JPH069869A - Polymer composite piezoelectric substance and its production - Google Patents

Polymer composite piezoelectric substance and its production

Info

Publication number
JPH069869A
JPH069869A JP16591992A JP16591992A JPH069869A JP H069869 A JPH069869 A JP H069869A JP 16591992 A JP16591992 A JP 16591992A JP 16591992 A JP16591992 A JP 16591992A JP H069869 A JPH069869 A JP H069869A
Authority
JP
Japan
Prior art keywords
solvent
thin film
formula
fine particles
piezoelectric substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16591992A
Other languages
Japanese (ja)
Inventor
Tokuharu Suu
徳春 鄒
Kenji Nakajima
研治 中島
Manabu Kishimoto
学 岸本
Mariko Kishida
真理子 岸田
Shigeki Yasukawa
栄起 安川
Iwao Seo
巌 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP16591992A priority Critical patent/JPH069869A/en
Publication of JPH069869A publication Critical patent/JPH069869A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the a polymer composite piezoelectric substance having stable electric characteristics even under high temperatures by forming a thin film from a solution containing a polyparabanic acid resin and ferroelectric ceramic fine particles by a solvent casting method and subsequently converting the thin film into an electret by a specific method. CONSTITUTION:(A) 90-10vol.% of a polyparabanic acid resin of formula I (R is group of formula II, III, etc.; m is 1-10) and (B) 10-90vol.% of a ferrodielectric ceramic are added to a solvent capable of dissolving the component A to obtain a mixture solution. The solution is formed into a thin film by a solvent cast method and then dried to leave 0.01-10wt.% of the solvent. Finally, the thin film is subjected to the application of an electric field at -10 to 250 deg.C to polarize the film into an electret for providing the objective piezoelectric substance. The component A is preferably obtained from a diisocyanate of formula: OCN- R-NCO and hydrocyanic acid through a compound of formula IV. The component B is preferably fine particles having a diameter of 0.2-44mum which is produced by grinding an inorganic piezoelectric substance such as lead titanate and subsequently subjecting the ground product to a thermal treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子物質と強誘電性
セラミックス微粒子からなる高分子複合圧電体に関し、
特に高温下でも安定した特性を有する高分子圧電体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer composite piezoelectric body composed of a polymer substance and ferroelectric ceramic fine particles,
In particular, the present invention relates to a piezoelectric polymer having stable properties even at high temperatures.

【0002】[0002]

【従来の技術】圧電材料には、例えば水晶、ロッシェル
塩、ジルコン酸チタン酸鉛(PZT)等の無機圧電材料
と、セルロース、コラーゲンなどの天然高分子、ポリフ
ッ化ビニリデン、ポリ塩化ビニルなどの合成高分子等の
有機圧電材料がある。このうち無機圧電材料は、成形加
工が困難なため、薄い圧電体や柔軟性のある圧電体を得
ることは困難である。一方、有機圧電材料は柔軟性のあ
る圧電体が得られても、圧電性に異方性がある、圧電性
が小さいなどの問題があった。
2. Description of the Related Art Piezoelectric materials include inorganic piezoelectric materials such as quartz, Rochelle salt, lead zirconate titanate (PZT), and natural polymers such as cellulose and collagen, polyvinylidene fluoride, polyvinyl chloride and the like. There are organic piezoelectric materials such as polymers. Of these, the inorganic piezoelectric material is difficult to mold, and thus it is difficult to obtain a thin piezoelectric material or a flexible piezoelectric material. On the other hand, the organic piezoelectric material has problems such as anisotropy in piezoelectricity and small piezoelectricity even if a flexible piezoelectric body is obtained.

【0003】これらの問題を改善した例として、例えば
特開昭50−159185、54−5598号公報に記
載の、強誘電性セラミックス微粒子をポリアセタール、
フッ素樹脂等の高分子材料に分散混合した高分子複合圧
電体が知られている。この高分子複合圧電体は有機圧電
体に比較して圧電性が大きく、また圧電性の異方性がな
いなどの特徴を有している。
As an example of improving these problems, for example, ferroelectric ceramic fine particles described in JP-A Nos. 50-159185 and 54-5598 are used as polyacetals.
2. Description of the Related Art Polymer composite piezoelectric materials that are dispersed and mixed in a polymer material such as a fluororesin are known. This polymer composite piezoelectric body has characteristics that it has greater piezoelectricity than organic piezoelectric bodies and that there is no piezoelectric anisotropy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この従
来の高分子複合圧電体は、80℃以上の環境で長期間使
用すると、脱分極などの圧電性低下が発生するため、適
用範囲が限られるという問題がある。本発明の目的は、
可撓性を有し、成形加工が容易で、かつ150℃程度の
高温下でも長期に使用が可能な高分子複合圧電体及びそ
の製造方法を提供することにある。
However, this conventional polymer composite piezoelectric body is limited in its application range when it is used in an environment of 80 ° C. or higher for a long period of time, because piezoelectricity deterioration such as depolarization occurs. There's a problem. The purpose of the present invention is to
It is an object of the present invention to provide a polymer composite piezoelectric body which is flexible, easy to mold and can be used for a long period of time even at a high temperature of about 150 ° C., and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明の第一は、次の
(a)、(b)の成分からなり、かつエレクトレット化
されることにより、高温下でも安定な高分子複合圧電体
についてである。 (a)一般式
The first object of the present invention is to provide a polymer composite piezoelectric material which comprises the following components (a) and (b) and which is stable even at high temperatures by being electretized. is there. (A) General formula

【0006】[0006]

【化2】 [Chemical 2]

【0007】で示されるポリパラバン酸樹脂90〜10
体積%。 (b)強誘電性セラミックス微粒子、10〜90体積
%。 また、本発明によれば、(A)ポリパラバン酸樹脂可溶
な溶媒に、ポリパラバン酸樹脂90〜10体積%と強誘
電性セラミックス10〜90体積%を加えて混合溶液と
する工程と、(B)前記混合溶液を溶媒キャスト法を用
いて薄膜化する工程と、(C)前記薄膜を、溶媒が0.
01〜10重量%残存する状態に調製する工程と、
(D)調製後の前記薄膜を、−10℃〜250℃の温度
で所定の電界を印加して分極する工程からなる、高分子
複合圧電体の製造方法が得られる。
Polyparabanic acid resin represented by
volume%. (B) Ferroelectric ceramic fine particles, 10 to 90% by volume. Further, according to the present invention, (A) a step of adding 90 to 10% by volume of the polyparabanic acid resin and 10 to 90% by volume of the ferroelectric ceramics to the solvent in which the polyparabanic acid resin is soluble to form a mixed solution, ) A step of forming the mixed solution into a thin film by a solvent casting method, and (C) the thin film containing a solvent of 0.
01 to 10% by weight of the step of preparing a state that remains,
(D) A method for producing a polymer composite piezoelectric body is obtained, which comprises a step of applying a predetermined electric field to polarize the thin film after preparation at a temperature of -10 ° C to 250 ° C.

【0008】[0008]

【実施例】本発明に用いられるポリパラバン酸(PP
A)は、ジイソシアネートと青酸とから次式の方法で製
造される。
EXAMPLES Polyparabanic acid (PP used in the present invention
A) is produced from diisocyanate and hydrocyanic acid by the following formula.

【0009】[0009]

【化3】 [Chemical 3]

【0010】−R−としては、As -R-,

【0011】[0011]

【化4】 [Chemical 4]

【0012】が用いられ、好ましくはIs used, preferably

【0013】[0013]

【化5】 [Chemical 5]

【0014】が用いられる。本発明の高分子複合圧電体
を製造するには、ポリパラバン酸と強誘電性セラミック
ス微粒子の含有量に対し、ポリパラバン酸を10〜90
体積%用いる。強誘電性セラミックス微粒子としては、
チタン酸ジルコン酸鉛(PZT)、チタン酸鉛、チタン
酸バリウム等の無機圧電体を粉砕し、熱処理を施した直
径0.2〜44μmの微粒子を用いる。セラミックス微
粒子の量は10〜90体積%である。
Is used. In order to manufacture the polymer composite piezoelectric material of the present invention, polyparabanic acid is added in an amount of 10 to 90 with respect to the contents of the polyparabanic acid and the ferroelectric ceramic fine particles.
Use by volume%. As the ferroelectric ceramic fine particles,
Inorganic piezoelectric materials such as lead zirconate titanate (PZT), lead titanate, and barium titanate are crushed and heat-treated to use fine particles having a diameter of 0.2 to 44 μm. The amount of the ceramic fine particles is 10 to 90% by volume.

【0015】(混合)ポリパラバン酸と強誘電性セラミ
ックス微粒子の混合は、ポリパラバン酸を溶媒に溶解し
溶液とし、この溶液に強誘電性セラミックス微粒子を加
え、各種ミキサー、ボールミル、ミキシングロール等一
般的な混合方法を用いて行うことができる。
(Mixing) Polyparabanic acid and ferroelectric ceramic fine particles are mixed by dissolving polyparabanic acid in a solvent to form a solution, and adding the ferroelectric ceramic fine particles to this solution, various mixers, ball mills, mixing rolls and the like are commonly used. It can be performed using a mixing method.

【0016】ポリパラバン酸を溶解する溶媒としては、
ジメチルホルムアミド、ジメチルアセトアミド、N−メ
チルピロリドン、ジオキサン、ガンマブチルラクトン、
シクロヘキサノン等を用いることができる。ジメチルホ
ルムアミドを用いるのが好ましい。
As a solvent for dissolving polyparabanic acid,
Dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dioxane, gammabutyrolactone,
Cyclohexanone or the like can be used. Preference is given to using dimethylformamide.

【0017】(成形)成形法としては溶媒キャスト法が
使用できる。この時ポリパラバン酸と強誘電性セラミッ
クス微粒子の比重の違いによる相分離を防ぎ、均一な成
形体を得るため、溶液粘度を10〜5000ポイズ、好
ましくは250〜2500ポイズに調整する。成形温度
は室温でキャスト基板(ガラス、テフロン基板など)上
に溶液を流延し、例えばベーカーアプリケーターを用い
て30〜200μmの膜厚に調整できる。溶媒キャスト
後成形体の乾燥は基板上で行なう。また溶媒の残存量
は、例えば任意温度(室温〜100℃)の真空乾燥機中
で、放置時間を調節することにより任意に変えることが
できる。
(Molding) As a molding method, a solvent casting method can be used. At this time, the solution viscosity is adjusted to 10 to 5000 poises, preferably 250 to 2500 poises in order to prevent phase separation due to the difference in specific gravity between the polyparabanic acid and the ferroelectric ceramic fine particles and obtain a uniform molded body. The molding temperature can be room temperature, and the solution can be cast on a cast substrate (glass, Teflon substrate, etc.), and the film thickness can be adjusted to 30 to 200 μm using, for example, a Baker applicator. After the solvent casting, the molded body is dried on the substrate. Further, the residual amount of the solvent can be arbitrarily changed by adjusting the standing time in a vacuum dryer at an arbitrary temperature (room temperature to 100 ° C.), for example.

【0018】(エレクトレット化)上記成形体に圧電性
を付与するために、成形体を所定温度に加熱した状態
で、成形体の表裏から直流電界もしくは交流電界を相乗
した直流電界を一定時間印加し、その後室温まで冷却さ
せて電界を取り去ることにより熱エレクトレット化を行
う。
(Electretization) In order to impart piezoelectricity to the above-mentioned molded body, a DC electric field or a synergistic DC electric field is applied from the front and back of the molded body for a certain time while the molded body is heated to a predetermined temperature. After that, thermal electretization is performed by cooling to room temperature and removing the electric field.

【0019】成形体を完全乾燥させた場合、熱エレクト
レット化は、ポリパラバン酸のガラス転移点(290
℃)近傍の温度で可能だが、高分子の熱劣化や、250
℃以下では充分な圧電性が得られない等の問題がある。
When the molded body is completely dried, thermal electretization causes the glass transition point (290) of polyparabanic acid.
It is possible at temperatures near ℃), but due to thermal degradation of the polymer, 250
Below 0 ° C, there is a problem that sufficient piezoelectricity cannot be obtained.

【0020】これに対し、0.01〜10重量%、好ま
しくは0.1〜2重量%の溶媒を残存させれば、成形体
に導電性が生じるため、−10〜250℃、好ましくは
20〜200℃の温度域で容易に熱エレクトレット化で
きる。成形体中に溶媒を残存させるには、溶媒キャスト
法で成形体を作製する時用いる溶媒を残存させるか、乾
燥後の成形体を溶媒に浸漬して溶媒を含浸させればよ
い。残存した溶媒は熱エレクトレット化後減圧乾燥する
ことにより容易に除去できるため、体積固有抵抗などの
電気的特性を劣化させることなくエレクトレット化が可
能となる。
On the other hand, if 0.01 to 10% by weight, preferably 0.1 to 2% by weight, of the solvent remains, the molded product becomes electrically conductive, so that it is -10 to 250 ° C, preferably 20. Thermal electret can be easily formed in a temperature range of up to 200 ° C. In order to leave the solvent in the molded body, the solvent used when the molded body is produced by the solvent casting method may be left, or the dried molded body may be immersed in the solvent to impregnate the solvent. Since the remaining solvent can be easily removed by drying under reduced pressure after thermal electretization, electretization is possible without deteriorating electrical characteristics such as volume resistivity.

【0021】また、電界は成形体の表裏面に金属箔、導
電性樹脂、導電性ペーストを密着させた電極を用いて印
加する。電界の強さは一般的に10kV/cmから成形
体の絶縁破壊を生じない程度、好ましくは50〜300
kV/cmに設定する。電界の印加時間は特に限定しな
いが、5分間以上が好ましい。
The electric field is applied by using electrodes in which a metal foil, a conductive resin, and a conductive paste are adhered to the front and back surfaces of the molded body. The strength of the electric field is generally 10 kV / cm to the extent that dielectric breakdown of the molded body does not occur, preferably 50 to 300.
Set to kV / cm. The application time of the electric field is not particularly limited, but is preferably 5 minutes or more.

【0022】ポリパラバン酸はガラス転移点が290℃
と高く、また非晶性高分子のため、ガラス転移点以下で
は安定な物性(誘電性、体積固有抵抗、耐熱性など)を
有する。このため、強誘電性セラミックス微粒子との高
分子複合圧電体を形成しても高温まで電気特性(圧電
性、誘電性、体積固有抵抗など)が安定している。また
耐薬品性、特に耐酸性に優れるため、非晶性高分子ポリ
エーテルスルホンと異なり、水分の存在により固体酸と
なる強誘電性セラミックス(例えば、チタン酸ジルコン
酸鉛、チタン酸鉛、チタン酸バリウムなど)と共存して
も、高分子の分解がなく、安定な高分子複合体を形成で
きる。
The glass transition temperature of polyparabanic acid is 290 ° C.
Since it is an amorphous polymer, it has stable physical properties (dielectricity, volume resistivity, heat resistance, etc.) below the glass transition point. Therefore, even if a polymer composite piezoelectric material with ferroelectric ceramic particles is formed, the electrical characteristics (piezoelectric property, dielectric property, volume resistivity, etc.) are stable up to a high temperature. Also, because it has excellent chemical resistance, especially acid resistance, unlike amorphous polymer polyether sulfone, it is a ferroelectric ceramic that becomes a solid acid due to the presence of water (for example, lead zirconate titanate, lead titanate, titanate). Even when coexisting with barium), the polymer does not decompose and a stable polymer composite can be formed.

【0023】(実験例)次に本発明の実験例について説
明する。なお、実施例において弾性率(E)及び圧電率
(d31)は135Hzで、誘電率は100Hzで測定し
た。また粘度はE型粘度計((株)東京計器製)を用い
て測定した。
(Experimental Example) Next, an experimental example of the present invention will be described. In the examples, the elastic modulus (E) and the piezoelectric modulus (d 31 ) were measured at 135 Hz, and the dielectric constant was measured at 100 Hz. The viscosity was measured using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.).

【0024】実験例 1 (1)式(I)で表わされるポリパラバン酸(PPA:
比重1.33)をジメチルホルムアミド(DMF)に2
1重量%溶解した、PPAのDMF溶液25.95gに
チタン酸ジルコン酸鉛(PZT:比重7.9)74.5
5gを加え、更にDMF4重量%(4.0g)を加えよ
く攪拌した後、ミキシングロールでよく混練混合して均
一な試料溶液を作成する。ここでPPAとPZTの体積
分率は30/70である。この時の試料溶液の粘度は、
約1000ポイズであった。 (2)得られた試料溶液を、脱泡後、フィルムコーター
(テスターサンギョウ社製 PI−1210)を用い
て、10cm×30cm×130μm、の複合膜を作成
し、40℃の乾燥機中で3時間乾燥した。 (3)得られた複合膜を、室温で圧縮プレスを用いて約
100μmに圧縮し脱媒によって生じた空隙相を充填し
た。この時の残存溶媒量は熱重量分析により約1重量%
であった。 (4)得られた複合膜の表裏面にスズ箔を密着させて電
極とし、100℃に加熱したオーブン中で電極間に10
00Vの直流電界(100kV/cm)を1.5時間印
加し、室温に冷却した後電界を取り去り熱エレクトレッ
ト化した。 (5)熱エレクトレット化した複合膜を、160℃12
時間減圧乾燥し、脱媒した。 (6)得られた高分子複合圧電体の性能を測定したとこ
ろ、次の値を得た。
Experimental Example 1 (1) Polyparabanic acid represented by the formula (I) (PPA:
Specific gravity 1.33) to dimethylformamide (DMF) 2
Lead titanate zirconate (PZT: specific gravity 7.9) 74.5 in 25.95 g of DMF solution of PPA dissolved 1% by weight
After adding 5 g and further adding DMF 4% by weight (4.0 g) and stirring well, the mixture was well kneaded and mixed with a mixing roll to prepare a uniform sample solution. Here, the volume fraction of PPA and PZT is 30/70. The viscosity of the sample solution at this time is
It was about 1000 poise. (2) After defoaming the obtained sample solution, a film coater (PI-1210 manufactured by Tester Sankyo Co., Ltd.) is used to form a composite film of 10 cm × 30 cm × 130 μm, and the composite film is dried in a dryer at 40 ° C. Dried for hours. (3) The obtained composite membrane was compressed to about 100 μm at room temperature using a compression press and filled with the void phase generated by desolvation. The residual solvent amount at this time is about 1% by weight by thermogravimetric analysis.
Met. (4) Tin foil was adhered to the front and back surfaces of the obtained composite film to form electrodes, and electrodes were placed between the electrodes in an oven heated to 100 ° C.
A direct current electric field of 100 V (100 kV / cm) was applied for 1.5 hours, and after cooling to room temperature, the electric field was removed to form a thermo electret. (5) Heat-electretized composite film
It was dried under reduced pressure for an hour and desolvated. (6) When the performance of the obtained polymer composite piezoelectric material was measured, the following values were obtained.

【0025】 弾性率(E) 4.5×1010dyn/cm
2 体積固有抵抗(Rv) 1×1015Ω・cm 誘電率(ε) 65 圧電率(d31) 5×10-12 C/N
Elastic Modulus (E) 4.5 × 10 10 dyn / cm
2 Volume resistivity (Rv) 1 × 10 15 Ω · cm Dielectric constant (ε) 65 Piezoelectric constant (d 31 ) 5 × 10 -12 C / N

【0026】実験例 2 実施例1において、熱エレクトレット化する温度のみを
変化させて複合圧電体を製造した。得られた圧電体の電
気特性を、表1に示す。
Experimental Example 2 In Example 1, a composite piezoelectric material was manufactured by changing only the temperature at which the material was thermally electretized. Table 1 shows the electrical characteristics of the obtained piezoelectric body.

【0027】[0027]

【表1】 [Table 1]

【0028】実験例 3 実施例1において、PPA樹脂とPZT微粒子の組成比
のみを変化させて複合圧電体を製造した。得られた圧電
体の電気特性を、表2に示す。
Experimental Example 3 In Example 1, a composite piezoelectric body was manufactured by changing only the composition ratio of PPA resin and PZT fine particles. Table 2 shows the electrical characteristics of the obtained piezoelectric body.

【0029】[0029]

【表2】 [Table 2]

【0030】実験例 4 実施例1において、熱エレクトレット化する時間のみを
を化させて複合圧電体を製造した。得られた圧電体の電
気特性を、表3に示す。
Experimental Example 4 In Example 1, a composite piezoelectric material was manufactured by changing only the time of thermal electretization. Table 3 shows the electrical characteristics of the obtained piezoelectric body.

【0031】[0031]

【表3】 [Table 3]

【0032】実験例 5 実施例1において、熱エレクトレット化する電界のみを
変化させて複合圧電体を製造した。得られた圧電体の電
気特性を、表4に示す。
Experimental Example 5 In Example 1, a composite piezoelectric material was manufactured by changing only the electric field for thermal electretization. Table 4 shows the electrical characteristics of the obtained piezoelectric body.

【0033】[0033]

【表4】 [Table 4]

【0034】実験例 6 実施例1の工程(2)の乾燥時間を変化させて、複合膜
中の残存溶媒量を0.01〜10重量%に調製した他
は、実施例1と同じ方法で複合圧電体を製造した。得ら
れた圧電体の電気特性を表5に示す。
Experimental Example 6 The same method as in Example 1 was repeated except that the amount of residual solvent in the composite film was adjusted to 0.01 to 10% by weight by changing the drying time in the step (2) of Example 1. A composite piezoelectric body was manufactured. Table 5 shows the electrical characteristics of the obtained piezoelectric body.

【0035】[0035]

【表5】 [Table 5]

【0036】実験例 7 実施例1の工程(1)〜(3)で作製した複合膜を、1
60℃12時間減圧乾燥させ完全に溶媒を除き、熱エレ
クトレット化する温度を変化させて複合圧電膜を製造し
た。得られた圧電体の電気特性を、表6に示す。溶媒を
含まない複合膜では、250℃以下でエレクトレット化
しても充分配向分極が進まず大きな圧電性を示さないこ
とが判る。
Experimental Example 7 The composite film prepared in steps (1) to (3) of Example 1 was
A composite piezoelectric film was manufactured by drying under reduced pressure at 60 ° C. for 12 hours to completely remove the solvent and changing the temperature for thermal electretization. Table 6 shows the electrical characteristics of the obtained piezoelectric body. It can be seen that in the case of a composite film containing no solvent, orientation polarization does not proceed sufficiently even if it is electretized at 250 ° C. or lower, and large piezoelectricity is not exhibited.

【0037】[0037]

【表6】 [Table 6]

【0038】実験例 8 実施例1の工程(1)〜(3)で作製した複合膜を、実
施例1の工程(4)の前に160℃12時間減圧乾燥さ
せ完全に溶媒を除き、乾燥した複合膜をメタノール中に
1分間浸漬しメタノールを含浸させた他は、実施例1と
同じ方法で複合圧電体を製造した。得られた圧電体の電
気特性は以下の通りである。脱媒後再び溶媒を複合膜に
存在させれば実施例1と同様、充分配向分極が進むこと
が判る。
Experimental Example 8 The composite membrane prepared in steps (1) to (3) of Example 1 was dried under reduced pressure at 160 ° C. for 12 hours before the step (4) of Example 1 to completely remove the solvent and dry it. A composite piezoelectric material was manufactured by the same method as in Example 1 except that the composite film was immersed in methanol for 1 minute to impregnate it with methanol. The electrical characteristics of the obtained piezoelectric body are as follows. It can be seen that if the solvent is allowed to exist again in the composite film after the removal of the medium, the orientation polarization is sufficiently advanced as in Example 1.

【0039】 弾性率(E) 4.2×1010dyn/cm
2 体積固有抵抗(Rv) 1×1015Ω・cm 誘電率(ε) 63 圧電率(d31) 4.1×10-12 C/N
Elastic Modulus (E) 4.2 × 10 10 dyn / cm
2 Volume resistivity (Rv) 1 × 10 15 Ω · cm Dielectric constant (ε) 63 Piezoelectric constant (d 31 ) 4.1 × 10 −12 C / N

【0040】実験例 9 実施例1において、溶媒量を変化させることにより試料
溶液の粘度を変化させた他は、実施例1と同じ方法で複
合圧電体を製造した。得られた圧電体の電気特性を、表
7に示す。溶液粘度が10ポイズ以下では、複合膜を作
製できるがPZT微粒子が製膜時に沈降し相分離し実用
に耐えない。
Experimental Example 9 A composite piezoelectric material was manufactured by the same method as in Example 1 except that the viscosity of the sample solution was changed by changing the amount of solvent in Example 1. Table 7 shows the electrical characteristics of the obtained piezoelectric body. When the solution viscosity is 10 poise or less, a composite film can be produced, but the PZT fine particles settle out during the film formation and undergo phase separation, which is not practical.

【0041】[0041]

【表7】 [Table 7]

【0042】実験例 10 実施例1と同じ方法で複合圧電体を製造し、窒素置換後
150℃に加熱したオーブン中に保管し、室温で圧電率
を測定した結果を、図1に示す。配向分極の不安定部分
が保管直後減衰した後、30時間以後安定し、4000
時間経ても初期値の85%を保持していることが判る。
Experimental Example 10 A composite piezoelectric material was manufactured by the same method as in Example 1, stored in an oven heated to 150 ° C. after nitrogen substitution, and the result of measuring the piezoelectric constant at room temperature is shown in FIG. After the unstable part of orientation polarization decays immediately after storage, it stabilizes after 30 hours and reaches 4000.
It can be seen that 85% of the initial value is maintained even after a lapse of time.

【0043】[0043]

【発明の効果】以上説明したように本発明によれば、可
撓性を有し、成形加工が容易で、かつ高温下でも長期に
使用が可能な高分子複合圧電体およびその製法が得られ
る。
As described above, according to the present invention, it is possible to obtain a polymer composite piezoelectric material which is flexible, easy to mold and can be used for a long time even at high temperature, and a method for producing the same. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実験例10の測定結果を示すグラフである。FIG. 1 is a graph showing the measurement results of Experimental Example 10.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 41/26 // C08G 73/06 NTM 9285−4J (72)発明者 岸田 真理子 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内 (72)発明者 安川 栄起 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内 (72)発明者 瀬尾 巌 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01L 41/26 // C08G 73/06 NTM 9285-4J (72) Inventor Mariko Kishida Inashiki-gun, Ibaraki Prefecture 8-3-1 Chuo, Ami-cho Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Institute (72) Inventor Eisuke Yasukawa 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Institute (72 ) Inventor Iwao Seo 8-3-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 次の(a)、(b)の成分からなり、
かつエレクトレット化してなる高分子複合圧電体。 (a)一般式 【化1】 示されるポリパラバン酸樹脂90〜10体積%。 (b)強誘電性セラミックス微粒子、10〜90体積
%。
1. A method comprising the following components (a) and (b):
In addition, a polymer composite piezoelectric body formed into an electret. (A) General formula: Polyparabanic acid resin shown, 90-10% by volume. (B) Ferroelectric ceramic fine particles, 10 to 90% by volume.
【請求項2】(A)ポリパラバン酸樹脂可溶な溶媒に、
ポリパラバン酸樹脂90〜10体積%と強誘電性セラミ
ックス10〜90体積%を加えて混合溶液とする工程
と、(B)前記混合溶液を溶媒キャスト法を用いて薄膜
化する工程と、(C)前記薄膜を、溶媒が0.01〜1
0重量%残存する状態に調製する工程と、(D)調製後
の前記薄膜を、−10℃〜250℃の温度で所定の電界
を印加して分極する工程からなる、請求項1記載の高分
子複合圧電体の製造方法。
2. A solvent in which the (A) polyparabanic acid resin is soluble,
A step of adding 90 to 10% by volume of polyparabanic acid resin and 10 to 90% by volume of ferroelectric ceramics to form a mixed solution; (B) a step of thinning the mixed solution by a solvent casting method; (C) The thin film contains 0.01-1 solvent.
2. The method according to claim 1, comprising a step of preparing a state in which 0 wt% remains, and a step of (D) applying the predetermined electric field to polarize the thin film after preparation at a temperature of -10 ° C to 250 ° C. Method for manufacturing molecular composite piezoelectric body.
JP16591992A 1992-06-24 1992-06-24 Polymer composite piezoelectric substance and its production Pending JPH069869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16591992A JPH069869A (en) 1992-06-24 1992-06-24 Polymer composite piezoelectric substance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16591992A JPH069869A (en) 1992-06-24 1992-06-24 Polymer composite piezoelectric substance and its production

Publications (1)

Publication Number Publication Date
JPH069869A true JPH069869A (en) 1994-01-18

Family

ID=15821509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16591992A Pending JPH069869A (en) 1992-06-24 1992-06-24 Polymer composite piezoelectric substance and its production

Country Status (1)

Country Link
JP (1) JPH069869A (en)

Similar Documents

Publication Publication Date Title
US4330593A (en) PZT/Polymer composites and their fabrication
JP2000507392A (en) Improved piezoelectric ceramic-polymer composites
JP2006179925A (en) Capacitance device, organic dielectric laminate, printed wiring board with such device assembled therein, and method of manufacturing them
Chan et al. Study on BaTiO3/P (VDF-TrFE) 0–3 composites
CN106915960A (en) A kind of unleaded high energy storage density and energy storage efficiency ceramic material and preparation method thereof
Jiang et al. Low dielectric loss BST/PTFE composites for microwave applications
Rao et al. Ultra high dielectric constant epoxy silver composite for embedded capacitor application
EP3948964A1 (en) Lead-free piezo composites and methods of making thereof
CN108485133B (en) high-energy-storage-density composite material and preparation method thereof
JP3252010B2 (en) Manufacturing method of polymer composite piezoelectric material
EP4193396A1 (en) Piezoelectric composite material and method
CN1432598A (en) High-dielectric composite material containing carbon nanotube and its prepn process
CN109265925B (en) Preparation method of polymer-based composite flexible piezoelectric sensor
JPH069869A (en) Polymer composite piezoelectric substance and its production
JPH11322426A (en) Piezoelectric porcelain composition
RU2713223C1 (en) Dielectric elastomer composite material, method of its production and application
JPS61295678A (en) Manufacture of piezoelectric film
KR100548045B1 (en) Conductive polymer film and method for preparing the same
Wang et al. Preparation of barium titanate/polyimide composite film and its dielectric properties
JPH0226794B2 (en)
US6984348B2 (en) Process for preparing conducting or semi-conducting polymer with high piezo-sensitivity
Murphy et al. PcP151. Thin-film pyroelectric inorganic/organic composites
CN115594874B (en) P (VDF-TrFE) composite film and preparation method and application thereof
Batra et al. Dielectric Properties of Poly (vinylidene fluoride)/PMN-PT Composite Films for Embedded Capacitors
JP3213849B2 (en) Piezoelectric ceramic composition