JPH0698264B2 - In-furnace desulfurization method - Google Patents

In-furnace desulfurization method

Info

Publication number
JPH0698264B2
JPH0698264B2 JP1239705A JP23970589A JPH0698264B2 JP H0698264 B2 JPH0698264 B2 JP H0698264B2 JP 1239705 A JP1239705 A JP 1239705A JP 23970589 A JP23970589 A JP 23970589A JP H0698264 B2 JPH0698264 B2 JP H0698264B2
Authority
JP
Japan
Prior art keywords
furnace
reaction
desulfurizing agent
desulfurization
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1239705A
Other languages
Japanese (ja)
Other versions
JPH03101811A (en
Inventor
美智男 石田
照之 土井
輝彦 川鍋
祥正 三浦
悦生 荻野
道雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1239705A priority Critical patent/JPH0698264B2/en
Publication of JPH03101811A publication Critical patent/JPH03101811A/en
Publication of JPH0698264B2 publication Critical patent/JPH0698264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、炭酸塩形態の脱硫剤を使用し、微粉炭焚き
ボイラやごみ焼却炉などの火炉内で発生したSO2やHCl
を、火炉内で吸収・除去する乾式のいわゆる炉内脱硫方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention uses a desulfurizing agent in the form of a carbonate to generate SO 2 or HCl generated in a furnace such as a pulverized coal burning boiler or a refuse incinerator.
The present invention relates to a so-called in-furnace desulfurization method of a dry type, which absorbs and removes in a furnace.

[従来技術と発明の課題] 従来の炉内脱硫法は、たとえば炭酸カルシウムなどの炭
酸塩形態の脱硫剤を火炉内に直接投入し、脱硫反応を行
わせるというものである。
[Prior Art and Problem of the Invention] A conventional in-furnace desulfurization method is to directly introduce a desulfurizing agent in the form of a carbonate such as calcium carbonate into a furnace to cause a desulfurization reaction.

すなわち、炉内に上記脱硫剤を投入すると、下記の反応
が起こり、SO2の吸収が行なわれる。
That is, when the desulfurizing agent is charged into the furnace, the following reaction occurs and SO 2 is absorbed.

[1]加熱による炭酸カルシウムの分解 CaCO3→CaO+CO2↑ …(1) [2]熱分解生成物である酸化カルシウムによるSO2
吸収 CaO+SO2+1/2O2→CaSO4 …(2) 上記(1)式の反応は、700℃以上の温度域で起るとさ
れており、(2)式の反応は750〜1250℃の温度域で起
るとされている。なお、燃焼炉では火炉中における上記
(2)式の反応の起る温度域はわずか数秒であることが
分かっている。
[1] Decomposition of calcium carbonate by heating CaCO 3 → CaO + CO 2 ↑… (1) [2] Absorption of SO 2 by calcium oxide which is a thermal decomposition product CaO + SO 2 + 1 / 2O 2 → CaSO 4 … (2) Above ( The reaction of formula (1) is said to occur in the temperature range of 700 ° C. or higher, and the reaction of formula (2) is said to occur in the temperature range of 750-1250 ° C. It is known that in the combustion furnace, the temperature range in which the reaction of the above formula (2) occurs in the furnace is only a few seconds.

しかしながら、従来方法では、脱硫剤の利用効率が10〜
30%と低いという問題がある。
However, in the conventional method, the utilization efficiency of the desulfurizing agent is 10 to 10
There is a problem that it is as low as 30%.

従来の炉内脱硫法において脱硫剤の利用効率が10〜30%
と低い原因は下記(イ)および(ロ)にあると考えられ
る。
Utilization efficiency of desulfurizing agent is 10 to 30% in conventional in-furnace desulfurization method
The low causes are considered to be (a) and (b) below.

(イ)火炉内の1000℃をこえる高温度域にCaCO3を投入
した場合、上記(1)式の反応は瞬時に起り、直ぐに
(2)式の反応が起る。したがって、火炉内の限られた
温度域を最大限利用できるが、高温によるシンタリング
が発生し、CaOの比表面積が急激に減少し、反応速度が
急激に低下して利用効率が低くなる。第2図は各温度に
おけるCaOの比表面積とシンタリング時間との関係を示
すグラフであるが、このグラフから明らかなように、脱
硫剤を投入する温度域が1000℃を越えると、CaOの比表
面積が急激に減少するのが分かる。
(A) When CaCO 3 is introduced into the high temperature range of over 1000 ° C in the furnace, the reaction of the above formula (1) occurs instantly and the reaction of the formula (2) immediately occurs. Therefore, although the limited temperature range in the furnace can be utilized to the maximum extent, sintering occurs due to high temperature, the specific surface area of CaO decreases sharply, the reaction rate decreases sharply, and the utilization efficiency decreases. Fig. 2 is a graph showing the relationship between the specific surface area of CaO and the sintering time at each temperature. As is clear from this graph, when the temperature range in which the desulfurizing agent is added exceeds 1000 ° C, the ratio of CaO It can be seen that the surface area decreases sharply.

(ロ)シンタリングによる比表面積の減少を防止するた
めに、CaCO3を火炉内の900℃の温度域に投入すると、上
記(1)式の反応に要する時間が長くなる。第3図は平
均粒径1.7μmおよび12μmの2種のCaCO3粉末について
の各温度における分解率と分解所要時間との関係を示す
グラフであるが、このグラフから明らかなように、上記
(1)式の分解反応に要する時間は、温度に反比例して
長くなることが分かる。また、分解所要時間は脱硫剤の
粒径に比例して長くなることが分かる。火炉内での脱硫
剤の滞留時間はほぼ決まっているので、上記(1)式の
分解反応に要する時間が長くなると、上記(2)式の反
応が起るための時間が短くなり、CaOの利用効率が低く
なる。この傾向は、脱硫剤の粉末の粒径が大きくなるほ
ど顕著化する。
(B) When CaCO 3 is introduced into the temperature range of 900 ° C. in the furnace in order to prevent the decrease of the specific surface area due to sintering, the time required for the reaction of the above formula (1) becomes long. FIG. 3 is a graph showing the relationship between the decomposition rate at each temperature and the decomposition required time for two kinds of CaCO 3 powders having average particle diameters of 1.7 μm and 12 μm. It can be seen that the time required for the decomposition reaction of the equation (4) increases in inverse proportion to the temperature. Further, it can be seen that the time required for decomposition increases in proportion to the particle size of the desulfurizing agent. Since the residence time of the desulfurizing agent in the furnace is almost fixed, if the time required for the decomposition reaction of the above formula (1) becomes long, the time for the reaction of the above formula (2) to occur becomes shorter, Use efficiency is low. This tendency becomes more remarkable as the particle size of the desulfurizing agent powder increases.

上記の原因により、従来の炉内脱硫法では効率が低いの
はやむを得ないことと考えられていた。
Due to the above reasons, it was considered unavoidable that the conventional in-furnace desulfurization method had low efficiency.

この発明の目的は、上記問題を解決し、高脱硫率を得る
ことのできる炉内脱硫方法を提供することにある。
An object of the present invention is to provide an in-furnace desulfurization method capable of solving the above problems and obtaining a high desulfurization rate.

[課題を解決するための手段] この発明による炉内脱硫方法は、炭酸塩形態の脱硫剤を
使用し、火炉内で脱硫反応を行わせるにあたり、炭酸塩
形態の脱硫剤を火炉に供給する供給ライン上において、
予め脱硫剤を熱分解させて酸化物を得、この酸化物形態
の分解生成物を火炉内の1000℃以下の温度領域に投入し
て脱硫反応を行わせることを特徴とするものである。
[Means for Solving the Problem] The in-furnace desulfurization method according to the present invention uses a carbonate-type desulfurizing agent, and supplies a carbonate-type desulfurizing agent to a furnace when performing a desulfurization reaction in the furnace. On the line,
The desulfurization agent is thermally decomposed in advance to obtain an oxide, and the decomposition product in the form of the oxide is put into a temperature range of 1000 ° C. or lower in a furnace to carry out a desulfurization reaction.

上記において、炭酸塩形態の脱硫剤としては、炭酸カル
シウム、ドロマイト(MgCO3・CaCO3)などが用いられ
る。
In the above, as the carbonate type desulfurizing agent, calcium carbonate, dolomite (MgCO 3 · CaCO 3 ) or the like is used.

炭酸カルシウムを熱分解して得られる酸化物はCaOであ
り、ドロマイトを熱分解して得られる酸化物はCaOおよ
びMgOである。
The oxide obtained by thermally decomposing calcium carbonate is CaO, and the oxide obtained by thermally decomposing dolomite is CaO and MgO.

[作用] この発明の方法によれば、火炉内に投入する前に、炭酸
塩形態の脱硫剤を脱硫剤を熱分解させて酸化物を得るの
で、上記(1)式の反応を炉外で行わせることが可能に
なり、シンタリングを起こさず、しかも熱分解を起こさ
せるのに最適な温度に加熱することができる。したがっ
て、上記(1)式の反応により得られる酸化物の比表面
積が大きくなる。また、酸化物形態の分解生成物を火炉
内の1000℃以下の温度領域に投入して脱硫反応を行わせ
るので、炉内において上記分解生成物がシンタリングを
起こすことはない。さらに、炉内では上記(2)式の脱
硫反応だけを行わせるので、火炉内への投入物の火炉内
での滞留時間を、すべて脱硫反応に有効に利用できる。
[Operation] According to the method of the present invention, since the desulfurizing agent in the form of a carbonate is thermally decomposed to obtain an oxide before being put into the furnace, the reaction of the above formula (1) is performed outside the furnace. It can be carried out without heating, and can be heated to an optimum temperature for causing thermal decomposition. Therefore, the specific surface area of the oxide obtained by the reaction of the above formula (1) becomes large. Further, since the oxide-form decomposition product is put into the temperature range of 1000 ° C. or lower in the furnace to carry out the desulfurization reaction, the decomposition product does not cause sintering in the furnace. Furthermore, since only the desulfurization reaction of the above formula (2) is performed in the furnace, the residence time of the charged material in the furnace can be effectively used for the desulfurization reaction.

[実施例] 以下、この発明の実施例を、図面を参照して説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図にはこの発明のプロセスフローを示す。第1図に
おいて、微粉炭を火炉(1)の低NOx燃焼装置(2)で
燃焼させる。図示しない貯留タンク内に蓄えられたCaCO
3(脱硫剤)は、適当な装置により供給ライン(3)に
送り出される。供給ライン(3)に送り出されたCaCO3
は、供給ライン(3)の途中に設けられた加熱装置
(4)により700℃以上に加熱される。CaCO3は加熱され
ると、上記(1)の反応を起こし、熱分解してCaOが生
成する。CaCO3が加熱装置(4)を通過する時間および
加熱装置(4)による加熱温度は適宜変更可能であり、
CaCO3が完全に分解するように、加熱時間および温度を
変更できる。
FIG. 1 shows the process flow of the present invention. In FIG. 1, pulverized coal is burned in the low NOx combustion device (2) of the furnace (1). CaCO stored in a storage tank (not shown)
3 (desulfurizing agent) is sent to the supply line (3) by an appropriate device. CaCO 3 sent to the supply line (3)
Is heated to 700 ° C. or higher by a heating device (4) provided in the middle of the supply line (3). When CaCO 3 is heated, it causes the above reaction (1) and is thermally decomposed to produce CaO. The time for CaCO 3 to pass through the heating device (4) and the heating temperature by the heating device (4) can be changed appropriately,
The heating time and temperature can be changed so that the CaCO 3 decomposes completely.

上記反応により得られたCaOは、ノズル(5)より火炉
(1)内の1000℃以下の温度域に噴射される。火炉
(1)内にCaOが投入されると、上記(2)式の脱硫反
応が起こり、排ガス中のSO2濃度はCa供給量に見あった
分だけ下がる。排気ガスは系外へ排出される。
CaO obtained by the above reaction is injected from the nozzle (5) into the furnace (1) at a temperature range of 1000 ° C. or lower. When CaO is charged into the furnace (1), the desulfurization reaction of the above formula (2) occurs, and the SO 2 concentration in the exhaust gas decreases by the amount corresponding to the amount of Ca supplied. Exhaust gas is discharged outside the system.

[発明の効果] この発明の炉内脱硫方法によれば、上述のようにして、
炭酸塩形態の脱硫剤を熱分解させることにより得られる
酸化物の比表面積が大きくなる。また、火炉内に投入さ
れた酸化物形態の分解生成物は、火炉内でもシンタリン
グを起こすことはない。さらに、火炉内への投入物の火
炉内での滞留時間のすべてを脱硫反応に有効に利用でき
る。したがって、脱硫剤利用率を向上させることがで
き、高脱硫率を達成できる。しかも、平均粒子径の大き
い脱硫剤を用いてもその効果が期待できる。
[Effects of the Invention] According to the in-furnace desulfurization method of the present invention, as described above,
The specific surface area of the oxide obtained by thermally decomposing the desulfurizing agent in the form of a carbonate increases. In addition, the oxide-type decomposition products introduced into the furnace do not cause sintering even in the furnace. Furthermore, the entire residence time of the charged material in the furnace can be effectively used for the desulfurization reaction. Therefore, the desulfurization agent utilization rate can be improved and a high desulfurization rate can be achieved. Moreover, the effect can be expected even if a desulfurizing agent having a large average particle diameter is used.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示すフローシート、第2図
は各温度におけるCaOの比表面積とシンタリング時間と
の関係を示すグラフ、第3図はCaCO3粉末についての各
温度における分解率と分解所要時間との関係を示すグラ
フである。 (1)……火炉、(3)……供給ライン。
FIG. 1 is a flow sheet showing an embodiment of the present invention, FIG. 2 is a graph showing the relationship between the specific surface area of CaO and sintering time at each temperature, and FIG. 3 is the decomposition rate of CaCO 3 powder at each temperature. It is a graph which shows the relationship between the decomposition time and. (1) ... Furnace, (3) ... Supply line.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 祥正 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 荻野 悦生 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 伊藤 道雄 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Yoshimasa Miura 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Inventor Etsuo Ogino 1-6-14 Edobori, Nishi-ku, Osaka Issue Hitachi Shipbuilding Co., Ltd. (72) Inventor Michio Ito 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭酸塩形態の脱硫剤を使用し、火炉内で脱
硫反応を行わせるにあたり、炭酸塩形態の脱硫剤を火炉
に供給する供給ライン上において、予め脱硫剤を熱分解
させて酸化物を得、この酸化物形態の分解生成物を火炉
内の1000℃以下の温度領域に投入して脱硫反応を行わせ
ることを特徴とする炉内脱硫方法。
1. When a desulfurizing agent in the form of a carbonate is used to carry out a desulfurization reaction in a furnace, the desulfurizing agent is thermally decomposed in advance on a supply line for supplying the desulfurizing agent in the form of a carbonate to the furnace. An in-furnace desulfurization method, characterized in that a desulfurization reaction is carried out by obtaining a product and injecting a decomposition product of the oxide form into a temperature range of 1000 ° C. or lower in a furnace.
JP1239705A 1989-09-14 1989-09-14 In-furnace desulfurization method Expired - Lifetime JPH0698264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1239705A JPH0698264B2 (en) 1989-09-14 1989-09-14 In-furnace desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1239705A JPH0698264B2 (en) 1989-09-14 1989-09-14 In-furnace desulfurization method

Publications (2)

Publication Number Publication Date
JPH03101811A JPH03101811A (en) 1991-04-26
JPH0698264B2 true JPH0698264B2 (en) 1994-12-07

Family

ID=17048698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1239705A Expired - Lifetime JPH0698264B2 (en) 1989-09-14 1989-09-14 In-furnace desulfurization method

Country Status (1)

Country Link
JP (1) JPH0698264B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600550B2 (en) * 2010-10-20 2014-10-01 睦和興業株式会社 Drying and carbonization equipment

Also Published As

Publication number Publication date
JPH03101811A (en) 1991-04-26

Similar Documents

Publication Publication Date Title
US5171552A (en) Dry processes for treating combustion exhaust gas
GB2105832A (en) Method of feeding an additive into a stream of reaction gas
JPS61107925A (en) Method of reducing sulfur product in exhaust gas from combustion chamber
JP2008070103A (en) Combustion gas supply method in incineration system
JPH0698264B2 (en) In-furnace desulfurization method
CN100447223C (en) Energy saving desulfurizer for bunker coal, and preparation method
JPH10194800A (en) Reduction of nox in cement kiln exhaust gas
CN106318515A (en) In-furnace denitrification method and device
JPH0467085B2 (en)
US5006323A (en) Method of desulfurizing combustion gases
CN102297433A (en) Method for removing dioxin from fume of garbage incinerator
JPS636313A (en) Method of processing combustion gas in incinerator
JP2006003013A (en) Sewage sludge treatment method and device
EP0156784A2 (en) A method of reducing sulphur-oxide and nitrogen-oxide emission when burning solid fuel on travelling grates
JPH0320504A (en) Process for reducing exhaust of so2 and/or nox at combustion stage
JP2000266331A (en) Method and system for combustion processing powder
JPH1130406A (en) Combustion method for fluidized bed
JPS59162927A (en) Desulfurization in furnace
JPH06210128A (en) Dry type stack gas desulfurization
JPH0512611B2 (en)
JPH0650505A (en) Desulfurizing agent used both for fuel and manufacture thereof
JPS58203312A (en) Incinerating method for sludge
JPH0696089B2 (en) Highly efficient desulfurization denitration method in fluidized bed boiler
JPH01270926A (en) Flue gas desulfurizer by dry process using fly ash containing lime at high concentration
JPH0424403A (en) Desulfurization in pressurized fluidized bed incinerator