陽極4の間に陽
イオン交換膜を入れることにより回収炭酸ガスとは分離
可能である。また陰極5では陽イオン交換膜7と陰極5
の間に陰イオン交換膜を入れることにより発生の可能性
がある水素の再生アルカリへの混入を防止可能である。
Although oxygen may be generated at the anode 4, this oxygen can be separated from the recovered carbon dioxide gas by inserting a cation exchange membrane between the anion exchange membrane 6 and the anode 4. Further, in the cathode 5, the cation exchange membrane 7 and the cathode 5
By inserting an anion exchange membrane between the two, it is possible to prevent hydrogen, which may be generated, from mixing with the regenerated alkali.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
熱、圧力変動を用いることなく吸収した炭酸ガスの放散
が可能であること、吸収剤として用いる薬品にはイオン
性の高いアルカリ金属水酸化物が適しており、分解を起
こし易く価格が高価なアミンを用いる必要がなくなるこ
と、必要に応じて酸を用いるため液からの炭酸ガスの放
散率が大きいこと、薬品は循環使用が可能なため補給の
必要がないことなどのメリットがあり、その工業的効果
は顕著である。
As described above, according to the present invention,
It is possible to dissipate absorbed carbon dioxide without using heat and pressure fluctuations. Alkali metal hydroxide with high ionicity is suitable for the chemical used as an absorbent, and it is easy to decompose and the price is high. There is an advantage in that it is not necessary to use, the carbon dioxide emission rate from the liquid is large because an acid is used if necessary, and the chemicals do not need to be replenished because they can be reused. The effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本フローの説明図FIG. 1 is an explanatory diagram of a basic flow of the present invention.

【図2】本発明の第1実施例の説明図FIG. 2 is an explanatory diagram of the first embodiment of the present invention.

【図3】本発明の第2実施例の説明図FIG. 3 is an explanatory diagram of a second embodiment of the present invention.

【図4】本発明の第3実施例の説明図FIG. 4 is an explanatory diagram of a third embodiment of the present invention.

【図5】本発明の第4実施例の説明図FIG. 5 is an explanatory diagram of a fourth embodiment of the present invention.

【図6】従来の炭酸ガス吸収液から炭酸ガスを放散させ
る態様の説明図
FIG. 6 is an explanatory view of a mode in which carbon dioxide gas is diffused from a conventional carbon dioxide gas absorption liquid.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭酸ガスを溶解したアルカリ液を電気透
析によって炭酸ガスを分離することを特徴とするアルカ
リ液中の炭酸ガスの回収方法。
1. A method for recovering carbon dioxide gas in an alkaline liquid, wherein the carbon dioxide gas is separated from the alkaline liquid in which the carbon dioxide gas is dissolved by electrodialysis.
【請求項2】 炭酸ガスを溶解したアルカリ液に非揮発
性酸を添加して部分的に炭酸ガスを分離回収し、残アル
カリ液を電気透析によって炭酸ガスを分離することを特
徴とするアルカリ液中の炭酸ガスの回収方法。
2. An alkaline liquid, wherein a non-volatile acid is added to an alkaline liquid in which carbon dioxide is dissolved to partially separate and recover carbon dioxide, and the residual alkaline liquid is electrodialyzed to separate carbon dioxide. Method of recovering carbon dioxide in the inside.
【請求項3】 陽イオン交換膜及び/又は陰イオン交換
膜を組込んだ電解透析を用いることを特徴とする請求項
1又は請求項2記載のアルカリ液中の炭酸ガスの回収方
法。
3. The method for recovering carbon dioxide gas in an alkaline solution according to claim 1 or 2, wherein electrolytic dialysis incorporating a cation exchange membrane and / or an anion exchange membrane is used.
JP3013500A 1991-02-04 1991-02-04 Method for recovering gaseous co2 in alkaline liquid Withdrawn JPH0699037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3013500A JPH0699037A (en) 1991-02-04 1991-02-04 Method for recovering gaseous co2 in alkaline liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3013500A JPH0699037A (en) 1991-02-04 1991-02-04 Method for recovering gaseous co2 in alkaline liquid

Publications (1)

Publication Number Publication Date
JPH0699037A true JPH0699037A (en) 1994-04-12

Family

ID=11834842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3013500A Withdrawn JPH0699037A (en) 1991-02-04 1991-02-04 Method for recovering gaseous co2 in alkaline liquid

Country Status (1)

Country Link
JP (1) JPH0699037A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164913A1 (en) * 2011-05-31 2012-12-06 パナソニック株式会社 Carbon dioxide enrichment device
CN106457138A (en) * 2014-03-07 2017-02-22 韩国能源技术研究院 Carbon dioxide collecting apparatus and method using independent power generation means
WO2021177823A1 (en) * 2020-03-04 2021-09-10 Stichting Wetsus, European Centre Of Excellence For Sustainable Water Technology Electrochemical device, system and method for electrochemically recovery and/or regeneration of carbon dioxide from a stream
CN114515494A (en) * 2022-01-21 2022-05-20 浙江大学 Direct air capture carbon dioxide energy saving system and method with precise ion control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164913A1 (en) * 2011-05-31 2012-12-06 パナソニック株式会社 Carbon dioxide enrichment device
JPWO2012164913A1 (en) * 2011-05-31 2015-02-23 パナソニック株式会社 Carbon dioxide enrichment device
CN106457138A (en) * 2014-03-07 2017-02-22 韩国能源技术研究院 Carbon dioxide collecting apparatus and method using independent power generation means
WO2021177823A1 (en) * 2020-03-04 2021-09-10 Stichting Wetsus, European Centre Of Excellence For Sustainable Water Technology Electrochemical device, system and method for electrochemically recovery and/or regeneration of carbon dioxide from a stream
NL2025044B1 (en) * 2020-03-04 2021-10-14 Stichting Wetsus European Centre Of Excellence For Sustainable Water Tech Electrochemical device, system and method for electrochemically recovery and/or regeneration of carbon dioxide from a stream
CN114515494A (en) * 2022-01-21 2022-05-20 浙江大学 Direct air capture carbon dioxide energy saving system and method with precise ion control
CN114515494B (en) * 2022-01-21 2022-11-25 浙江大学 Direct air capture carbon dioxide energy saving system and method with precise ion control

Similar Documents

Publication Publication Date Title
US6224731B1 (en) Apparatus and process for electrodialysis of salts
US6627061B2 (en) Apparatus and process for electrodialysis of salts
JP5750220B2 (en) System and method for CO2 capture by aqueous carbonate flue gas capture and high efficiency bipolar membrane electrodialysis
EP2543427B1 (en) Electrodialytic separation of CO2 gas from seawater
JP2779758B2 (en) Method for converting a heat stable amine salt to a heat regenerating amine salt
US3554691A (en) Gas purification process
US11027235B2 (en) Method and apparatus for reagent recovery in a flue gas processing system
KR101903004B1 (en) Method for preparing carbonate salt
CN105800851A (en) Forward osmosis drawing solution and cyclic regeneration method and application thereof
JP2008100211A (en) Mixed gas separation method and system
US5320816A (en) Process for absorption of sulfur dioxide and nitric oxide from flue gas
JP6011238B2 (en) Method and apparatus for regenerating amine liquid
JPH03245811A (en) Method for removing, concentrating and fixing carbon dioxide in atmosphere
CA3217467A1 (en) Systems and methods for capturing carbon dioxide and regenerating a capture solution
JPS62273095A (en) Water treatment plant
JPH0699037A (en) Method for recovering gaseous co2 in alkaline liquid
US20140027285A1 (en) Process for purifying absorbents comprising polyethylene glycol dimethyl ethers
US5433936A (en) Flue gas desulfurization process
JPH10152790A (en) Production of sodium hydroxide aq. soln.
JPH06343858A (en) Carbon dioxide absorbent
JPH06210129A (en) Waste gas treatment
Littau et al. System and method for recovery of CO2 by aqueous carbonate flue gas capture and high efficiency bipolar membrane electrodialysis
AU2022201729B2 (en) Amine-containing water concentration system and apparatus, and carbon dioxide recovery system
JPS6291287A (en) Apparatus for making pure water
JP2021194556A (en) Acidic gas removal device and acidic gas removal method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514