JPH0698883A - X-ray ct apparatus - Google Patents

X-ray ct apparatus

Info

Publication number
JPH0698883A
JPH0698883A JP4273496A JP27349692A JPH0698883A JP H0698883 A JPH0698883 A JP H0698883A JP 4273496 A JP4273496 A JP 4273496A JP 27349692 A JP27349692 A JP 27349692A JP H0698883 A JPH0698883 A JP H0698883A
Authority
JP
Japan
Prior art keywords
rays
ray
subject
soft
compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4273496A
Other languages
Japanese (ja)
Inventor
Tomotsune Yoshioka
智恒 吉岡
Shinichi Uda
晋一 右田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP4273496A priority Critical patent/JPH0698883A/en
Publication of JPH0698883A publication Critical patent/JPH0698883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To enable the lowering of scattered X rays to be generated from a specimen by arranging a soft ray filter in a structure of having a sheet with an even thickness stuck on a curved surface of a compensating body. CONSTITUTION:A compensating body 2 is inserted to make flat at the center and in a peripheral part an intensity distribution of X rays incident into a detector 6 after transmitted through a specimen 5 and is made thinner to be less in reduction at the center thereof with respect to X rays and thicker to be greater in reduction in the perimeter thereof with respect to the X rays so that a difference in the reduction of the X rays between the center and the perimeter becomes equal to the reduction in the specimen. A soft ray filter 3 using a plate with a uniform thickness is stuck on a curved surface of the compensating body 2. The material of the soft rays filter 3 requires a larger reduction with respect to X rays of lower energy and employs copper, a copper allow or the like. Thus, the X rays of lower energy is removed more toward the perimeter to allow the lowering of the scattering of energy of the X rays in the perimeter thereby enabling the measurement of the intensity of transmission X rays at higher accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線CT装置に関し、患
者によって散乱されるX線を低減し、より正確な観測を
行うことができるX線補償物の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray CT apparatus, and more particularly to an improvement of an X-ray compensator capable of reducing X-rays scattered by a patient and performing more accurate observation.

【0002】[0002]

【従来の技術】図6にX線CT装置の計測部分の概要を
示す。X線CT装置は、回転板上10にX線管11とX
線検出器16が対向して配置され、中央に置かれた被検
体15の透過X線強度を回転しながら計測を行ってい
る。X線管11から放射されたX線ビームは、X線管放
射口に置かれた軟線除去13フィルタと検出器入射部で
のX線強度分布が平坦になるように設けられた、アルミ
ニウムやテフロン等より成る補償物12を透過したあ
と、X線ビーム幅を調整するコリメータ14によってフ
ァンビームとなる。このファンビームは被検体を透過し
てからX線検出器16に入射する。軟線除去フィルタ1
3は、銅や銅合金などの材質の0.1〜0.3ミリメー
トルほどの板であり、X線管から放射されるX線のうち
被検体を透過せず内部で吸収されてしまうエネルギーの
低い軟線を除去するものである。この軟線除去フィルタ
13は通常は平坦な板をそのまま使用しているため、軟
線除去フィルタ13の透過後のX線のエネルギー分布は
場所によらずほぼ一定となる。X線管11から放射され
たX線ビームは、中心部では中央に置かれた被検体15
を透過するためその強度は減弱するが、周辺部の被検体
15を透過しない部分では減弱することはない。このた
め、被検体15に入射するX線の強度分布が均一である
と、被検体15を撮影するときに検出器16に入射する
X線の強度は、中央部で小さく、周辺で大きくなってし
まう。減弱の大きな腹部などではその強度の比は数千と
なる。
2. Description of the Related Art FIG. 6 shows an outline of a measuring portion of an X-ray CT apparatus. The X-ray CT apparatus includes an X-ray tube 11 and an X-ray on a rotating plate 10.
The line detectors 16 are arranged so as to face each other, and measurement is performed while rotating the transmitted X-ray intensity of the subject 15 placed in the center. The X-ray beam radiated from the X-ray tube 11 is made of aluminum or Teflon, which is provided so that the X-ray intensity distribution at the soft ray removal 13 filter placed at the X-ray tube emission port and the detector entrance may be flat. After passing through the compensator 12 made of, for example, a collimator 14 for adjusting the X-ray beam width forms a fan beam. The fan beam passes through the subject and then enters the X-ray detector 16. Soft line removal filter 1
Reference numeral 3 is a plate made of a material such as copper or copper alloy and having a thickness of about 0.1 to 0.3 mm. The X-ray emitted from the X-ray tube does not pass through the object and is absorbed inside. It removes low soft rays. Since the soft ray removing filter 13 normally uses a flat plate as it is, the energy distribution of the X-rays after passing through the soft ray removing filter 13 is substantially constant regardless of the place. The X-ray beam emitted from the X-ray tube 11 is the subject 15 placed in the center at the center.
However, the intensity of the light does not decrease in the peripheral portion that does not pass through the subject 15. Therefore, if the intensity distribution of the X-rays incident on the subject 15 is uniform, the intensity of the X-rays incident on the detector 16 when the subject 15 is imaged is small in the central part and large in the peripheral part. I will end up. In the abdomen where the attenuation is large, the intensity ratio becomes several thousand.

【0003】検出器からの出力電流は検出回路に入力さ
れ、電流−電圧変換及び信号強度の増幅を行ってからア
ナログ−ディジタル変換(A/D変換)される。ディジ
タルの数値データは画像処理回路に送られ断層像の再構
成が行われる。通常、電流−電圧変換回路及び増幅回路
は検出器のチャンネル分用意されているが、A/D変換
回路は数個であり複数チャンネルを受け持つ構成となっ
ている。このためA/D変換回路には高速で動作するこ
とも要求されている。入力信号の強度がチャンネルによ
って大きく異なる場合は、計測の精度を確保するために
このA/D変換回路のダイナミックレンジが広いことが
要求される。あるいは、A/D変換回路の前段の増幅器
の増幅率を可変できるようにして、A/D変換回路に入
力される信号の強度が適切となるように調整する必要が
ある。ただし、この場合はこの調整量の値そのものも信
号強度に関係するため、A/D変換を行った後の数値デ
ータに調整量に対応した係数を乗じてデータの補正を行
わなければならない。広いダイナミックレンジをもち高
速な動作を行うA/D変換回路は高価であるので多くの
場合、A/D変換回路の前段の増幅回路の増幅率を可変
にする方法を行っている。この場合でも、各チャンネル
の信号強度が大きく異なると増幅率の変更が頻繁に要求
され高速な動作を行わなければならない。
The output current from the detector is input to the detection circuit, where it is subjected to current-voltage conversion and signal strength amplification, and then subjected to analog-digital conversion (A / D conversion). The digital numerical data is sent to the image processing circuit to reconstruct the tomographic image. Normally, the current-voltage conversion circuit and the amplification circuit are prepared for the channels of the detector, but the number of A / D conversion circuits is several and it is configured to handle a plurality of channels. Therefore, the A / D conversion circuit is also required to operate at high speed. When the intensity of the input signal greatly differs depending on the channel, the A / D conversion circuit is required to have a wide dynamic range in order to ensure measurement accuracy. Alternatively, it is necessary to make the amplification factor of the amplifier in the preceding stage of the A / D conversion circuit variable so that the intensity of the signal input to the A / D conversion circuit becomes appropriate. However, in this case, since the value of the adjustment amount itself is also related to the signal strength, it is necessary to correct the data by multiplying the numerical data after A / D conversion by the coefficient corresponding to the adjustment amount. Since an A / D conversion circuit which has a wide dynamic range and operates at high speed is expensive, in many cases, a method of varying the amplification factor of the amplification circuit in the preceding stage of the A / D conversion circuit is used. Even in this case, if the signal intensities of the respective channels are largely different, it is necessary to change the amplification factor frequently, and high-speed operation must be performed.

【0004】このような不都合を解消するために、X線
管と被検体の間に補償物が設けられている。補償物はア
ルミニウムやテフロンなどの適度にX線を減弱する材料
を使用し、透過するX線に対して中心部分の減弱が小さ
く周辺部分の減弱が大きくなるような形状をしている。
言い換えると、X線の通過パス長が中心では短く、周辺
に行くに従って長くなるような形状をしている。X線ビ
ームが被検体を通過した後の強度は、X線の通過パス長
が長い被検体の中心部で小さく、周辺に行くに従ってX
線の強度は大きくなる。前述したような補償物をX線ビ
ームの通過経路上に挿入すると、補償物によるX線強度
の分布と被検体による強度の分布がお互いに打ち消す方
向に働いて、検出器に入射するX線の強度は検出素子の
チャンネル方向に対して平坦となり、検出回路を効率よ
く働かせることができるようになる。
In order to eliminate such inconvenience, a compensator is provided between the X-ray tube and the subject. The compensator is made of a material such as aluminum or Teflon that appropriately attenuates X-rays, and has a shape such that the attenuation in the central portion is small and the attenuation in the peripheral portion is large with respect to the transmitted X-rays.
In other words, the X-ray passing path length is short at the center and becomes longer toward the periphery. The intensity of the X-ray beam after passing through the subject is small at the center of the subject where the X-ray passing path length is long, and becomes X as it goes to the periphery.
The strength of the line is increased. When the compensator as described above is inserted in the passage of the X-ray beam, the X-ray intensity distribution due to the compensator and the intensity distribution due to the subject work in the direction of canceling each other, and the X-rays incident on the detector are The intensity becomes flat in the channel direction of the detection element, and the detection circuit can be efficiently operated.

【0005】また、CT装置で使用されるX線は単色X
線ではなく連続スペクトルのX線である。そのため、物
体を透過すると、低エネルギーX線(軟線)のほうがよ
り多く吸収され、エネルギー分布は高い側にシフトす
る。これがビームハードニング(線質硬化)効果であ
る。補償物がある場合はこのビームハードニング効果は
チャンネル方向に均等になる方向に働き、検出器に入射
するX線ビームのエネルギー分布は補償物がない状態に
比較するとそろうことになる。このように、補償物には
透過X線の強度だけでなく、エネルギー分布に対して
も、より平坦にするという働きがある。
Further, the X-ray used in the CT apparatus is a monochromatic X-ray.
It is a continuous spectrum X-ray rather than a line. Therefore, when passing through an object, low energy X-rays (soft rays) are absorbed more and the energy distribution shifts to the higher side. This is the beam hardening effect. When there is a compensator, this beam hardening effect works in a direction that makes it uniform in the channel direction, and the energy distribution of the X-ray beam incident on the detector is similar to that when there is no compensator. As described above, the compensator has a function of flattening not only the intensity of the transmitted X-ray but also the energy distribution.

【0006】[0006]

【発明が解決しようとする課題】X線が物体を透過する
ときには、物質によって減弱・吸収されるだけでなく、
その一部は散乱X線となる。検出素子は、X線管焦点と
検出素子中心を結んだ線上(計測パス)にある被検体の
部分のX線の減弱を計測するが、被検体の他の部分から
散乱X線があると、この計測に誤差を生じることにな
る。散乱X線が入射することによりその検出素子の出力
は大きくなり計測パス上の被検体の減弱がみかけ上小さ
くなるように測定される。このような誤差が増えてくる
と、これらのデータを使って再構成されたCT画像では
分解能の低下が起こってくる。特に濃度分解能と呼ばれ
る低コントラスト分解能の低下が問題となる。
When X-rays penetrate an object, they are not only attenuated and absorbed by the substance, but also
Part of it becomes scattered X-rays. The detection element measures the attenuation of X-rays of a portion of the subject on a line (measurement path) connecting the focus of the X-ray tube and the center of the detection element, but if there is scattered X-rays from other portions of the subject, An error will occur in this measurement. When scattered X-rays are incident, the output of the detection element is increased and the attenuation of the object on the measurement path is measured to be apparently small. When such an error increases, the resolution of the CT image reconstructed using these data will decrease. In particular, deterioration of low contrast resolution called density resolution becomes a problem.

【0007】このようなX線ビームの散乱は、被検体上
のX線が照射される部分全てで起こるが、被検体の周辺
に行くほど散乱X線の割合は増えてくる。これは、被検
体内部で発生した散乱X線は検出素子に達するまでに被
検体の内部を通過しなければならないが、被検体中心部
では被検体内部の通過パス長が長く、周辺に行くに従っ
てその通過パス長が短くなることに起因する。被検体内
部の通過パス長が長いとそれだけ散乱X線に対する減弱
が大きくなってくるからである。被検体の外部に出てか
らは、減弱の少ない空気中を通過するためのそのパス長
による減弱に大差はない。
Such scattering of the X-ray beam occurs in the entire portion of the subject irradiated with the X-rays, but the proportion of scattered X-rays increases toward the periphery of the subject. This is because scattered X-rays generated inside the object must pass through the inside of the object before reaching the detection element, but the path length inside the object is long at the center of the object, and as it goes to the periphery, This is because the passing path length becomes short. This is because the longer the pass length inside the subject, the greater the attenuation with respect to scattered X-rays. After coming out of the subject, there is no great difference in the attenuation due to the path length for passing through the air with little attenuation.

【0008】散乱X線の現象には、X線のエネルギーが
低いほど横方向や後方向への散乱の割合が増えてくる性
質がある。逆にエネルギーの高いX線を使用すると透過
X線に含まれる散乱X線の割合を低減することができ
る。
The phenomenon of scattered X-rays has the property that the lower the energy of X-rays, the greater the proportion of scattering in the lateral and backward directions. On the contrary, when X-rays with high energy are used, the ratio of scattered X-rays contained in transmitted X-rays can be reduced.

【0009】前述したように、CT装置で使用されるX
線は単色X線ではなく連続スペクトルのX線であり、物
体を通過するとき低エネルギーの部分のほうがより多く
吸収され、物体通過後のエネルギー分布は高い側にシフ
トする効果を積極的に利用したのが軟線除去フィルタで
ある。一般には物質の原子番号が大きく密度が高くなる
ほど、その物質のX線に対する減弱は大きくなる。ま
た、低エネルギー側の減弱の割合も大きい。従って、原
子番号の大きく密度の高い材質を使用した軟線除去フィ
ルタのほうが軟線除去の効果は高く、フィルタ通過後の
X線のエネルギー分布はより高い側にシフトする。ま
た、同じ材質を使用した場合はX線の通過パス長が長い
ほど軟線除去の効果が高く、高エネルギー側にシフトす
る。前述した補償物でも軟線除去の効果はあるが、材質
がアルミニウムなどを使用しているため低エネルギーの
X線に対して十分な減弱が得られない。このような理由
から、軟線除去フィルタの材質としては、主に銅や銅合
金が使用されている。
As described above, the X used in the CT apparatus
The ray is not a monochromatic X-ray but a continuous spectrum X-ray, and when passing through an object, the low-energy portion is more absorbed, and the energy distribution after passing through the object has been positively utilized. Is a soft line removal filter. Generally, the greater the atomic number of a substance and the higher the density, the greater the attenuation of the substance with respect to X-rays. Also, the rate of attenuation on the low energy side is high. Therefore, the soft ray removal filter using a material having a large atomic number and high density has a higher effect of removing the soft rays, and the energy distribution of the X-rays after passing through the filter shifts to the higher side. Further, when the same material is used, the longer the X-ray passing path length is, the higher the effect of removing the soft rays becomes, and the higher the energy shifts. Although the above-mentioned compensator also has an effect of removing soft rays, it cannot obtain sufficient attenuation for low energy X-rays because it is made of aluminum or the like. For this reason, copper or copper alloy is mainly used as the material of the soft wire removal filter.

【0010】このような銅や銅合金を使用した軟線除去
フィルタを使用することで、X線管から放射される低エ
ネルギーのX線を除去し被検体への無効被曝をなくすと
共に、散乱X線を低減している。しかし、従来の軟線除
去フィルタでは被検体の中心部でも周辺部でも同じ割合
でしか軟線除去をせず、被検体通過後検出器に到達する
散乱X線は被検体の周辺部分で発生する割合が大きいこ
とになる。この被検体の周辺部分で発生する散乱X線を
低減するためには、被検体周辺部分でより低エネルギー
X線を減弱させる軟線除去フィルタを使用しなければな
らない。中心から周辺に向かってより低エネルギーX線
を減弱させる軟線除去フィルタを実現させるには、周辺
に行くほど原子番号が大きく密度の高い材質を使用する
か同じ材質を使用するならば周辺に行くほどX線の通過
パスが長くなるような形状をしたものにしなければなら
ない。
By using such a soft ray removing filter using copper or a copper alloy, low energy X-rays emitted from the X-ray tube are removed to eliminate ineffective exposure to the object and scattered X-rays. Has been reduced. However, in the conventional soft ray removal filter, the soft rays are removed only at the same rate in the central portion and the peripheral portion of the subject, and scattered X-rays reaching the detector after passing through the subject are generated in the peripheral portion of the subject. It will be big. In order to reduce the scattered X-rays generated in the peripheral portion of the subject, it is necessary to use a soft ray removal filter that attenuates low energy X-rays in the peripheral portion of the subject. To realize a soft ray elimination filter that attenuates low-energy X-rays from the center toward the periphery, use a material with a higher atomic number and a higher density toward the periphery, or if the same material is used, the closer it is to the periphery. The shape must be such that the X-ray passing path becomes long.

【0011】中心部分から周辺にかけて原子番号や密度
を変化させた材質を使用することは理論的には可能であ
るが、実際工業製品として特性のそろったものを安定し
て安価に供給することは技術的な困難を伴う。またX線
の通過パス長を周辺にいくに従って長くするためには、
周辺ほど板厚の厚い材料を使用することによっても可能
であるが、やはり特性のそろったものを安定して安価に
供給するためにはいくつかの問題点がある。均一材質・
厚さの板を使用して周辺にいくに従ってX線通過パス長
を長くできればこれらの問題は解決できる。均一厚さの
板を使用してもX線の通過パスと板の作る角度が異なれ
ば実効的なX線パス長は異なる。このことを利用して中
心ではX線の通過パスと板が直交し、周辺にいくに従っ
てX線の通過パスと板が作る角度が減少するようにすれ
ば、X線の実効的な通過パスは長周辺にいくほど長くな
る。
Although it is theoretically possible to use a material whose atomic number and density are changed from the central portion to the periphery, it is actually possible to stably supply an industrial product with uniform characteristics at a low cost. With technical difficulties. In addition, in order to increase the X-ray passing path length toward the periphery,
It is possible to use a material having a thicker plate at the periphery, but there are some problems in stably supplying a product having uniform characteristics at a low cost. Uniform material
These problems can be solved if the X-ray passing path length can be increased toward the periphery by using a thick plate. Even if a plate having a uniform thickness is used, the effective X-ray path length differs if the X-ray passing path and the angle formed by the plate differ. By utilizing this fact, the X-ray passing path and the plate are orthogonal to each other at the center, and if the angle formed by the X-ray passing path and the plate decreases toward the periphery, the effective X-ray passing path becomes The longer it gets around the long, the longer it gets.

【0012】本発明の目的は、こうした観点のもとで簡
単な構造により軟線除去をはかるX線CT装置を提供す
るものである。
An object of the present invention is to provide an X-ray CT apparatus which removes soft rays with a simple structure from such a viewpoint.

【0013】[0013]

【課題を解決するための手段】本発明は、X線管と多素
子の検出器を被検体を中心に対向して配置し、且つ検出
器に入射するX線の検出器のチャンネル方向の強度分布
が平坦になるようにX線管と被検体の間に配置した補償
物を持ち、回転しながら被検体の各方向からのX線透過
データを計測しそのデータから被検体の横断面のX線透
過率の分布画像を再構成するCT装置において、上記補
償物の表面の凹部又は補償物の内面中空部に均一な厚さ
の軟線除去用の薄板を張り合わせたこととした(請求項
1)。
According to the present invention, an X-ray tube and a multi-element detector are arranged so as to face each other around a subject, and the intensity of X-rays incident on the detector in the channel direction of the detector. With a compensator placed between the X-ray tube and the subject so that the distribution is flat, X-ray transmission data from each direction of the subject is measured while rotating, and the X-ray of the cross section of the subject is measured from the data. In a CT device for reconstructing a distribution image of linear transmittance, a thin plate for removing soft rays having a uniform thickness is stuck to the concave portion of the surface of the compensating object or the hollow portion of the inner surface of the compensating object (claim 1). .

【0014】[0014]

【作用】本発明によれば、このように均一材質・厚さの
板を使用して、実効的なX線通過パス長周辺にいくに従
って長くなるような軟線除去フィルタを使用すること
で、周辺にいくに従ってより低エネルギーのX線を除去
することができる。周辺のX線のエネルギー散乱を低減
することが可能である。
According to the present invention, by using a plate having a uniform material and a thickness as described above, and by using a soft ray removing filter that becomes longer as it gets closer to the effective X-ray passing path length, Lower energy X-rays can be removed as the temperature increases. It is possible to reduce energy scattering of surrounding X-rays.

【0015】[0015]

【実施例】図1(a)、(b)に本発明の実施例を示
す。図1(b)は図1(a)を側面から見た図を示して
いる。X線管1から放射されたX線は、補償物2及び軟
線除去フィルタ3を通過し、X線ビーム幅を調整するス
ライスコリメータ4によってファンビームにされたあ
と、被写体5を透過し検出器6に入射される。補償物2
は、被検体5透過後検出器6に入射するX線の強度分布
を、中心部と周辺部で平坦にするように挿入する物であ
り、補償物2の中央は薄くX線に対する減弱が少なく、
周辺では厚くX線に対する減弱が大きく、中央と周辺と
のX線減弱量の差が被検体5の減弱と同等になるように
なっている。図2は補償物2と被検体5とのX線に対す
る減弱の様子を表した図である。図2(a)は被検体5
がなく補償物2だけが、図2(b)は補償物2がなく被
検体5だけが置かれたときのX線管1、補償物2、被検
体5の位置関係を示したものである。図2(c)、
(d)はそれぞれ、図2(a)、(b)の場合の透過X
線の強度分布を表した図であり、横軸が検出器6に入射
する位置に、縦軸はX線強度に対応している。補償物2
だけが置かれたときは中央が強く周辺にいくに従って弱
くなるような強度分布となり、被検体5だけ置かれた場
合は逆に中央が弱く周辺が強くなるような強度分布を示
す。この補償物2と被検体5が同時に置かれたときの透
過X線の強度分布はそれぞれの強度分布を合成したもの
で、図2(e)のようになる。補償物2は検出器6のチ
ャンネル方向の減弱量を調整するためのもので、どのよ
うな材質の物を使用しても目的を達成できるが、実際に
は限られた空間の中に配置し、長期間にわたってX線の
曝射を受けても変質せず安定であることが要求されるこ
となどを考慮すると、アルミニウムやテフロンなどが適
当な材質であるといえる。この補償物2の湾曲した表面
に均一な厚さの板を使用した軟線除去フィルタ3が張り
付けられている。軟線除去フィルタ3の材質としては、
低エネルギーのX線に対する減弱が大きいことが要求さ
れるため銅や銅合金などの材質が使われる。銅を使用し
た場合その厚さとしては最低でも0.1mmは必要であ
る。図3は軟線除去フィルタ3を通過するX線のパス長
を示した図である。湾曲した表面に張り付けられた軟線
除去フィルタ3を通過するX線のパス長は、中央部で使
用する板厚そのものであるが、周辺にいくに従いX線は
板材を斜めに通過することになる。そのパス長をpとす
るとpは次式で表される。
EXAMPLE An example of the present invention is shown in FIGS. 1 (a) and 1 (b). FIG. 1B shows a view of FIG. 1A viewed from the side. The X-ray radiated from the X-ray tube 1 passes through the compensator 2 and the soft ray removal filter 3, is made into a fan beam by the slice collimator 4 for adjusting the X-ray beam width, and then passes through the subject 5 and the detector 6 Is incident on. Compensation 2
Is an object that is inserted so that the intensity distribution of the X-rays that enter the detector 6 after passing through the subject 5 is made flat in the central portion and the peripheral portion. ,
At the periphery, the thickness is thick and the attenuation with respect to X-rays is large, and the difference in the amount of X-ray attenuation between the center and the periphery is equal to the attenuation of the subject 5. FIG. 2 is a diagram showing how the compensator 2 and the subject 5 are attenuated by X-rays. FIG. 2A shows the subject 5
2B shows the positional relationship between the X-ray tube 1, the compensator 2, and the subject 5 when only the subject 5 is placed without the compensator 2. . 2 (c),
2D shows the transmission X in the case of FIGS. 2A and 2B, respectively.
It is a figure showing the intensity distribution of a line, and the horizontal axis corresponds to the position of incidence on the detector 6, and the vertical axis corresponds to the X-ray intensity. Compensation 2
When only the object is placed, the intensity distribution is such that the center is strong and becomes weaker toward the periphery, and when only the object 5 is placed, the intensity distribution is such that the center is weaker and the periphery is stronger. The intensity distribution of the transmitted X-rays when the compensator 2 and the subject 5 are placed at the same time is a combination of the respective intensity distributions, and is as shown in FIG. The compensator 2 is for adjusting the amount of attenuation of the detector 6 in the channel direction. The object can be achieved by using any material, but in reality, it is placed in a limited space. Considering that it is required to be stable without being deteriorated even when exposed to X-rays for a long period of time, it can be said that aluminum and Teflon are suitable materials. On the curved surface of the compensator 2, a soft ray removing filter 3 using a plate having a uniform thickness is attached. As the material of the soft wire removal filter 3,
Materials such as copper and copper alloys are used because they are required to be greatly attenuated by low energy X-rays. When copper is used, its thickness must be at least 0.1 mm. FIG. 3 is a diagram showing the path length of X-rays passing through the soft ray removal filter 3. The path length of the X-ray passing through the soft ray removing filter 3 attached to the curved surface is the plate thickness itself used in the central portion, but the X-ray obliquely passes through the plate material toward the periphery. When the path length is p, p is expressed by the following equation.

【0016】◎

【数1】 p=t/sinθ t:軟線除去フィルタ3に使用する板材の厚さ θ:通過X線のパスとその部分での軟線除去フィルタ3
とのなす角度 θは中央部分で90゜であり、周辺にいくに従って小く
なる。このため、周辺にいくに従い、X線の通過する軟
線除去フィルタ3のパス長が長くなることになる。軟線
除去フィルタ3の通過パス長が長くなるとそれだけ通過
X線は高エネルギー側にシフトすることになり、被検体
4に入射するX線のエネルギー分布は、中央部に比較し
て周辺部で高いものとなり、被検体4の散乱は少なくな
る。
## EQU00001 ## p = t / sin .theta.t: thickness of the plate material used for the soft ray elimination filter 3 .theta .: pass of the passing X-rays and the soft ray elimination filter 3 in that portion
The angle θ formed by and is 90 ° at the center, and becomes smaller toward the periphery. For this reason, the path length of the soft ray elimination filter 3 through which the X-rays pass becomes longer as it goes closer to the periphery. As the pass length of the soft ray removal filter 3 becomes longer, the passing X-rays shift to the higher energy side, and the energy distribution of the X-rays incident on the subject 4 is higher in the peripheral portion than in the central portion. Therefore, the scattering of the subject 4 is reduced.

【0017】図4に別の実施例2を示す。X線管1、補
償物2’、軟線除去フィルタ3’、スライスコリメータ
4、被検体5、検出器6の配置は基本的には実施例1
(図1)と同じである。補償物2’の形状が異なってい
る。この補償物2’は、実施例1の補償物2と同等な材
料を使用し、中心部に円または楕円の穴をあけた構造と
なっている。この穴の内側表面に、やはり実施例1の軟
線除去フィルタ3と同等の材料を使用した均一な厚さの
板を張り付けたものを軟線除去フィルタ3’としたもの
である。この実施例でも補償物2’による透過X線の減
弱は中心部で小さく、周辺部にいくに従って大きくなる
ことがわかる。また軟線除去フィルタ3’のX線の通過
パス長についても、中央部が一番短く、周辺にいくに従
って長くなり、実施例1で述べたことと同様な効果が得
られることがわかる。この補償物2’の内側表面に張り
付ける軟線除去フィルタ3’は、上半分あるいは下半分
の半周分だけ設置することによっても目的を達成するこ
とができる。なお、内側表面全周に軟線除去フィルタ
3’を設ける場合は、その板厚は実施例1の場合の半分
でよいことは図より明らかである。
FIG. 4 shows another embodiment 2. The arrangement of the X-ray tube 1, the compensator 2 ′, the soft ray removing filter 3 ′, the slice collimator 4, the subject 5, and the detector 6 is basically the same as in the first embodiment.
(Fig. 1). The shape of the compensator 2'is different. The compensator 2'is made of the same material as that of the compensator 2 of Example 1, and has a structure in which a circular or elliptical hole is formed in the central portion. A soft wire removing filter 3'is formed by attaching a plate having a uniform thickness to the inner surface of the hole and using the same material as that of the soft wire removing filter 3 of the first embodiment. Also in this embodiment, it is understood that the attenuation of the transmitted X-rays by the compensator 2'is small in the central part and becomes large as it goes to the peripheral part. Also, regarding the X-ray passing path length of the soft ray removing filter 3 ', it is understood that the central portion is shortest and becomes longer toward the periphery, and the same effect as that described in the first embodiment can be obtained. The soft line removal filter 3'attached to the inner surface of the compensator 2'can also achieve the object by installing only the half circumference of the upper half or the lower half. When the soft wire removing filter 3'is provided all around the inner surface, the plate thickness may be half that in the first embodiment.

【0018】図5に別の実施例を示す。X線管1、補償
物2”、軟線除去フィルタ3”、スライスコリメータ
4、被検体5、検出器6の配置は基本的には実施例1
(図1)と同じである。実施例1では補償物2切り欠き
部分が被写体5側にあったが、この実施例では切り欠き
部分がX線管1側にある。この実施例でもX線の補償物
2”の通過パス長は中心部に比較して周辺にいくほど長
くなり同様な効果が得られる。
FIG. 5 shows another embodiment. The arrangement of the X-ray tube 1, the compensator 2 ″, the soft ray removing filter 3 ″, the slice collimator 4, the subject 5, and the detector 6 is basically the same as in the first embodiment.
(Fig. 1). In the first embodiment, the cutout portion of the compensator 2 is on the subject 5 side, but in this embodiment, the cutout portion is on the X-ray tube 1 side. Also in this embodiment, the pass path length of the X-ray compensator 2 ″ becomes longer toward the periphery as compared with the central portion, and the same effect can be obtained.

【0019】[0019]

【発明の効果】以上述べたように、本発明を実施するこ
とにより、X線CT装置で被検体を撮影するときに、被
検体より生じる散乱X線を低減することにより、高精度
で透過X線の強度の計測を行うことができるため画像の
分解能を劣化させずに診断能の高いCT画像を得ること
が可能となる。
As described above, by carrying out the present invention, when the object is imaged by the X-ray CT apparatus, the scattered X-rays generated from the object are reduced, so that the transmission X-ray can be accurately transmitted. Since the intensity of the line can be measured, it is possible to obtain a CT image with high diagnostic ability without degrading the resolution of the image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示した図で、図1(a)は正
面から、図1(b)は側面から見た図である。
1A and 1B are views showing an embodiment of the present invention, in which FIG. 1A is a front view and FIG. 1B is a side view.

【図2】補償物の働きを説明した図である。FIG. 2 is a diagram illustrating a function of a compensator.

【図3】軟線除去フィルタを通過するX線のパス長が場
所によって異なることを説明した図である。
FIG. 3 is a diagram illustrating that the path length of an X-ray passing through a soft ray removal filter differs depending on the location.

【図4】第2の実施例図を示したものである。FIG. 4 is a diagram showing a second embodiment.

【図5】第3の実施例図を示したものである。FIG. 5 shows a diagram of a third embodiment.

【図6】X線CT装置の透過X線強度の計測部分の構成
を示した図である。
FIG. 6 is a diagram showing a configuration of a transmitted X-ray intensity measurement portion of the X-ray CT apparatus.

【符号の説明】[Explanation of symbols]

1 X線管 2、2’、2” 補償物 3、3’、3” 軟線除去フィルタ 4 スライスコリメータ 5 被検体 6 検出器 11 X線管 12 補償物 13 軟線除去フィルタ 14 スライスコリメータ 15 被検体 16 検出 1 X-ray tube 2, 2 ', 2 "Compensator 3, 3', 3" Soft ray removal filter 4 Slice collimator 5 Subject 6 Detector 11 X-ray tube 12 Compensator 13 Soft ray removal filter 14 Slice collimator 15 Subject 16 detection

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】X線管と多素子の検出器を被検体を中心に
対向して配置し、且つ検出器に入射するX線の検出器の
チャンネル方向の強度分布が平坦になるようにX線管と
被検体の間に配置した補償物を持ち、回転しながら被検
体の各方向からのX線透過データを計測しそのデータか
ら被検体の横断面のX線透過率の分布画像を再構成する
CT装置において、上記補償物の表面の凹部又は補償物
の内面中空部に均一な厚さの軟線除去用の薄板を張り合
わせたことを特徴とするX線CT装置。
1. An X-ray tube and a multi-element detector are arranged so as to face each other around a subject, and X-rays are incident on the detector so that the intensity distribution in the channel direction of the detector becomes flat. With the compensator placed between the X-ray tube and the subject, measure the X-ray transmission data from each direction of the subject while rotating and reconstruct the X-ray transmittance distribution image of the subject's cross section from the data. In the CT apparatus to be constructed, an X-ray CT apparatus characterized in that a thin plate for removing soft rays having a uniform thickness is attached to a concave portion of the surface of the compensating object or a hollow portion of the inner surface of the compensating object.
JP4273496A 1992-09-18 1992-09-18 X-ray ct apparatus Pending JPH0698883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273496A JPH0698883A (en) 1992-09-18 1992-09-18 X-ray ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273496A JPH0698883A (en) 1992-09-18 1992-09-18 X-ray ct apparatus

Publications (1)

Publication Number Publication Date
JPH0698883A true JPH0698883A (en) 1994-04-12

Family

ID=17528716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273496A Pending JPH0698883A (en) 1992-09-18 1992-09-18 X-ray ct apparatus

Country Status (1)

Country Link
JP (1) JPH0698883A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377126B1 (en) * 1999-06-15 2003-03-19 김선기 The method for compensating the density using nonlinear filter in photographing a spine
KR100393550B1 (en) * 2000-08-21 2003-08-09 사회복지법인삼성생명공익재단(삼성서울병원) Compensator assembly for radiograph
JP2007037994A (en) * 2005-06-30 2007-02-15 Toshiba Corp X-ray ct apparatus
JP2007159635A (en) * 2005-12-09 2007-06-28 Hitachi Medical Corp X-ray measuring apparatus, x-ray measuring method and x-ray measuring program
JP2010075553A (en) * 2008-09-26 2010-04-08 Toshiba Corp X-ray computed tomography system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377126B1 (en) * 1999-06-15 2003-03-19 김선기 The method for compensating the density using nonlinear filter in photographing a spine
KR100393550B1 (en) * 2000-08-21 2003-08-09 사회복지법인삼성생명공익재단(삼성서울병원) Compensator assembly for radiograph
JP2007037994A (en) * 2005-06-30 2007-02-15 Toshiba Corp X-ray ct apparatus
JP2007159635A (en) * 2005-12-09 2007-06-28 Hitachi Medical Corp X-ray measuring apparatus, x-ray measuring method and x-ray measuring program
JP2010075553A (en) * 2008-09-26 2010-04-08 Toshiba Corp X-ray computed tomography system

Similar Documents

Publication Publication Date Title
US4995107A (en) Computer tomography apparatus with axially displaceable detector rows
AU774687B2 (en) Method for obtaining a picture of the internal structure of an object using X-ray radiation and device for the implementation thereof
US7583788B2 (en) Measuring device for the shortwavelength x ray diffraction and a method thereof
US4384209A (en) Method of and device for determining the contour of a body by means of radiation scattered by the body
JPS63501735A (en) Improved X-ray attenuation method and device
JP2825450B2 (en) CT scanner
CN110072459B (en) Self-calibrating CT detector, system and method for self-calibration
US6652143B2 (en) Method and apparatus for measuring the position, shape, size and intensity distribution of the effective focal spot of an x-ray tube
US6408049B1 (en) Apparatus, methods, and computer programs for estimating and correcting scatter in digital radiographic and tomographic imaging
US4096389A (en) Apparatus for minimizing radiation exposure and improving resolution in radiation imaging devices
US6280084B1 (en) Methods and apparatus for indirect high voltage verification in an imaging system
US4081681A (en) Treatment of absorption errors in computerized tomography
JPH09285462A (en) Computer for computer type tomography system
US7319733B2 (en) System and method for imaging using monoenergetic X-ray sources
US4260895A (en) Radiation diagnostic apparatus for generating tomographic images
JPH05256950A (en) Solid detector for x-ray computer tomography
JPH0698883A (en) X-ray ct apparatus
Boone et al. Full-field spectroscopic measurement of the X-ray beam from a multilayer monochromator using a hyperspectral X-ray camera
US4250387A (en) Medical radiographic apparatus and method
JP7207856B2 (en) CT imaging device
JP3532649B2 (en) X-ray CT system
CA1164580A (en) Compton scatter diagnostic apparatus for determining structures in a body
JPS6157840A (en) Radiation tomographic inspecting device
JP2001061831A (en) X-ray ct device
JPH0759762A (en) X-ray ct system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees