JPH0698414A - System for feeding superconducting magnetic levitation type railroad - Google Patents

System for feeding superconducting magnetic levitation type railroad

Info

Publication number
JPH0698414A
JPH0698414A JP27093092A JP27093092A JPH0698414A JP H0698414 A JPH0698414 A JP H0698414A JP 27093092 A JP27093092 A JP 27093092A JP 27093092 A JP27093092 A JP 27093092A JP H0698414 A JPH0698414 A JP H0698414A
Authority
JP
Japan
Prior art keywords
coil
propulsion
phase
feeding
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27093092A
Other languages
Japanese (ja)
Inventor
Kunio Kamishiro
邦雄 神代
Hisamitsu Shibakawa
久光 柴川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP27093092A priority Critical patent/JPH0698414A/en
Publication of JPH0698414A publication Critical patent/JPH0698414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To adopt a four-phase propulsion system and to enable enlargement of a pole pitch without changing a truck length. CONSTITUTION:While 1 and 2, and 3 and 4, are of the same phase and connected in series respectively and the points of connection thereof are grounded, the phases of (1, 2) and (3, 4) are different at an angle of 90 degrees from each other and they construct a two-phase power converter for feeding, as a whole. Four coils of 17 to 20 constitute a unit of ground coils for propulsion and the coils 17 and 19, and 18 and 20, are connected in series respectively so that they have reverse polarities to each other. The four coils furnish four-phase propulsion in which they have sequential phase differences of 90 degrees in the sequence of arrangement when they are fed, and a magnet on a vehicle is subjected to a prescribed propulsion which is unvaried. While a pole pitch of the ground coil is made larger than the one in the case of three-phase feeding, the pole pitch of a system on the vehicle can also be enlarged without changing a truck length, since the number of poles of the system on the vehicle may be odd. Since four-phase propulsion by two-phase feeding is adopted, a flexible design corresponding to a load, cost reduction, etc., can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、いわゆる地上1次方式
の超電導磁気浮上式鉄道で採用されるき電方式に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feeder system adopted in a so-called primary ground type superconducting magnetic levitation railway.

【0002】[0002]

【従来の技術】地上1次方式の超電導磁気浮上式鉄道で
は、鉄道車両の誘導路の側壁面または床面に敷設した推
進用地上コイルにき電用電力変換器からき電し、車上に
超電導磁石を備える鉄道車両を浮上走行させるが、この
種の鉄道での推進用地上コイルのき電方式としては、従
来例えば図6に示す3相き電方式が知られている。
2. Description of the Related Art In a ground-based primary type superconducting magnetically levitated railway, a propulsion ground coil laid on the side wall or floor of a taxiway of a railway vehicle is powered by a power converter for feeding, and superconducting on the vehicle. A railway vehicle equipped with a magnet is driven to levitate, and as a feeding system for a ground coil for propulsion in this type of railway, a three-phase feeding system shown in, for example, FIG. 6 is conventionally known.

【0003】図6において、61と62と63は、それ
ぞれ、サイクロコンバータからなる単相の電力変換器で
あって、相互に120度の位相差を有し、一端は共通接
続されて接地される。つまり、61〜63の3個の単相
電力変換器は全体として3相のき電用電力変換器を構成
し、変電所に設定されるが、各相出力及び共通接地端
(いわゆる中性点)は、それぞれ、遮断機(64〜6
7)を介してき電線路(68〜71)の一端に接続され
る。
In FIG. 6, reference numerals 61, 62 and 63 respectively denote single-phase power converters composed of cycloconverters, which have a phase difference of 120 degrees with each other, and one ends thereof are commonly connected and grounded. . That is, the three single-phase power converters 61 to 63 constitute a three-phase feeder power converter as a whole and are set in the substation, but each phase output and the common ground terminal (so-called neutral point ) Are circuit breakers (64-6
7) and is connected to one end of the feeder line (68 to 71).

【0004】これらのき電線路(68〜71)の他端
は、それぞれ、変電所から鉄道車両の誘導路内に往路き
電線路及び帰路き電線路として延在敷設されるが、その
途中には所定の間隔(き電制御の間隔区間)を置いて、
その区間の一端(変電所側)に往路遮断機(72〜7
4)が設定され他端に帰路遮断機75が設定される。
The other ends of these feeder lines (68 to 71) are laid and extended from the substation into the guideway of the railway vehicle as the outgoing and return electrical lines, respectively, on the way. Is a predetermined interval (interval of feeding control),
At one end of the section (substation side), a forward circuit breaker (72 to 7)
4) is set and the return circuit breaker 75 is set at the other end.

【0005】そして、鉄道車両の誘導路の側壁面または
床面には推進用地上コイルが敷設されるが、これは3個
のコイル(76〜78)を単位として構成され、前記き
電制御の区間内において各単位における配列順序の対応
したコイル同士が直列に接続されてなり、一端(変電所
側)が往路遮断機(72〜74)の対応するものを介し
て往路き電線路(68〜70)の対応するものに接続さ
れ、他端が共通に帰路遮断機75を介して帰路き電線路
71に接続される。
Further, a ground coil for propulsion is laid on the side wall surface or floor surface of the taxiway of the railway vehicle. This coil is composed of three coils (76 to 78) as a unit, In the section, coils corresponding to the order of arrangement in each unit are connected in series, and one end (substation side) is connected to the forward circuit breaker (72 to 74) via the corresponding forward circuit (68 to 74). 70), and the other end is commonly connected to the return electric line 71 via the return circuit breaker 75.

【0006】要するに、従来のき電方式は、き電の相数
を3相とし(図7)、それぞれの相の電力変換器から3
相のき電電流の対応する相電流(80〜82)を推進用
地上コイル(76の直列系〜78の直列系)の対応する
直列コイル系にき電する方式である。
In short, the conventional feeding system has three feeding phases (FIG. 7), and the power converters for each phase are three.
In this system, the phase current (80 to 82) corresponding to the phase feeding current is fed to the corresponding series coil system of the propulsion ground coil (76 series system to 78 series system).

【0007】なお、超電導磁石は、鉄道車両の台車に搭
載されるが、その極ピッチは推進用地上コイルのそれと
等しく、かつ、推進力脈動の低減のため台車の進行方向
に直交する両側にそれぞれ偶数個(極)、例えば4個
(極)配置される。
The superconducting magnet is mounted on a bogie of a railway vehicle, and its pole pitch is equal to that of the ground coil for propulsion, and it is on both sides orthogonal to the traveling direction of the bogie to reduce the pulsation of propulsive force. An even number (poles), for example, four (poles) are arranged.

【0008】[0008]

【発明が解決しようとする課題】ところで、地上1次方
式の超電導磁気浮上式鉄道では、推進用地上コイルに関
し各種の課題がある。その1つは、例えば推進用地上コ
イルでは、磁気抗力が発生するが、これは走行抵抗とな
るのでその発生抑制が挙げられる。この磁気抗力は、渦
電流損や銅損等を原因とするが、渦電流損はほぼ周波数
の2乗に比例するので、走行時のき電周波数を低くでき
れれば渦電流損に起因する磁気抗力を低減できる。これ
は、極ピッチを拡大すれば解決できる。
By the way, in the superconducting magnetic levitation railway of the primary ground type, there are various problems regarding the ground coil for propulsion. One of them is, for example, in a ground coil for propulsion, a magnetic drag force is generated. However, since this causes a running resistance, its generation can be suppressed. This magnetic drag is caused by eddy current loss, copper loss, etc. Since the eddy current loss is almost proportional to the square of the frequency, the magnetic force caused by the eddy current loss can be reduced if the feeding frequency during running can be lowered. The drag can be reduced. This can be solved by increasing the pole pitch.

【0009】しかし、従来では3相き電方式を採用する
ので、極ピッチを拡大するのが困難であるという問題が
ある。即ち、地上系の極ピッチを拡大するときは同様に
車上系も拡大する必要があるが、台車を長くすると車両
重量に占める台車重量の割合が過大となり、また列車長
に占める台車長の割合が過大になる等、車両の現実的な
構成から台車の長さには一定の制限がある。
However, since the conventional three-phase feeding system is adopted, there is a problem that it is difficult to increase the pole pitch. That is, when increasing the pole pitch of the ground system, it is necessary to expand the on-board system as well, but if the bogie is made longer, the ratio of the bogie weight to the vehicle weight becomes excessive, and the ratio of the bogie length to the train length There is a certain limit on the length of the bogie due to the realistic configuration of the vehicle, such as when the vehicle becomes excessively large.

【0010】従って、台車長を変更せずに台車の進行方
向に直交する両側にそれぞれ設定される超電導磁石数を
減少させ現在の偶数極から奇数極へ変更する、具体的に
は台車の片側4極から3極に減少する以外に方法はな
い。しかし、そのようにすると、推進力の変動が大きく
なり超電動磁石に与える磁気的影響が大きくなるので妥
当でない。
Therefore, the number of superconducting magnets set on both sides orthogonal to the traveling direction of the carriage is reduced without changing the carriage length to change the present even poles to odd poles. There is no other way than to reduce from three poles to three poles. However, doing so is not appropriate because the fluctuation of the propulsion force increases and the magnetic influence on the super-electric magnet increases.

【0011】また、推進用地上コイルが超電導磁石に与
える磁気的影響を低減することも課題の1つであるが、
3相き電方式では、上述した推進力の変動の他に、推進
方向に直交する向きに垂直力が生ずるが、これらの低減
が困難であるという問題もある。
Further, reducing the magnetic influence of the ground coil for propulsion on the superconducting magnet is one of the problems.
In the three-phase feeding system, a vertical force is generated in a direction orthogonal to the propulsion direction in addition to the above-described fluctuation of the propulsion force, but there is a problem that it is difficult to reduce these.

【0012】なお、上述した垂直力の低減策として2層
配置構造にしているが、コストアップの原因となってい
る。また3相き電方式では、車両誘導路に敷設するケー
ブル本数や渡り配線数が多く材料費や労務費が嵩むとい
う問題もある。つまり、推進用地上コイルの価格性能比
の向上も課題の1つである。
Although a two-layer arrangement structure is adopted as a measure for reducing the above-mentioned vertical force, it causes a cost increase. Further, the three-phase feeding system has a problem that the number of cables and the number of crossover wires laid in the vehicle taxiway are large and material costs and labor costs increase. In other words, improving the price / performance ratio of the ground coil for propulsion is also one of the challenges.

【0013】本発明の目的は、台車長の変更を要せずに
極ピッチの拡大が可能で、かつ、超電導磁石に与える磁
気的影響の低減や価格性能比の向上を図ることができる
超電導磁気浮上式鉄道のき電方式を提供することにあ
る。
An object of the present invention is to make it possible to expand the pole pitch without changing the carriage length, to reduce the magnetic influence on the superconducting magnet, and to improve the price / performance ratio. It is to provide a feeder system for the levitation railway.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本発明の超電導磁気浮上式鉄道のき電方式は次の如
き構成を有する。即ち、第1発明の超電導磁気浮上式鉄
道のき電方式は、き電用電力変換器から推進用地上コイ
ルをき電し、車上に超電導磁石を備える鉄道車両を浮上
走行させる超電導磁気浮上式鉄道において; 前記推進
用地上コイルは、4個のコイルを単位として構成され、
各単位におけるコイルは、配列の順序に従って順に90
度宛位相をずらしてき電される; ことを特徴とするも
のである。
In order to achieve the above object, the feeding system of the superconducting magnetic levitation railway of the present invention has the following constitution. That is, the feeding system of the superconducting magnetic levitation railway of the first invention is a superconducting magnetic levitation type in which a ground coil for propulsion is fed from a power converter for feeding and a railway vehicle equipped with a superconducting magnet is levitated. In railways: the propulsion ground coil is composed of four coils as a unit,
The coils in each unit are 90 in order according to the order of arrangement.
It is characterized by the fact that it is received with a phase shifted to the degree.

【0015】第2発明の超電導磁気浮上式鉄道のき電方
式は、き電用電力変換器から推進用地上コイルをき電
し、車上に超電導磁石を備える鉄道車両を浮上走行させ
る超電導磁気浮上式鉄道において; 前記き電用電力変
換器は、同位相の単相電力変換器の2個を直列接続しそ
の接続点を接地してなる2組の組合変換器であって、互
いに位相が90度異なる第1及び第2の組合変換器から
なり; 前記推進用地上コイルは、4個のコイルを単位
として構成され、各単位におけるコイルを配列の順序に
従って順に第1コイル、第2コイル、第3コイル、第4
コイルとすれば、第1コイルと第3コイル及び第2コイ
ルと第4コイルはそれぞれ逆極性となるように直列接続
され、第1コイルと第3コイルの直列コイルの系は前記
第1の組合変換器からき電され、第2コイルと第4コイ
ルの直列コイルの系は前記第2の組合変換器からき電さ
れる; ことを特徴とするものである。
A feeding system of a superconducting magnetic levitation railway according to a second aspect of the present invention is a superconducting magnetic levitation system in which a propulsion ground coil is fed from a feeding power converter to levitate a railway vehicle equipped with a superconducting magnet. In the railway, the power converter for feeding is two sets of combination converters in which two single-phase power converters of the same phase are connected in series and the connection point is grounded, and the phases are 90 degrees each other. The propulsion ground coil is composed of four coils as a unit, and the coils in each unit are arranged in order of the first coil, the second coil, and the second coil. 3 coils, 4th
If the coil is used, the first coil and the third coil and the second coil and the fourth coil are connected in series so as to have opposite polarities, and the series coil system of the first coil and the third coil is the first combination. Is fed from the converter, and the series coil system of the second coil and the fourth coil is fed from the second combination converter.

【0016】また、第3発明の超電導磁気浮上式鉄道の
き電方式は、き電用電力変換器から推進用地上コイルを
き電し、車上に超電導磁石を備える鉄道車両を浮上走行
させる超電導磁気浮上式鉄道において; 前記き電用電
力変換器は、互いに位相が90度異なる単相電力変換器
の2個を接続しその接続点を接地してなる組合変換器か
らなり; 前記推進用地上コイルは、4個のコイルを単
位として構成され、各単位におけるコイルを配列の順序
に従って順に第1コイル、第2コイル、第3コイル、第
4コイルとすれば、第1コイルと第3コイル及び第2コ
イルと第4コイルはそれぞれ逆極性となるように直列接
続され、それぞれの直列コイルの系は前記組合変換器か
らその接地端を共通帰路としてき電される; ことを特
徴とするものである。
The feeding system of the superconducting magnetic levitation railway according to the third aspect of the present invention is a superconducting system in which a propulsion ground coil is fed from a feeding power converter to levitate a railway vehicle equipped with a superconducting magnet. In a magnetically levitated railway; the power converter for feeders comprises a combination converter in which two single-phase power converters whose phases are different from each other by 90 degrees are connected and the connection point is grounded; The coil is composed of four coils as a unit. If the coils in each unit are a first coil, a second coil, a third coil, and a fourth coil in the order of arrangement, the first coil, the third coil, and The second coil and the fourth coil are connected in series so as to have opposite polarities, and the system of each series coil is fed from the combination converter with its ground end as a common return path. is there.

【0017】[0017]

【作用】次に、前記の如く構成される本発明の超電導磁
気浮上式鉄道のき電方式の作用を説明する。本発明で
は、推進用地上コイルを、4個のコイルを単位として構
成し、各単位におけるコイルを、配列の順序に従って順
に90度宛位相をずらしてき電する4相き電方式を採用
する(第1発明)。
Next, the operation of the feeding system of the superconducting magnetic levitation railway of the present invention constructed as described above will be described. In the present invention, a four-phase feeding method is adopted in which the ground coil for propulsion is configured with four coils as a unit, and the coils in each unit are sequentially shifted in phase by 90 degrees in accordance with the order of arrangement (first). 1 invention).

【0018】その結果、地上系の極数ピッチは当然に拡
大するが、推進力の変動を大幅に減少させ得るので、車
上系では1台車当たりの片側極数を奇数とすることがで
き、具体的には片側4極から3極に減少させ得、台車長
を変更せずに車上系極ピッチを地上系極ピッチの拡大に
対応して拡大できる。
As a result, the pole pitch of the ground system naturally expands, but the fluctuation of the propulsive force can be greatly reduced, so that the number of poles on one side per bogie can be made odd in the on-board system. Specifically, the number of poles on one side can be reduced from four to three, and the on-vehicle pole pitch can be increased corresponding to the increase of the ground pole pitch without changing the bogie length.

【0019】これにより、磁気抗力の低減が図れ、省電
力化と推進用地上コイルの低コスト化が可能となる。ま
た推進力の変動がなく各車上系磁石はそれぞれ同一の推
進力が与えられ、また垂直力も低減できるので超電導磁
石への機械的外乱を小さくでき超電導磁石の信頼性・耐
久性が大幅に向上する。
As a result, the magnetic resistance can be reduced, and it is possible to save power and reduce the cost of the ground coil for propulsion. In addition, since the on-vehicle magnets are given the same propulsive force without fluctuations in propulsive force, and the vertical force can be reduced, mechanical disturbance to the superconducting magnet can be reduced and reliability and durability of the superconducting magnet are greatly improved. To do.

【0020】そして、具体的には例えば第2発明や第3
発明のように構成できるので、推進用地上コイルは4相
で推進するが、変電所のき電系統を実質的に90度の相
差を有する2相き電とすることができ、き電用電力変換
器の制御部分を3相から2相へ簡素化できるだけでな
く、車両誘導路に敷設するケーブル本数や渡り配線数を
大幅に低減させ得、推進用地上コイルの価格性能比を向
上させ得る。
Specifically, for example, the second invention and the third invention
Since it can be configured as in the invention, the propulsion ground coil is propelled in four phases, but the feeding system of the substation can be made into a two-phase feeding having a phase difference of substantially 90 degrees, and the feeding power can be reduced. Not only can the control part of the converter be simplified from three-phase to two-phase, but the number of cables and crossover wires laid in the vehicle taxiway can be significantly reduced, and the price-performance ratio of the ground coil for propulsion can be improved.

【0021】なお、第2発明は長編成長距離用に好適な
構成例であり、また第3発明は短編成短距離用に好適な
構成例であるが、このようにき電用電力変換器及びき電
系統を負荷の軽重に応じて適正に構成でき、経済性と保
守性を損なわずに超電導磁気浮上式鉄道に好適なき電方
式を実現できる。
The second invention is a constitutional example suitable for a long knitting growth distance, and the third invention is a constitutional example suitable for a short knitting short distance. The feeder system can be appropriately configured according to the weight of the load, and the feeder system suitable for the superconducting magnetic levitation railway can be realized without impairing the economical efficiency and maintainability.

【0022】[0022]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係る超電導磁気浮上
式鉄道のき電方式を示す。本第1実施例方式は、長編成
長距離用に好適な構成例である。図1において、1と2
と3と4は、全体としてき電用電力変換器を構成する
が、それぞれ単相の電力変換器であって、1と2及び3
と4は、それぞれ同位相で直列接続され、その接続点は
接地してある。そして、第1の組合変換器(1、2)と
第2の組合変換器(3、4)は互いに位相が90度異な
る。つまり、このき電用電力変換器は90度の相差を有
する2相の電力変換器となっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a feeding system of a superconducting magnetic levitation railway according to an embodiment of the present invention. The system of the first embodiment is an example of a configuration suitable for a long growth distance. In FIG. 1, 1 and 2
And 3 and 4 constitute a power converter for feeding as a whole, they are single-phase power converters, and are 1 to 2 and 3 respectively.
And 4 are connected in series in the same phase, and the connection point is grounded. The first combination converter (1, 2) and the second combination converter (3, 4) are out of phase with each other by 90 degrees. That is, this power converter for feeding is a two-phase power converter having a phase difference of 90 degrees.

【0023】なお、各単相電力変換器(1〜4)は、そ
れぞれ、従来と同様にサイクロコンバータで構成しても
良いが、任意波形を形成できる点から本実施例ではGT
Oインバータで構成してある。
Each of the single-phase power converters (1 to 4) may be composed of a cycloconverter as in the conventional case, but in the present embodiment, the GT is used because an arbitrary waveform can be formed.
It is composed of an O inverter.

【0024】5〜8は変電所出口に設定される遮断機で
ある。第1の組合変換器(1、2)では、出力端が遮断
機5を介してき電線路9の一端に接続され、入力端が遮
断機6を介してき電線路10の一端に接続され、第2の
組合変換器(3、4)では、出力端が遮断機7を介して
き電線路11の一端に接続され、入力端が遮断機8を介
してき電線路12の一端に接続される。
Numerals 5 to 8 are circuit breakers set at the outlets of the substations. In the first combination converter (1, 2), the output end is connected to one end of the feeder line 9 via the breaker 5, and the input end is connected to one end of the feeder line 10 via the breaker 6. In the combination converter (3, 4) of No. 2, the output end is connected to one end of feeder line 11 via breaker 7, and the input end is connected to one end of feeder line 12 via breaker 8.

【0025】これらのき電線路(9〜12)の他端は、
それぞれ、変電所から鉄道車両の誘導路内に往路き電線
路及び帰路き電線路として延在敷設されるが、その途中
には所定の間隔(き電制御の間隔区間)を置いて、その
区間の一端(変電所側)に往路遮断機(13、14)が
設定され他端に帰路遮断機(15、16)が設定され
る。
The other ends of these feeder lines (9 to 12) are
Each of them is laid as a forward and return electric line from the substation into the taxiway of the railway vehicle, with a predetermined interval (interval interval for feeding control) in the middle of that line. The forward circuit breakers (13, 14) are set at one end (substation side) of the and the return circuit breakers (15, 16) are set at the other end.

【0026】また、鉄道車両の誘導路の側壁面または床
面には推進用地上コイルが敷設される。これは4個のコ
イル(17〜20)を単位として構成され、この4個の
コイルは配列順序が17、18、19、20の順序であ
るとすれば、17と19及び18と20はそれぞれ逆極
性となるように直列接続されており、前記き電制御の区
間内において各単位がこの関係を維持して対応した直列
コイル同士が直列に接続されている。
A ground coil for propulsion is laid on the side wall or floor of the taxiway of the railway vehicle. This is composed of four coils (17 to 20) as a unit, and if the four coils are arranged in the order of 17, 18, 19, and 20, then 17 and 19 and 18 and 20 respectively. The coils are connected in series so as to have opposite polarities, and the corresponding series coils are connected in series with each unit maintaining this relationship in the feeding control section.

【0027】そして、17と19の直列コイルの系は、
一端(変電所側)が往路遮断機14を介して往路き電線
路9に接続され、他端が帰路遮断機15を介して帰路き
電線路10に接続される。また18と20の直列コイル
の系は、一端(変電所側)が往路遮断機13をして往路
き電線路11に接続され、他端が帰路遮断機16を介し
て帰路き電線路12に接続される。
The system of the series coils of 17 and 19 is
One end (substation side) is connected to the outgoing circuit line 9 via the outward circuit breaker 14, and the other end is connected to the return circuit line 10 via the return circuit breaker 15. Further, in the series coil system of 18 and 20, one end (substation side) is connected to the outgoing circuit breaker 13 and is connected to the outgoing circuit line 11, and the other end is connected to the outgoing circuit line 12 via the return circuit breaker 16. Connected.

【0028】従って、隣の推進用地上コイルとの接続線
は従来の3本から2本に減少し、渡り配線も同様に減少
する。また、17と19の直列コイルの系が第1の組合
変換器(1、2)からき電され、18と20の直列コイ
ルの系が第2の組合変換器(3、4)からき電される
が、第1及び第2の組合変換器は、それぞれ接続点を接
地してあるので、この推進用地上コイルの対地電圧は印
加電圧の半分であり、耐圧の点で有利となる。
Therefore, the number of connecting lines to the adjacent ground coil for propulsion is reduced from the conventional three to two, and the number of crossovers is also reduced. Also, the series coil system of 17 and 19 is fed from the first combination converter (1, 2), and the series coil system of 18 and 20 is fed from the second combination converter (3, 4). However, since the connection points of the first and second combination converters are grounded, the ground voltage of this propulsion ground coil is half the applied voltage, which is advantageous in terms of withstand voltage.

【0029】以上の構成から明白なように、推進用地上
コイルは、17と19の直列コイルの系が第1の組合変
換器(1、2)からき電され、18と20の直列コイル
の系が第2の組合変換器(3、4)からき電される2相
き電方式であるが、17と19及び18と20はぞれぞ
れ逆極性であるので、4個のコイルが互いに90度異な
る位相でき電される4相推進方式となっているのであ
る。
As is apparent from the above construction, in the propulsion ground coil, the series coil system of 17 and 19 is fed from the first combination converter (1, 2), and the series coil system of 18 and 20 is supplied. Is a two-phase feeding system in which electricity is fed from the second combination converter (3, 4), but since 17 and 19 and 18 and 20 have opposite polarities respectively, four coils are 90 It is a four-phase propulsion system in which different phases are used to generate electricity.

【0030】具体的に言えば、例えば図2は4相推進方
式で用いるき電電流のベクトル図であるが、第1の組合
変換器(1、2)はき電電流ベクトル25でき電し、第
2の組合変換器(3、4)はき電電流ベクトル25と9
0度位相が異なるき電電流ベクトル26でき電するとす
れば、推進用地上コイルの各単位ではコイル17がき電
電流ベクトル25でき電され、コイル18がき電電流ベ
クトル26でき電され、コイル19がき電電流ベクトル
27でき電され、コイル20がき電電流ベクトル28で
き電されるのである。その結果、3相き電方式と同様に
コイルの配列方向に進行する移動磁界が形成され、車両
を浮上走行させ得るのである(図3、図4)。
Specifically, for example, FIG. 2 is a vector diagram of the feeding current used in the four-phase propulsion system, but the first combination converter (1, 2) can feed the feeding current vector 25, Second combination converter (3, 4) feeding current vectors 25 and 9
Assuming that the feeding current vector 26 having a phase difference of 0 degree can be generated, the coil 17 is fed by the feeding current vector 25, the coil 18 is fed by the feeding current vector 26, and the coil 19 is fed by each unit of the ground coil for propulsion. The current vector 27 is supplied, and the coil 20 is supplied with a feeding current vector 28. As a result, a moving magnetic field that advances in the coil arrangement direction is formed as in the three-phase feeding system, and the vehicle can be levitated (FIGS. 3 and 4).

【0031】図3及び図4は、推進用地上コイルを誘導
路の側壁面に配列した場合の推進用地上コイル(17〜
20)と台車上の1つの超電導磁石30とを上方から見
た場合の位置関係を示す。なお、コイル端の表記(・
印、×印)は電流の向きを示すために一般に用いられて
いるものである。即ち、・印は電流の向きが紙背から紙
表に向かう方向であり、×印は電流の向きが紙表から紙
背に向かう方向であることを示す。そして、地上系と車
上系のコイルは共に矩形状であるので、図示例では誘導
路の床面に垂直なコイル辺に流れる電流の向きを示して
いるのである。
FIGS. 3 and 4 show the propulsion ground coils (17 to 17) when the propulsion ground coils are arranged on the side wall surface of the taxiway.
20) and one superconducting magnet 30 on the dolly as viewed from above. The notation of the coil end (・
Signs and crosses are generally used to indicate the direction of current. That is, the-mark indicates that the direction of the electric current is from the back of the paper to the front of the paper, and the cross indicates that the direction of the current is from the front of the paper to the back of the paper. Since both the ground system coil and the onboard system coil are rectangular, the direction of the current flowing through the coil side perpendicular to the floor surface of the taxiway is shown in the illustrated example.

【0032】図3において、超電導磁石30は推進用地
上コイルの18と19に股がる位置にあり、実線矢印で
示すように推進用地上コイルに向かう磁界を発生してい
る。一方、推進用地上コイルは、17,18,19,2
0の順で90度の位相差のあるき電電流が流れるが、コ
イル18は同17から90度遅れた位相で超電導磁石側
に向かう磁界を発生するので、超電導磁石30の内コイ
ル18に対向する部分は反発力を受ける。また、コイル
19は、コイル18から90度遅れた位相で超電導磁石
30の発生磁界と同方向の磁界を発生するので、超電導
磁石30の内コイル19に対向する部分は吸引力を受け
る。その結果、超電導磁石30は図中右向きの推進力を
受け、右方向に移動し、図4の状態となり、次のコイル
20が、コイル19から90度遅れた位相で超電導磁石
30の発生磁界と同方向の磁界を発生するので、超電導
磁石30はコイル20から吸引力を受け、更に右方向へ
移動し、隣の推進用地上コイルの作用を受ける。
In FIG. 3, the superconducting magnet 30 is located at a position where it extends between 18 and 19 of the ground coil for propulsion, and generates a magnetic field toward the ground coil for propulsion as indicated by the solid arrow. On the other hand, the ground coils for propulsion are 17, 18, 19, 2
A feeding current having a phase difference of 90 degrees flows in the order of 0, but the coil 18 generates a magnetic field toward the superconducting magnet side in a phase delayed by 90 degrees from the feeding current 17, and thus faces the inner coil 18 of the superconducting magnet 30. The part receives repulsive force. Further, since the coil 19 generates a magnetic field in the same direction as the magnetic field generated by the superconducting magnet 30 in a phase delayed by 90 degrees from the coil 18, the portion of the superconducting magnet 30 facing the inner coil 19 receives an attractive force. As a result, the superconducting magnet 30 receives the propulsive force in the right direction in the figure, moves to the right, and becomes the state of FIG. 4, and the next coil 20 is separated from the coil 19 by the magnetic field generated by the superconducting magnet 30 in a phase delayed by 90 degrees. Since the magnetic field in the same direction is generated, the superconducting magnet 30 receives the attractive force from the coil 20, moves further to the right, and receives the action of the adjacent ground coil for propulsion.

【0033】4相推進であるので、推進力の変動は従来
の3相推進に比して大幅に減少し各超電導磁石の推力は
常に一定値となることが理解できる。
Since the four-phase propulsion is used, it can be understood that the fluctuation of the propulsive force is greatly reduced as compared with the conventional three-phase propulsion, and the thrust of each superconducting magnet is always a constant value.

【0034】ここで、推進用地上コイルは、4個のコイ
ルで構成してあるので、この4個のコイルの床面に平行
なコイル辺の総和長が電気的には1周期の長さである
が、極ピッチは当然に従来の3相推進方式の場合よりも
拡大する。従って、車上系も極ピッチを拡大する必要が
あるが、前述したように台車長を長くするのは得策では
ない。
Since the ground coil for propulsion is composed of four coils, the total length of the coil sides parallel to the floor surface of these four coils is one cycle electrically. However, the pole pitch is naturally wider than in the conventional three-phase propulsion system. Therefore, the pole pitch of the on-vehicle system also needs to be increased, but it is not a good idea to increase the length of the bogie as described above.

【0035】ところが、4相推進方式では、推進力の変
動は従来の3相推進方式よりも大幅に減少するので、台
車上の超電導磁石は片側偶数個である必要はなく片側奇
数個で良いこととなる。従って、台車長を変更すること
なく車上系の極ピッチを拡大できるのである。
However, in the four-phase propulsion system, the fluctuation of the propulsive force is significantly reduced as compared with the conventional three-phase propulsion system. Therefore, the number of superconducting magnets on the carriage need not be an even number on one side, but an odd number on one side. Becomes Therefore, the pole pitch of the on-board system can be expanded without changing the bogie length.

【0036】具体的には、車上系は、台車上の片側超電
導磁石数を4個から3個にするのであるが、図3や図4
に端的に示されるように、3個の超電導磁石はその平行
コイル辺の長さが地上系の平行コイル辺の長さよりも長
く設定される。
Specifically, in the on-vehicle system, the number of superconducting magnets on one side of the bogie is reduced from four to three.
As shown in FIG. 3, the lengths of the parallel coil sides of the three superconducting magnets are set longer than the lengths of the parallel coil sides of the ground system.

【0037】また、推進用地上コイルの前記各垂直コイ
ル辺では、推進方向に垂直な向きの力(垂直力)を発生
するが、1台車当たりの片側磁極数を奇数個としたこと
と相俟って、従来のように2層配置構造とすることな
く、単に各垂直コイル辺を近接配置するだけで垂直力を
問題のないレベルにまで低減させ得るので、超電導磁石
が受ける磁気的影響は大幅に低減される。
Further, in each of the vertical coil sides of the ground coil for propulsion, a force (vertical force) in a direction perpendicular to the propulsion direction is generated, but this is in combination with the fact that the number of magnetic poles on one side per carriage is an odd number. Therefore, the vertical force can be reduced to a level where there is no problem by simply arranging the vertical coil sides close to each other without using a two-layer arrangement structure as in the conventional art, and therefore, the magnetic effect on the superconducting magnet is greatly reduced. Is reduced to.

【0038】また、推進用地上コイルを誘導路の側壁面
に配置する場合、側壁面間の渡り配線数は従来よりも大
幅に減少し、1区間における推進用地上コイルの配線も
片側2本であるので、その配線長も大幅に減少する。な
お、き電用ケーブルは従来よりも3本余計になる欠点が
あるが、材料費や労務費の減少で補える。総じて、推進
用地上コイルの価格性能比が向上するのである。
When the propulsion ground coil is arranged on the side wall surface of the taxiway, the number of crossover wires between the side wall surfaces is significantly reduced as compared with the conventional one, and the wiring of the propulsion ground coil in one section is also two on each side. Therefore, the wiring length is also significantly reduced. It should be noted that the feeding cable has the drawback of having three extra cables than the conventional one, but this can be compensated for by the reduction of material costs and labor costs. Overall, the price / performance ratio of the ground coil for propulsion improves.

【0039】次に、図5は、本発明の他の実施例に係る
超電導磁気浮上式鉄道のき電方式を示す。本第2実施例
方式は、短編成短距離用に好適な構成例である。図5に
おいて、41と42は、全体としてき電用電力変換器を
構成するが、互いに位相が90度異なる単相電力変換器
であって、両者を接続しその接続点(いわゆる中性点)
を接地してある。つまり、このき電用電力変換器は、第
1実施例と同様に90度の相差を有する2相の電力変換
器となっている。なお、各単相電力変換器(41、4
2)は、第1実施例同様にGTOインバータで構成して
ある。
Next, FIG. 5 shows a feeding system of a superconducting magnetic levitation railway according to another embodiment of the present invention. The second embodiment system is a configuration example suitable for short composition and short distance. In FIG. 5, 41 and 42 constitute a feeder power converter as a whole, but they are single-phase power converters whose phases are different from each other by 90 degrees, and they are connected to each other (the so-called neutral point).
Is grounded. That is, this power converter for feeding is a two-phase power converter having a phase difference of 90 degrees as in the first embodiment. In addition, each single-phase power converter (41, 4,
2) is composed of a GTO inverter as in the first embodiment.

【0040】43〜45は変電所出口に設定される遮断
機であるが、このき電用電力変換器では、一方の単相電
力変換器41の出力端が遮断機43を介してき電線路4
6の一端に接続され、また他方の単相電力変換器42の
出力端が遮断機45を介してき電線路48の一端に接続
され、両者の接続点(接地端)が遮断機44を介してき
電線路47の一端に接続される。
Reference numerals 43 to 45 are circuit breakers set at the outlets of the substations. In this feeder power converter, one output terminal of the single-phase power converter 41 is connected to the feeder line 4 via the circuit breaker 43.
6, the output end of the other single-phase power converter 42 is connected to one end of a power line 48 via a breaker 45, and the connection point (ground end) of both is connected via a breaker 44. It is connected to one end of the electric line 47.

【0041】これらのき電線路(46〜48)の他端
は、それぞれ、変電所から鉄道車両の誘導路内に往路き
電線路及び帰路き電線路として延在敷設されるが、その
途中には所定の間隔(き電制御の間隔区間)を置いて、
その区間の一端(変電所側)に往路遮断機(49、5
0)が設定され他端に帰路遮断機51が設定される。
The other ends of these feeder lines (46 to 48) are laid and extended from the substation into the guideway of the railway vehicle as forward and return feeder lines, respectively. Is a predetermined interval (interval of feeding control),
At one end of the section (substation side), a forward circuit breaker (49, 5
0) is set and the return circuit breaker 51 is set at the other end.

【0042】そして、鉄道車両の誘導路の側壁面または
床面には、第1実施例と同様構成の推進用地上コイルが
敷設されるが、本実施例では、17と19の直列コイル
の系は、一端(変電所側)が往路遮断機50を介して往
路き電線路46に接続され、また18と20の直列コイ
ルの系は、一端(変電所側)が往路遮断機49を介して
往路き電線路48に接続され、両系の他端が共通に帰路
遮断機51を介して帰路き電線路47に接続される。両
単相電力変換器はいわゆる中性点を接地してあるので、
17と19の直列コイル系及び18と20の直列コイル
系の対地電圧は印加電圧と等値である。
A ground coil for propulsion having the same structure as that of the first embodiment is laid on the side wall or floor of the taxiway of the railway vehicle. In this embodiment, the series coil system of 17 and 19 is used. Has one end (substation side) connected to the outgoing circuit line 46 via the outward circuit breaker 50, and the series coil system of 18 and 20 has one end (substation side) through the outgoing circuit breaker 49. It is connected to the outgoing electric line 48, and the other ends of both systems are commonly connected to the outgoing electric line 47 via the return breaker 51. Both single-phase power converters are grounded at the so-called neutral point,
The ground voltage of the series coil system of 17 and 19 and the series coil system of 18 and 20 is equal to the applied voltage.

【0043】以上のように、本第2実施例方式は、帰路
用き電線路を1本に統合し、き電系統を4本から3本に
減少させた簡易構成により前記第1実施例方式と同様の
作用効果を得ようとするものである。
As described above, the second embodiment system has the simple structure in which the return feeding line is integrated into one line and the feeding system is reduced from four lines to three lines. It is intended to obtain the same effect as the above.

【0044】[0044]

【発明の効果】以上説明したように、本発明の超電導磁
気浮上式鉄道のき電方式によれば、推進用地上コイル
を、4個のコイルを単位として構成し、各単位における
コイルを、配列の順序に従って順に90度宛位相をずら
してき電する4相き電方式を採用する(第1発明)。従
って、地上系の極数ピッチは当然に拡大するが、推進力
の変動を大幅に減少させ得るので、車上系では1台車当
たりの片側磁極数を奇数とすることができ、具体的には
片側磁極数を4極から3極に減少させ得、台車長を変更
せずに車上系極ピッチを地上系極ピッチの拡大に対応し
て拡大できる。
As described above, according to the feeding system of the superconducting magnetic levitation railway of the present invention, the ground coil for propulsion is composed of four coils as a unit, and the coils in each unit are arranged. The four-phase feeding method is adopted in which the phases are sequentially shifted by 90 degrees in accordance with the order (1). Therefore, the pole pitch of the ground system naturally expands, but the fluctuation of the propulsive force can be greatly reduced, so that the number of magnetic poles on one side per bogie can be set to an odd number in the on-board system. The number of magnetic poles on one side can be reduced from four to three, and the on-vehicle pole pitch can be expanded corresponding to the increase of the ground pole pitch without changing the bogie length.

【0045】これにより、磁気抗力の低減が図れ、省電
力化と推進用地上コイルの低コスト化が可能となる。ま
た推進力の変動がなく各車上系磁石はそれぞれ同一の推
進力が与えられ、また垂直力も低減できるので超電導磁
石への機械的外乱を小さくでき超電導磁石の信頼性・耐
久性が大幅に向上する効果がある。
As a result, it is possible to reduce the magnetic drag force, save power and reduce the cost of the ground coil for propulsion. In addition, since the on-vehicle magnets are given the same propulsive force without fluctuations in propulsive force, and the vertical force can also be reduced, mechanical disturbance to the superconducting magnet can be reduced and reliability and durability of the superconducting magnet are greatly improved. Has the effect of

【0046】そして、具体的には例えば第2発明や第3
発明のように構成できるので、推進用地上コイルは4相
で推進するが、変電所のき電系統を実質的に90度の相
差を有する2相き電とすることができ、き電用電力変換
器の制御部分を3相から2相へ簡素化できるだけでな
く、車両誘導路に敷設するケーブル本数や渡り配線数を
大幅に低減させ得、推進用地上コイルの価格性能比を向
上させ得る効果がある。
Specifically, for example, the second invention and the third invention
Since it can be configured as in the invention, the propulsion ground coil is propelled in four phases, but the feeding system of the substation can be made into a two-phase feeding having a phase difference of substantially 90 degrees, and the feeding power can be reduced. Not only can the control part of the converter be simplified from three-phase to two-phase, but the number of cables and crossover wires laid in the vehicle taxiway can be greatly reduced, and the price-performance ratio of the ground coil for propulsion can be improved. There is.

【0047】なお、第2発明は長編成長距離用に好適な
構成例であり、また第3発明は短編成短距離用に好適な
構成例であるが、このようにき電用電力変換器及びき電
系統を負荷の軽重に応じて適正に構成でき、経済性と保
守性を損なわずに超電導磁気浮上式鉄道に好適なき電方
式を実現できる効果もある。
The second invention is a constitutional example suitable for a long knitting growth distance, and the third invention is a constitutional example suitable for a short knitting short distance. There is also an effect that the feeder system can be appropriately configured according to the weight of the load, and a feeder system suitable for the superconducting magnetic levitation railway can be realized without impairing the economical efficiency and maintainability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る超電導磁気浮上式鉄道
のき電方式の構成ブロック図である。
FIG. 1 is a block diagram of a feeding system of a superconducting magnetically levitated railway according to an embodiment of the present invention.

【図2】本発明の2相き電4相推進を説明するき電電流
ベクトル図である。
FIG. 2 is a feeder current vector diagram for explaining two-phase feeding and four-phase propulsion according to the present invention.

【図3】動作説明図である。FIG. 3 is an operation explanatory diagram.

【図4】動作説明図である。FIG. 4 is an operation explanatory diagram.

【図5】本発明の他の実施例に係る超電導磁気浮上式鉄
道のき電方式の構成ブロック図である。
FIG. 5 is a configuration block diagram of a feeding system of a superconducting magnetic levitation railway according to another embodiment of the present invention.

【図6】従来の超電導磁気浮上式鉄道のき電方式の構成
ブロック図である。
FIG. 6 is a configuration block diagram of a feeding system of a conventional superconducting magnetic levitation railway.

【図7】従来の3相き電3相推進を説明するき電電流ベ
クトル図である。
FIG. 7 is a feeder current vector diagram for explaining conventional three-phase feeding and three-phase propulsion.

【符号の説明】[Explanation of symbols]

1〜4,41,42 単相電力変換器 5〜8,43〜45 変電所出口の遮断機 9〜12,46〜48 き電線路 13,14,49,50 往路遮断機 15,16,51 帰路遮断機 17〜20 推進用地上コイル 30 超電導磁石 1-4, 41, 42 Single-phase power converter 5-8, 43-45 Substation exit circuit breaker 9-12, 46-48 Feeding line 13, 14, 49, 50 Forward circuit breaker 15, 16, 51 Return circuit breaker 17-20 Propulsion ground coil 30 Superconducting magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 き電用電力変換器から推進用地上コイル
をき電し、車上に超電導磁石を備える鉄道車両を浮上走
行させる超電導磁気浮上式鉄道において;前記推進用地
上コイルは、4個のコイルを単位として構成され、各単
位におけるコイルは、配列の順序に従って順に90度宛
位相をずらしてき電される; ことを特徴とする超電導
磁気浮上式鉄道のき電方式。
1. In a superconducting magnetic levitation railway in which a propulsion ground coil is fed from a feeding power converter to levitate a railway vehicle equipped with a superconducting magnet on the car; four propulsion ground coils are provided. The coil in each unit is supplied with electric power by shifting the phase by 90 degrees in order according to the order of arrangement; The feeding system for the superconducting magnetic levitation railway.
【請求項2】 き電用電力変換器から推進用地上コイル
をき電し、車上に超電導磁石を備える鉄道車両を浮上走
行させる超電導磁気浮上式鉄道において;前記き電用電
力変換器は、同位相の単相電力変換器の2個を直列接続
しその接続点を接地してなる2組の組合変換器であっ
て、互いに位相が90度異なる第1及び第2の組合変換
器からなり; 前記推進用地上コイルは、4個のコイル
を単位として構成され、各単位におけるコイルを配列の
順序に従って順に第1コイル、第2コイル、第3コイ
ル、第4コイルとすれば、第1コイルと第3コイル及び
第2コイルと第4コイルはそれぞれ逆極性となるように
直列接続され、第1コイルと第3コイルの直列コイルの
系は前記第1の組合変換器からき電され、第2コイルと
第4コイルの直列コイルの系は前記第2の組合変換器か
らき電される; ことを特徴とする超電導磁気浮上式鉄
道のき電方式。
2. A superconducting magnetic levitation railway in which a propulsion ground coil is fed from a feeding power converter to levitate a railway vehicle equipped with a superconducting magnet on the vehicle; and the feeding power converter is Two sets of combination converters in which two single-phase power converters of the same phase are connected in series and the connection point is grounded. The combination converter comprises a first combination converter and a second combination converter whose phases are different by 90 degrees. The ground coil for propulsion is composed of four coils as a unit, and if the coils in each unit are a first coil, a second coil, a third coil, and a fourth coil in order, a first coil And the third coil and the second coil and the fourth coil are connected in series so as to have opposite polarities, respectively, and the series coil system of the first coil and the third coil is fed from the first combination converter, Series coil of coil and fourth coil System is electricity coming from the second union transducer; superconducting magnetic levitation railway feeding circuit system, characterized in that.
【請求項3】 き電用電力変換器から推進用地上コイル
をき電し、車上に超電導磁石を備える鉄道車両を浮上走
行させる超電導磁気浮上式鉄道において;前記き電用電
力変換器は、互いに位相が90度異なる単相電力変換器
の2個を接続しその接続点を接地してなる組合変換器か
らなり; 前記推進用地上コイルは、4個のコイルを単
位として構成され、各単位におけるコイルを配列の順序
に従って順に第1コイル、第2コイル、第3コイル、第
4コイルとすれば、第1コイルと第3コイル及び第2コ
イルと第4コイルはそれぞれ逆極性となるように直列接
続され、それぞれの直列コイルの系は前記組合変換器か
らその接地端を共通帰路としてき電される; ことを特
徴とする超電導磁気浮上式鉄道のき電方式。
3. A superconducting magnetic levitation railway in which a ground coil for propulsion is fed from a power converter for feeding, and a railway vehicle equipped with a superconducting magnet on the vehicle is levitated; the power converter for feeding is: It is composed of a combination converter in which two single-phase power converters whose phases are different from each other by 90 degrees are connected and the connection point is grounded; The propulsion ground coil is composed of four coils as a unit, and each unit is a unit. If the coils in the order are the first coil, the second coil, the third coil, and the fourth coil in the order of arrangement, the first coil and the third coil, and the second coil and the fourth coil have opposite polarities. A system of superconducting magnetic levitation railways, which is connected in series, and each series coil system is fed from the combination converter with its ground end as a common return path.
JP27093092A 1992-09-14 1992-09-14 System for feeding superconducting magnetic levitation type railroad Pending JPH0698414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27093092A JPH0698414A (en) 1992-09-14 1992-09-14 System for feeding superconducting magnetic levitation type railroad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27093092A JPH0698414A (en) 1992-09-14 1992-09-14 System for feeding superconducting magnetic levitation type railroad

Publications (1)

Publication Number Publication Date
JPH0698414A true JPH0698414A (en) 1994-04-08

Family

ID=17492982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27093092A Pending JPH0698414A (en) 1992-09-14 1992-09-14 System for feeding superconducting magnetic levitation type railroad

Country Status (1)

Country Link
JP (1) JPH0698414A (en)

Similar Documents

Publication Publication Date Title
JP2739606B2 (en) Magneto-electric vehicle operation device
US6753666B2 (en) Apparatus for operating a magnet vehicle
US6411049B1 (en) Method and apparatus for operating a magnet vehicle
US5189961A (en) Superconductive magnetically levitated railway, and power-feed system therefor
US5270593A (en) Air cored, linear induction motor for magnetically levitated systems
CN111231691A (en) Self-guide linear propulsion structure for electric repulsion type magnetic levitation track system and levitation force disturbance control method thereof
CN1064012C (en) Section switching process for railway system with long stator linear motor
JPS6143947B2 (en)
CA1271239A (en) Levitation-propulsion mechanism for inductive repulsion type magnetically levitated railway
CA1143019A (en) Power supply for the traveling-field winding of a synchronous linear motor
CA1039372A (en) Circuit arrangement for a trackbound propulsion vehicle
CN215186399U (en) Linear motor and magnetic suspension traffic system
JP2020025388A (en) Ground-fault position locating method and ground-fault position locating system
CA1129021A (en) Synchronous linear motor with interchanged field windings at consecutively switching sections
US5361707A (en) Multiple feeder system of feeder sections for feeding ground coils of superconductive magnetically levitated railway
US5628253A (en) Ground-propulsion special-purpose electromagnetic circuit for magnetically levitated railway, and method of laying said circuit
JPH0698414A (en) System for feeding superconducting magnetic levitation type railroad
JP3207934B2 (en) Power supply system for linear motor
US3872357A (en) Linear synchronous motor for high-speed vehicles
US5293824A (en) Ground coil for magnetically levitated railway
Azukizawa Optimum linear synchronous motor design for high speed ground transportation
Umemori et al. Development of DC Lenear Motor Fundamental Construction and Feasibility
JP3116952B2 (en) Power supply method of bogie type linear motor
JP2706217B2 (en) Ground coil of superconducting maglev railway and its power supply system
JPH04193007A (en) Quintuple power supply method