JPH0698205B2 - Insulation resistance monitoring device for automatic inspection system of fire extinguishing equipment - Google Patents

Insulation resistance monitoring device for automatic inspection system of fire extinguishing equipment

Info

Publication number
JPH0698205B2
JPH0698205B2 JP33702989A JP33702989A JPH0698205B2 JP H0698205 B2 JPH0698205 B2 JP H0698205B2 JP 33702989 A JP33702989 A JP 33702989A JP 33702989 A JP33702989 A JP 33702989A JP H0698205 B2 JPH0698205 B2 JP H0698205B2
Authority
JP
Japan
Prior art keywords
insulation resistance
value
prediction
fire extinguishing
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33702989A
Other languages
Japanese (ja)
Other versions
JPH03195566A (en
Inventor
浩司 秋葉
寛 梅原
勉 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP33702989A priority Critical patent/JPH0698205B2/en
Publication of JPH03195566A publication Critical patent/JPH03195566A/en
Publication of JPH0698205B2 publication Critical patent/JPH0698205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、消火設備の自動点検の際に消火ポンプを駆動
するモータの絶縁抵抗を計測して絶縁低下を監視する消
火設備自動点検システムの絶縁抵抗監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an automatic fire extinguishing equipment inspection system for measuring insulation resistance of a motor for driving a fire extinguishing pump to monitor insulation deterioration during automatic inspection of fire extinguishing equipment. The present invention relates to an insulation resistance monitoring device.

[従来の技術] 従来、消火設備の自動点検システムにあっては、消火ポ
ンプ設備の運転を含む各種の点検項目を定期的且つ自動
的に行って設備性能が維持されているか否かチェックし
ている。
[Prior Art] Conventionally, in an automatic inspection system for fire extinguishing equipment, various inspection items including operation of the fire extinguishing pump equipment are regularly and automatically performed to check whether or not the equipment performance is maintained. There is.

例えば分岐管の末端に接続された電動弁を遠隔制御によ
り開いて分岐管内の圧力を低下させ、疑似的にスプリン
クラーヘッドが火災による熱で作動したと同じ状態を作
り出し、水圧の低下をアラーム弁で検出して消火ポンプ
を起動運転する。
For example, a motor-operated valve connected to the end of the branch pipe is opened by remote control to reduce the pressure in the branch pipe, creating the same condition as if the sprinkler head was activated by the heat of a fire, and a decrease in water pressure is generated by an alarm valve. Detect and start the fire pump.

また消火ポンプを駆動するモータについては定期的な自
動点検の際に絶縁抵抗を測定し、絶縁抵抗が低下して所
定の閾値を下回った際に警報を出すようにしている。
The insulation resistance of the motor that drives the fire pump is measured during regular automatic inspection, and an alarm is issued when the insulation resistance drops below a predetermined threshold.

[発明が解決しようとする課題] しかしながら、このような定期点検時に測定された絶縁
抵抗値が所定閾値を下回った際に警報する従来装置にあ
っては、絶縁抵抗が低下して閾値に近づいていたような
場合の警報が適切にできない問題がある。
[Problems to be Solved by the Invention] However, in a conventional device that issues an alarm when the insulation resistance value measured during such a periodic inspection falls below a predetermined threshold value, the insulation resistance decreases and approaches the threshold value. In such cases, there is a problem that the alarm cannot be properly given.

例えば第9図に示すように、1回目から5回目までの定
期点検では、絶縁抵抗の計測値は警報閾値の上にあるこ
とから警報しないが、6回目の定期点検の計測値は警報
閾値を下回るため絶縁低下警報が出される。しかし、実
際に絶縁抵抗が警報閾値以下となったのは6回目の定期
点検を行う前であり、5回目では警報が出されていない
ため、絶縁抵抗が警報閾値を下回っている状態でモータ
駆動が行われると、絶縁低下により発熱等の危険な状態
となる可能性が高い。
For example, as shown in FIG. 9, in the first to fifth regular inspections, the measured value of the insulation resistance is above the alarm threshold, so no alarm is issued, but the measured value of the sixth regular inspection does not exceed the alarm threshold. Since it falls below the level, an insulation drop alarm is issued. However, the insulation resistance actually fell below the alarm threshold before the 6th periodic inspection, and since the alarm was not issued at the 5th time, the motor drive with the insulation resistance below the alarm threshold. If the above is performed, there is a high possibility that a dangerous state such as heat generation will occur due to insulation deterioration.

一方、警報閾値を高めに設定して早めに絶縁抵抗の低下
を警報することも考えられるが、例えば第10図に示すよ
うに、緩かに絶縁抵抗が低下する場合には、本来の警報
閾値以下となるのが11回目なのに、7回目で警報するこ
ととなり、不必要に早く絶縁低下の警報が出されてしま
う問題がある。
On the other hand, it is possible to set a high alarm threshold to give an early warning of a decrease in insulation resistance.However, for example, when the insulation resistance decreases slowly as shown in Fig. 10, the original alarm threshold Although the following is the 11th time, the alarm will be issued at the 7th time, and there is a problem that an insulation deterioration warning is issued unnecessarily quickly.

本発明は、このような従来の問題点に鑑みてなされたも
ので、過去の絶縁抵抗の測定値に基づき次の定期点検の
測定値を予測して予備警報を行うようにした消火設備自
動点検システムの絶縁抵抗監視装置を提供することを目
的とする。
The present invention has been made in view of such a conventional problem, and a fire extinguishing equipment automatic inspection for predicting a measurement value of the next periodical inspection based on a measured value of a past insulation resistance and performing a preliminary alarm. It is an object to provide an insulation resistance monitoring device for a system.

[課題を解決するための手段] まず本発明は、消火ポンプ32を駆動するモータ10の絶縁
抵抗を定期的に計測し、該絶縁抵抗値が所定閾値以下に
低下すると絶縁不良として警報する消火設備自動点検シ
ステムの絶縁抵抗監視装置を対象とする。尚、実施例図
面中の符合を併せて示す。
[Means for Solving the Problems] First, the present invention is a fire extinguishing facility that periodically measures the insulation resistance of a motor 10 that drives a fire pump 32, and issues an insulation failure alarm when the insulation resistance value falls below a predetermined threshold value. Insulation resistance monitoring equipment for automatic inspection systems is targeted. Incidentally, the reference numerals in the drawings of the examples are also shown.

このような消火設備自動点検システムの絶縁抵抗監視装
置として本発明にあっては、定期点検毎に得られた前記
絶縁抵抗の計測値から絶縁抵抗の時間変化を表わす線形
予測式(単回帰式又は1次式)の係数を決定すると共
に、該線形予測式により次の定期点検時に得られる絶縁
抵抗の計測値を予測する第1の予測手段14と、定期点検
毎に得られた前記絶縁抵抗の計測値から絶縁抵抗の時間
変化を表わす所定の非線形予測式(高次回帰式)の係数
を決定すると共に、該非線形予測式により次の定期点検
時に得られる絶縁抵抗の計測値を予測する第2の予測手
段16と、前記第1の予測手段14による予測と前記第2の
予測手段16による予測を検定していずれの予測手段に有
意性があるかを判定する判定手段18とを設け、該判定手
段18で選ばれた前記第1又は第2の予測手段14,16によ
る次の定期点検時の予測値が前記所定閾値以下と判断し
た際にプリアラームを出力するように構成する。
In the present invention as an insulation resistance monitoring device for such a fire-extinguishing equipment automatic inspection system, a linear prediction expression (single regression or The first predicting means 14 for determining the coefficient of the linear equation) and predicting the measured value of the insulation resistance obtained at the time of the next periodic inspection by the linear prediction equation, and the insulation resistance of the insulation resistance obtained at each periodic inspection. Second, a coefficient of a predetermined non-linear prediction equation (higher-order regression equation) representing the time change of the insulation resistance is determined from the measured value, and the measurement value of the insulation resistance obtained at the next periodic inspection is predicted by the non-linear prediction equation. Of the prediction means 16 and the judgment means 18 for judging which of the prediction means is significant by testing the prediction by the first prediction means 14 and the prediction by the second prediction means 16. The first selected by the judging means 18 Is configured to output a pre-alarm when the predicted value of the next periodic inspection by the second prediction means 14, 16 has determined that more than the predetermined threshold value.

[作用] このような構成を備えた本発明による消火設備自動点検
システムの絶縁抵抗監視装置によれば、定期的に行われ
る自動点検の際に、過去のモータ絶縁抵抗の測定値から
予測に使用する線形予測式(一次式)又は非線形予測式
の係数を決定し、有意性のある方の予測を選んで次の定
期点検時に計測される絶縁抵抗の計測値を予測し、予測
値が所定閾値を下回っていたときにはプリアラームによ
り警報するため、次の定期点検までに絶縁抵抗が警報閾
値以下に下がるか否かを適切に予測判断でき、絶縁抵抗
が閾値以下に低下した状態でモータ駆動を行って発熱等
の異常を起こしてしまう事態を未然に防止することがで
きる。
[Operation] According to the insulation resistance monitoring device of the fire extinguishing equipment automatic inspection system according to the present invention having such a configuration, it is used for prediction from the past measured value of the motor insulation resistance at the time of periodic automatic inspection. Determine the coefficient of the linear prediction equation (linear equation) or non-linear prediction equation, select the prediction that has significance, and predict the measurement value of the insulation resistance that will be measured during the next periodic inspection. If it falls below the threshold, a pre-alarm will be used to warn, so it is possible to appropriately predict whether the insulation resistance will fall below the alarm threshold by the next periodic inspection, and drive the motor with the insulation resistance falling below the threshold. It is possible to prevent the occurrence of abnormalities such as heat generation.

[実施例] 第1図は本発明の一実施例を示した実施例構成図であ
る。
[Embodiment] FIG. 1 is a configuration diagram of an embodiment showing one embodiment of the present invention.

第1図において、12は絶縁抵抗値記憶部であり、第2,3
図で明らかにする消火設備の自動点検システムの定期点
検の際に得られたポンプ駆動用モータの絶縁抵抗の計測
値が格納される。
In FIG. 1, 12 is an insulation resistance value storage unit,
The measured insulation resistance of the pump drive motor obtained during the periodic inspection of the automatic inspection system for fire extinguishing equipment as shown in the figure is stored.

14は第1の予測手段であり、絶縁抵抗値記憶部12に格納
された定期点検毎に得られたモータ絶縁抵抗の計測値か
ら絶縁抵抗の時間変化を表わす線形予測式(単回帰式又
は1次式) y=α+βx の係数をα,βを決定すると共に、決定した係数の値を
代入した1次式により次の定期点検時x=x0で得られる
絶縁抵抗の計測値y=y0を予測する。
Reference numeral 14 denotes a first predicting means, which is a linear prediction formula (single regression formula or 1) that represents a change over time of the insulation resistance from the measured value of the motor insulation resistance stored in the insulation resistance value storage unit 12 obtained at each periodic inspection. The following equation) y = α + βx The coefficient α and β are determined, and the insulation resistance measurement value y = y 0 obtained at the time of the next periodic inspection x = x 0 by the linear equation substituting the determined coefficient values. Predict.

16は第2の予測手段であり、絶縁抵抗値記憶部12に定期
点検毎に得られたモータ絶縁抵抗の計測値から絶縁抵抗
の時間変化を表わす所定の非直線予測式(高次回帰
式)、例えば Y=A×Bx の係数A,Bを決定すると共に、決定された係数A,Bの値を
代入した非線形予測式により次の定期点検時x=x0で得
られる絶縁抵抗の計測値y=y0を予測する。
Reference numeral 16 denotes a second predicting means, which is a predetermined non-linear predictive equation (higher-order regression equation) that expresses the time change of the insulation resistance from the measured value of the motor insulation resistance obtained at each periodic inspection in the insulation resistance storage unit 12. , For example, Y = A × B x coefficients A and B are determined, and the insulation resistance obtained at the next periodical inspection x = x 0 by the nonlinear prediction formula in which the determined values of the coefficients A and B are substituted. Predict the value y = y 0 .

18は判定手段であり、第1の予測手段14による予測と第
2の予測手段16による予測を検定して、いずれの予測手
段に有意性があるかを判定する。
Reference numeral 18 denotes a determination means, which tests the prediction by the first prediction means 14 and the prediction by the second prediction means 16 to determine which prediction means has significance.

更に、24は警報手段であり、判定手段18で有意性ありと
して選ばれた第1の予測手段14または第2の予測手段16
のいずれか一方による次の定期点検時x=x0の予測値
を、予め定めた所定の閾値と比較し、予測値が閾値を下
回ったときにモータ絶縁抵抗の低下をプリアラーム出力
により警報するようにしている。
Furthermore, 24 is an alarm means, and the first predicting means 14 or the second predicting means 16 selected by the judging means 18 as having significance.
The predicted value of x = x 0 at the time of the next regular inspection by either one of the above is compared with a predetermined threshold value, and when the predicted value falls below the threshold value, the decrease of the motor insulation resistance is warned by the pre-alarm output. I am trying.

第2図は本発明の自動点検システムが対象とする消火設
備の一例を示した設備構成図である。
FIG. 2 is an equipment configuration diagram showing an example of a fire extinguishing equipment targeted by the automatic inspection system of the present invention.

第2図において、10はモータであり、消火ポンプ32を駆
動して貯水槽30からの消火用水を給水本管36に加圧供給
する。モータ10はポンプ制御盤400により制御される。
ポンプ制御盤400に並んで自動点検中継盤200が設置され
る。
In FIG. 2, reference numeral 10 denotes a motor, which drives the fire extinguishing pump 32 to supply the fire extinguishing water from the water storage tank 30 to the water supply main 36 under pressure. The motor 10 is controlled by the pump control panel 400.
An automatic inspection relay board 200 is installed side by side with the pump control board 400.

給水本管36は屋上の高架水槽38に接続され、また各階毎
に分岐管40を引き出している。尚、分岐管40は1階分の
みを示している。
The water supply main 36 is connected to an elevated water tank 38 on the roof, and a branch pipe 40 is drawn out for each floor. The branch pipe 40 shows only the first floor.

分岐管40はアラーム弁42を介してフロア内に引き込ま
れ、複数のスプリンクラーヘッド44を接続している。分
岐管40の端末には末端試験装置46が設けられる。末端試
験装置46には仕切弁48、電動弁50、及びスプリンクラー
ヘッド44が1個作動したのに相当する水量を決めるオリ
フィス52、圧力計54、圧力センサ56及びローカル中継器
300が設けられる。この末端試験装置46は、自動点検中
継盤200に対しセンタ側の自動点検管理盤100からのポン
プ運転に伴う自動点検の指令を受けた際に、電動弁50を
開いて分岐管40にスプリンクラーヘッド44が1個作動し
たと同じ水量を流し、このときアラーム弁42から出力さ
れる検出信号でモータ10を駆動して消火ポンプを運転す
る試験を行なう。
The branch pipe 40 is drawn into the floor via an alarm valve 42 and connects a plurality of sprinkler heads 44. An end testing device 46 is provided at the end of the branch pipe 40. The terminal test device 46 has a sluice valve 48, a motor-operated valve 50, and an orifice 52, a pressure gauge 54, a pressure sensor 56, and a local repeater that determines the amount of water corresponding to the operation of one sprinkler head 44.
300 will be provided. The terminal testing device 46 opens the motorized valve 50 and receives the sprinkler head from the branch pipe 40 when the automatic inspection relay board 200 receives an automatic inspection command from the center-side automatic inspection management board 100 associated with pump operation. A test is conducted in which the same amount of water as when one of the 44 is operated is supplied, and at this time the motor 10 is driven by the detection signal output from the alarm valve 42 to operate the fire pump.

消火ポンプ32の吐出直後には試験配管58が設けられ、試
験配管58には電動弁60及び流量計62が設けられ、給水本
管36に設けた仕切弁64を閉めた状態で電動弁60を開いて
消火ポンプ32を運転することにより、実際に消火ポンプ
32からの加圧水を試験配管58に流してポンプ性能試験を
行なうようにしている。
Immediately after the discharge of the fire pump 32, a test pipe 58 is provided, the test pipe 58 is provided with an electric valve 60 and a flow meter 62, and the electric valve 60 is provided with the sluice valve 64 provided in the water main 36 closed. By opening and operating the fire pump 32, the fire pump actually
The pressurized water from 32 is passed through the test pipe 58 to perform a pump performance test.

さらに給水本管36の仕切弁64の2次側からの分岐管には
圧力タンク66が設置され、圧力タンク66は給水本管36の
水圧を受けて内部空気を圧縮し、圧縮空気の圧力はスプ
リンクラーヘッドが作動した場合には圧力センサ68の検
出出力が所定値以下に下がり、モータ10による消火ポン
プ32の起動が行なわれ、その結果、加圧水を給水本管36
内を通じて所定のスプリンクラーヘッドに供給し消火活
動を行なうことができる。
Further, a pressure tank 66 is installed in a branch pipe of the water supply main 36 from the secondary side of the sluice valve 64, and the pressure tank 66 receives the water pressure of the water supply main 36 to compress the internal air, and the pressure of the compressed air is When the sprinkler head operates, the detection output of the pressure sensor 68 falls below a predetermined value, the fire pump 32 is started by the motor 10, and as a result, pressurized water is supplied to the main water supply pipe 36.
Fire can be extinguished by supplying to a predetermined sprinkler head through the inside.

この圧力タンク66の分岐管にも仕切用の電動弁70が設け
られ、電動弁70を開くことで圧力タンク66の圧力を抜い
てモータ10による消火ポンプの起動試験が行なえるよう
にしている。尚、消火ポンプ32に対しては呼水槽72が設
けられる。
An electric valve 70 for partitioning is also provided in the branch pipe of the pressure tank 66, and by opening the electric valve 70, the pressure in the pressure tank 66 is released so that the fire pump starting test by the motor 10 can be performed. A water tank 72 is provided for the fire pump 32.

第3図は第2図の消火設備を対象とした本発明の自動点
検システムのシステム構成図である。
FIG. 3 is a system configuration diagram of the automatic inspection system of the present invention for the fire extinguishing equipment of FIG.

第3図において、中央監視室等のセンタ側には自動点検
管理盤100が設けられ、自動点検管理盤100からポーリン
グ方式により現場に設置された自動点検中継盤200に対
し所定時間毎に自動点検指令が行なわれる。自動点検中
継盤200には、第2図に示したように末端試験装置46に
設けられたローカル中継器300、消火ポンプ制御盤400、
表示操作部500、自動点検のための電動弁や圧力センサ
等の各種の末端機器600、及び電圧、電流、圧力等の各
種の状態を検出するアナログ型の端末機器700が接続さ
れる。更に本発明によるモータ10の絶縁抵抗を監視する
ため、絶縁抵抗計測制御ユニット20、絶縁抵抗計22が接
続される。
In FIG. 3, an automatic inspection management board 100 is provided on the center side such as a central monitoring room, and the automatic inspection management board 100 automatically inspects an automatic inspection relay board 200 installed on site by a polling method at predetermined time intervals. A command is given. As shown in FIG. 2, the automatic inspection relay board 200 includes a local repeater 300 provided in the terminal testing device 46, a fire pump control board 400,
A display operation unit 500, various terminal devices 600 such as a motor-operated valve and a pressure sensor for automatic inspection, and an analog type terminal device 700 for detecting various states such as voltage, current and pressure are connected. Further, an insulation resistance measurement control unit 20 and an insulation resistance meter 22 are connected to monitor the insulation resistance of the motor 10 according to the present invention.

自動点検中継盤200内には全体の制御を行なうCPU80が設
けられ、更に自動点検管理盤100との入出力インタフェ
ース82、ROM84、RAM86、自動点検管理盤100との間のシ
リアルインタフェース88、ローカル中継器300に対する
シリアルインタフェース90、CPU80の暴走を監視するウ
ォッチドッグ回路92、基準クロックを発生するタイマ9
4、表示部操作部500との入出力インタフェース96、末端
機器600及び消火ポンプ制御盤400に対する入出力インタ
フェース98a、本発明が対象とする絶縁抵抗計測制御ユ
ニット20に対する入出力インタフェース98n、更に絶縁
抵抗計測制御ユニット20を含む適宜のアナログ末端機器
700からの検出アナログ信号をデジタル信号に変換するA
/Dコンバータ102を備える。
The automatic inspection relay board 200 is provided with a CPU 80 for overall control, and further has an input / output interface 82 with the automatic inspection management board 100, ROM 84, RAM 86, serial interface 88 with the automatic inspection management board 100, and local relay. Interface 90 for device 300, watchdog circuit 92 for monitoring runaway of CPU 80, timer 9 for generating reference clock
4, an input / output interface 96 with the display operation unit 500, an input / output interface 98a for the terminal device 600 and the fire pump control panel 400, an input / output interface 98n for the insulation resistance measurement control unit 20 targeted by the present invention, and further an insulation resistance Appropriate analog end equipment including measurement control unit 20
Converts the detected analog signal from 700 to a digital signal A
The / D converter 102 is provided.

そして、第1図に示した本発明の絶縁抵抗監視装置は、
例えば自動点検中継盤200に設けられたCPU80のプログラ
ム制御により実現される。
The insulation resistance monitoring device of the present invention shown in FIG.
For example, it is realized by the program control of the CPU 80 provided in the automatic inspection relay board 200.

次に第4図のフローチャートを参照して、第1図に示し
た本発明の実施例によるモータ絶縁抵抗の予測演算に基
づく監視処理を詳細に説明する。
Next, the monitoring process based on the prediction calculation of the motor insulation resistance according to the embodiment of the present invention shown in FIG. 1 will be described in detail with reference to the flowchart of FIG.

[ステップS1] まず、第4図のステップS1にあっては、モータ絶縁抵抗
の予測演算に使用するための計測データの収集と計算整
理を行なう。例えば、1週間に1回自動点検が行なわれ
てモータ絶縁抵抗の計測値が得られているとすると、1
ケ月で4回の自動点検が行なわれ、これによって得られ
た4つのモータ絶縁抵抗の計測値の平均値として月単位
の絶縁抵抗計測値を作り出して記憶する。更に、月単位
の計測データについては、6ケ月移動平均として1つの
月データを作り出す。
[Step S1] First, in step S1 of FIG. 4, the measurement data to be used for the prediction calculation of the motor insulation resistance is collected and the calculation is arranged. For example, if automatic inspection is performed once a week and the measured value of motor insulation resistance is obtained, 1
The automatic inspection is performed four times in a month, and the insulation resistance measurement value for each month is created and stored as an average value of the measurement values of the four motor insulation resistances obtained thereby. Furthermore, for the monthly measurement data, one month data is created as a six-month moving average.

例えば、第5図に示すように1月から12月までの1年分
の月データy1〜y12が得られた場合には、6ケ月移動平
均を求める月の前と後ろに3ケ月分の月データが存在し
ていることを前提に6ケ月移動平均を求める。具体的に
は、4月のデータy4の前後にそれぞれ3つの月データが
存在しているので、第5図の右側の欄に示すようにして
6ケ月移動平均Y4を算出する。この6ケ月移動平均の計
算においては、移動平均を求める4月のデータy4の両側
の2つのデータy2,y3とy5,y6はそのまま加算するが。両
端の1月と7月のデータy1,y7については、その2分の
1を加算し、6で割って移動平均を求めるようにしてい
る。この計算は移動平均をとる月の回数が偶数の場合で
あり、奇数の場合には月データをそのまま加算して平均
値を求める。
For example, as shown in Fig. 5, when the month data y1 to y12 for one year from January to December is obtained, the months for three months before and after the month for which the six-month moving average is calculated are obtained. A 6-month moving average is calculated assuming that data exists. Specifically, since there are three month data before and after the April data y4, the six-month moving average Y4 is calculated as shown in the right column of FIG. In this six-month moving average calculation, the two data y2, y3 and y5, y6 on both sides of the April data y4 for which the moving average is calculated are added as they are. For the data y1 and y7 for January and July at both ends, half of the data is added and divided by 6 to obtain the moving average. This calculation is performed when the number of months for moving average is even, and when it is odd, the month data is added as it is to obtain the average value.

第5図に示すように、6ケ月移動平均として月単位の絶
縁抵抗データが算出記憶されたならば、6ケ月移動平均
による12ケ月分の月データが得られた段階で平均値を求
め、これを年単位のデータとする。
As shown in Fig. 5, if the insulation resistance data for each month is calculated and stored as the 6-month moving average, the average value is calculated at the stage when the 12-month month data is obtained by the 6-month moving average. Is the yearly data.

このようなステップS1におけるデータ収集により12ケ月
分の月データが収集できた段階で月単位の絶縁抵抗の予
測演算を開始し、一方、数年分の年データが収集できた
段階で年単位の絶縁抵抗の予測演算を開始する。
When the monthly data for 12 months can be collected by the data collection in step S1, the prediction calculation of the monthly insulation resistance is started, while on the other hand, when the annual data for several years can be collected, Insulation resistance prediction calculation starts.

勿論、予測演算を可能とするデータの収集期間は必要に
応じて適宜に定めることができる。
Of course, the data collection period that enables the prediction calculation can be appropriately determined as necessary.

[ステップS2] 次に、ステップS1のデータ収集により、例えば12ケ月分
の月データが収集できたならばステップS2に進み、第1
図の第1の予測手段14による単回帰式(線形予測式、1
次式) y=α+βx の係数α,βを求める。
[Step S2] Next, if, for example, 12 months of monthly data can be collected by the data collection of step S1, the process proceeds to step S2, and the first
The simple regression equation (linear prediction equation, 1
Next, the coefficients α and β of y = α + βx are calculated.

この単回帰式y=α+βxの係数α,βの決定は次のよ
うにして行なわれる。
The determination of the coefficients α and β of the simple regression equation y = α + βx is performed as follows.

まず、x(月または年)とy(絶縁抵抗値)の平均値
,を次式により求める。
First, the average value of x (month or year) and y (insulation resistance value) is calculated by the following formula.

ここで、xを例えば月とした場合、1年目の1〜12月に
ついてx=1〜12の値をとり、2年目の1〜12月につい
てはx=13〜24の値をとるように決められる。
Here, when x is a month, for example, the value of x = 1 to 12 is taken for the first to December of the first year, and the value of x = 13 to 24 is taken to the first to December of the second year. Is decided.

次に、平方和Sxx,Syyを次式により求める。Next, the sum of squares S xx and S yy are obtained by the following formula.

更に、偏差積和Sxyを次式により求める。 Further, the deviation product sum S xy is obtained by the following formula.

そして、最終的に1次回帰式の係数α,βを として求めることができる。 Finally, the coefficients α and β of the linear regression equation are Can be asked as

[ステップS3] 次にステップS3に進み、相関係数rと決定係数R2を次式
に従って算出する。
[Step S3] Next, in step S3, the correlation coefficient r and the coefficient of determination R 2 are calculated according to the following equations.

ここで、相関係数rが正の値ならば右上がりの直線、負
の値ならば右下がりの直線となる。即ち、相関係数rが
正ならば上昇傾向、負ならば下降傾向と判断することが
できる。また、相関係数rあるいは決定係数R2が±1に
近い程、実際の計測データが前記(1)〜(5)式に従
って求めた単回帰式による直線との相関が高いものと評
価できる。
Here, if the correlation coefficient r is a positive value, it is a straight line rising to the right, and if it is a negative value, it is a straight line falling to the right. That is, if the correlation coefficient r is positive, it can be determined that it is an upward tendency, and if it is negative, it can be determined that it is a downward tendency. Further, it can be evaluated that the closer the correlation coefficient r or the determination coefficient R 2 is to ± 1, the higher the correlation between the actual measurement data and the straight line obtained by the simple regression equation obtained according to the equations (1) to (5).

[ステップS4] 次に、ステップS4に進んで分散分析表を作成する。この
分散分析表の作成はステップS2で求められた単回帰式が
適切な式であったか否かを検討し、適切でなければ別の
式を当てはめるために使用する。
[Step S4] Next, proceeding to step S4, an analysis of variance table is created. This analysis of variance table is used to examine whether or not the simple regression equation obtained in step S2 is an appropriate equation, and to apply another equation if it is not appropriate.

ステップS4で作成される分散分析表は第6図に示すよう
になる。
The analysis of variance table created in step S4 is as shown in FIG.

この分散分析表の作成に使用する保存データは、同じ時
刻(例えば、月)に対し複数のデータが存在すると共に
繰返しのある場合に相当する。例えば第7図に示すよう
に水準i、例えばi=1となる1月のデータに示すよう
に、2つの絶縁抵抗値y1,y2が存在する場合である。従
って、このようなデータを一元配置とみなして、以下の
計算式に従って第6図に示した分散分析表を作成する。
The stored data used to create this analysis of variance table corresponds to the case where a plurality of data exist at the same time (for example, a month) and are repeated. For example, there is a case where there are two insulation resistance values y1 and y2 as shown in the January data when the level i is, for example, i = 1 as shown in FIG. Therefore, such data is regarded as one-way arrangement, and the analysis of variance table shown in FIG. 6 is created according to the following calculation formula.

まず、次式に従ってSTを計算する。First, S T is calculated according to the following equation.

次に、SAを計算する。 Next, S A is calculated.

例えば第7図の表の値に従ってSAを計算すると次のよう
になる。
For example, when S A is calculated according to the values in the table of FIG. 7, it becomes as follows.

更に、第8図に示す表を作成する。ここで、同一水準に
おいて絶縁抵抗yの計測データが1つしか存在しない場
合は、前記第(8)〜(10)式の計算は行なわず、第6
図の分散分析表の直線回帰部分の計算及び第8図の分散
分析表の計算のみを行ない、後の説明で明らかにするス
テップS6の直線回帰の検定を実行し、直線回帰が有意な
らばステップS7の処理に進むようになる。
Further, the table shown in FIG. 8 is prepared. Here, when there is only one measurement data of the insulation resistance y at the same level, the calculation of the equations (8) to (10) is not performed and the sixth equation is not calculated.
Only the linear regression part of the ANOVA table in the figure and the ANOVA table in FIG. 8 are calculated, and the linear regression test of step S6, which will be explained later, is executed. If the linear regression is significant, step The process will proceed to S7.

[ステップS5] ステップS4で第6,8図に示す分散分析表が作成できたな
らばステップS5に進み、高次回帰の有意性を検定する。
この検定は第6図の分散分析表に示された高次回帰の当
てはまりの悪さが有意であるか有意でないかを分散比F0
の値で検定する。即ち、 であったならば高次回帰が有意となり、単回帰のモデル
は適合しないものと判断してステップS9に進む。一方、 であったならば高次回帰は有意でないとしてステップS6
に進み、直線回帰の検定を行なう。
[Step S5] If the analysis of variance table shown in FIGS. 6 and 8 can be created in step S4, the process proceeds to step S5 to test the significance of higher-order regression.
In this test, the variance ratio F 0 is used to determine whether the poor fit of higher-order regression shown in the analysis of variance table of FIG. 6 is significant or insignificant.
Test with the value of. That is, If so, the higher-order regression becomes significant, and it is determined that the single regression model does not fit, and the process proceeds to step S9. on the other hand, If it is, the higher-order regression is not significant and step S6
Proceed to and perform a linear regression test.

[ステップS6,S7,S8] ステップS5で高次回帰が有意でないと判定された場合に
はステップS6に進み、直線回帰の検定を行なう。即ち、 であったならば直線回帰は有意となり、ステップS7に進
み、ステップS2で求めた単回帰式(1次式) y=α+βx を使用して、次の定期点検時x=x0における絶縁抵抗の
予測値y=y0を算出する。
[Steps S6, S7, S8] If it is determined in step S5 that the higher-order regression is not significant, the process proceeds to step S6 to perform a linear regression test. That is, If so, the linear regression becomes significant, and the procedure proceeds to step S7, where the simple regression equation (linear equation) y = α + βx obtained in step S2 is used to determine the insulation resistance at the next periodic inspection x = x 0 . Calculate the predicted value y = y 0 .

ステップS7で単回帰式による予測値y0が求められたなら
ばステップS8に進んで、区間予測を行なう。
If the predicted value y 0 by the simple regression equation is obtained in step S7, the process proceeds to step S8, and section prediction is performed.

この区間予測はx=x0と指定したときの将来実現する絶
縁抵抗の予測値y=y0の信頼率100(1−Υ)の予測区
間を、 として求める。ここで、Υ=0.05とすると、95%の信頼
率の予測区間を決めている。
This interval prediction is a prediction interval with a reliability rate of 100 (1-Υ) for the predicted value y = y 0 of the insulation resistance that will be realized in the future when x = x 0 is specified. Ask as. Here, if Υ = 0.05, the prediction interval of 95% reliability is determined.

例えばx=12までのデータで回帰分析を行なったとする
と、次の時期x=13で実現する予測値yの95%予測区間
は、 となる。
For example, if regression analysis is performed using data up to x = 12, the 95% prediction interval of the predicted value y realized at the next time x = 13 is Becomes

このように第(15)式で求められる、例えば95%予測区
間の最小値を最終的な警報閾値と比較し、予測値y0が警
報閾値を下回っていればプリアラームを警報するように
なる。
In this way, for example, the minimum value of the 95% prediction interval is compared with the final warning threshold value, which is obtained by equation (15), and if the predicted value y 0 is below the warning threshold value, a pre-alarm will be issued. .

一方、ステップS6の単回帰の検定において、F0<F(1,
N−2;0.05) …(16) であったならば時間経過による絶縁抵抗の変化は次の定
期点検までの期間にはないと判断して一連の処理を終了
する。
On the other hand, in the single regression test of step S6, F 0 <F (1,
N-2; 0.05) If (16), it is determined that the change in insulation resistance due to the passage of time is not in the period until the next periodic inspection, and the series of processing is terminated.

[ステップS9] ステップS5の高次回帰の有意性の判断において、前記第
(13)式を満足した場合にはステップS9に進んで高次回
帰式(非直線予測式) Y=A×Bx を求める。具体的には係数A,Bの値を求める。
[Step S9] In the determination of the significance of the higher-order regression in step S5, if the above equation (13) is satisfied, the process proceeds to step S9, and the higher-order regression equation (non-linear prediction equation) Y = A × B x Ask for. Specifically, the values of the coefficients A and B are calculated.

即ち、Y=A×Bxの両辺の自然対数をとると、logY=lo
g(A)+x・log(B) …(17) となる。ここで、y=logY,a=log(A),b=log(B)
と置くと、 y=a+bx …(18) と線形式で表わすことができる。従って、第(18)式の
線形式に直したところで前述したステップS2と同様に前
記(1)〜(5)に従って係数a,bの値を求め、 logY=a+bx …(19) の式を得る。
That is, if the natural logarithm of both sides of Y = A × B x is taken, logY = lo
g (A) + x · log (B) (17) Here, y = logY, a = log (A), b = log (B)
Then, y = a + bx (18) can be expressed in a linear form. Therefore, when the linear form of the equation (18) is corrected, the values of the coefficients a and b are obtained according to the above (1) to (5) in the same manner as in step S2 described above, and the equation of logY = a + bx (19) is obtained. .

[ステップS10,S11] ステップS9で高次回帰式が決定されたならば、ステップ
S10に進んで相関係数、決定係数をステップS3の場合と
同様に、前記第(6),(7)式に従って求め、続いて
ステップS11に進み、第6,8図に示した分散分析表をステ
ップS4の場合と同様、前記第(8)〜(11)式に従って
作成する。
[Steps S10, S11] If a high-order regression equation is determined in step S9,
In step S10, the correlation coefficient and the coefficient of determination are obtained in accordance with the equations (6) and (7) in the same manner as in step S3, and then, in step S11, the analysis of variance table shown in FIGS. Is created in accordance with the equations (8) to (11), as in step S4.

[ステップS12,S13,S14,S15] ステップS11で高次回帰式について分散分析表の作成が
終了したならばS12に進み、ステップS5の場合と同様、
前記第(13)式に従って高次回帰の検定を行ない、有意
が判定されるとステップS13に進み、ステップS9で求め
た高次回帰式に次の自動点検時x=x0を代入して絶縁抵
抗の予測値y=y0を求め、ステップS8と同様に前記第
(15)式による区間予測を行ない、95%の信頼性が得ら
れた場合には警報閾値と比較するようになる。
[Steps S12, S13, S14, S15] When the creation of the analysis of variance table for the higher-order regression equation is completed in step S11, the process proceeds to step S12, as in step S5.
The higher-order regression test is performed according to the equation (13), and if significant is determined, the process proceeds to step S13, and the higher-order regression formula obtained in step S9 is substituted by x = x 0 at the time of the next automatic inspection. The predicted resistance value y = y 0 is obtained, and the section prediction is performed by the equation (15) as in step S8, and when 95% reliability is obtained, it is compared with the alarm threshold value.

一方、ステップS12で高次回帰の疑似性がないことが判
定されるとステップS14に進み、ステップS3とステップS
10で求めた単回帰式と高次回帰式の各相関係数を比較す
る。ここで、単回帰式(1次式)の相関係数が大きけれ
ばS15に進んでステップS7,S8に示したように1次区間予
測を行なう。一方、高次回帰式の相関係数が大きい場合
にはステップS13に進んで高次区間予測を行なう。即
ち、単回帰式及び高次回帰式の両方に有意性がなくと
も、相関値の大きい方を使用して、必要最小限の予測を
行なうようにしている。
On the other hand, if it is determined in step S12 that there is no pseudo regression of higher-order regression, the process proceeds to step S14, and steps S3 and S
The correlation coefficients of the simple regression equation and the higher-order regression equation obtained in 10 are compared. Here, if the correlation coefficient of the simple regression equation (first-order equation) is large, the process proceeds to S15, and the first-order section prediction is performed as shown in steps S7 and S8. On the other hand, when the correlation coefficient of the higher-order regression equation is large, the process proceeds to step S13 to perform the higher-order section prediction. That is, even if both the simple regression equation and the higher-order regression equation have no significance, the one with the larger correlation value is used to make the minimum necessary prediction.

尚、ステップS6で単回帰の検定、ステップS12で高次回
帰の検定を行なっているが、検定の結果無意と判断した
際にはデータ異常警報を出力しても勿論よい。
Although the single regression test is performed in step S6 and the higher-order regression test is performed in step S12, a data abnormality alarm may of course be output when the result of the test is determined to be insignificant.

[発明の効果] 以上説明したきたように本発明によれば、定期的に行な
われる自動点検の際に、過去のモータ絶縁抵抗の測定値
から線形予測式(1次式、単回帰式)または非線形予測
式(高次式)の係数を決定し、有意性のある方の予測を
選んで、次の定期点検時に計測される絶縁抵抗の計測値
を予測することができ、予測値が所定閾値を下回ったと
きにはプリアラームにより警報が出されるため、次に定
期点検が行なわれるまでの間に絶縁抵抗が閾値以下に低
下した状態でモータ駆動を行なって、発熱等の異常を起
こしてしまう事態を未然に防止することができる。
[Effects of the Invention] As described above, according to the present invention, a linear prediction equation (linear equation, single regression equation) or By determining the coefficient of the nonlinear prediction formula (higher-order formula) and selecting the prediction that has significance, you can predict the measurement value of the insulation resistance that will be measured during the next periodic inspection. If it falls below the range, a pre-alarm will give an alarm.Before the next periodical inspection, drive the motor with the insulation resistance falling below the threshold value and cause abnormalities such as heat generation. It can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示した実施例構成図; 第2図は本発明が対象とする消火設備の設備構成図; 第3図は本発明の自動点検システムのシステム構成図; 第4図は本発明の処理動作を示したフローチャート; 第5図は6ケ月移動平均データの説明図; 第6図は本発明で求められた分散分析表の説明図; 第7図は本発明の対象とするデータの説明図; 第8図は第2の分散分析表の説明図; 第9,10図は従来の絶縁抵抗計測の問題を示した説明図で
ある。 10:モータ 12:絶縁抵抗値記憶部 14:第1の予測手段 16:第2の予測手段 18:判定手段 20:絶縁抵抗計測ユニット 22:絶縁抵抗計 24:警報手段 30:貯水槽 32:消火ポンプ 36:給水本管 38:高架水槽 40:分岐管 42:アラーム弁 44:スプリンクラーヘッド 46:末端試験装置 48,64:仕切弁 50,60,70:電動弁 52:オリフィス 56,68:圧力センサ 58:試験配管 62:流量計 66:圧力タンク 80:CPU 100:自動点検管理盤 200:自動点検中継盤 300:ローカル中継器 400:消火ポンプ制御盤
FIG. 1 is a block diagram of an embodiment showing an embodiment of the present invention; FIG. 2 is a block diagram of a fire extinguishing facility targeted by the present invention; FIG. 3 is a system block diagram of an automatic inspection system of the present invention; FIG. 4 is a flow chart showing the processing operation of the present invention; FIG. 5 is an explanatory diagram of 6-month moving average data; FIG. 6 is an explanatory diagram of an ANOVA table obtained by the present invention; FIG. 8 is an explanatory view of the second analysis of variance table; FIGS. 9 and 10 are explanatory views showing problems of conventional insulation resistance measurement. 10: Motor 12: Insulation resistance value storage section 14: First prediction means 16: Second prediction means 18: Judgment means 20: Insulation resistance measurement unit 22: Insulation resistance meter 24: Alarm means 30: Water tank 32: Fire extinguishing Pump 36: Water main 38: Elevated water tank 40: Branch pipe 42: Alarm valve 44: Sprinkler head 46: Terminal test device 48, 64: Gate valve 50, 60, 70: Motorized valve 52: Orifice 56, 68: Pressure sensor 58: Test piping 62: Flow meter 66: Pressure tank 80: CPU 100: Automatic inspection management board 200: Automatic inspection relay board 300: Local relay 400: Fire pump control board

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】消火ポンプを駆動するモータの絶縁抵抗を
定期的に計測し、該絶縁抵抗値が所定閾値以下に低下す
ると絶縁不良として警報する消火設備自動点検システム
の絶縁抵抗監視装置に於いて、 定期点検毎に得られた前記絶縁抵抗の計測値から絶縁抵
抗の時間変化を表わす直線予測式の係数を決定すると共
に、該直線予測式により次の定期点検時に得られる絶縁
抵抗の計測値を予測する第1の予測手段と; 定期点検毎に得られた前記絶縁抵抗の計測値から絶縁抵
抗の時間変化を表わす所定の非直線予測式の係数を決定
すると共に、該非直線予測式により次の定期点検時に得
られる絶縁抵抗の計測値を予測する第2の予測手段と; 前記第1の予測手段による予測と第2の予測手段による
予測を検定していずれの予測手段に有意性があるかを判
定する判定手段と; を備え、該判定手段で選ばれた前記第1又は第2の予測
手段による次の定期点検時の予測値が前記所定閾値以下
と予測判断した際にプリアラームを出力することを特徴
とする消火設備自動点検システムの絶縁抵抗監視装置。
1. An insulation resistance monitoring device for an automatic inspection system for a fire extinguishing system, which periodically measures the insulation resistance of a motor for driving a fire extinguishing pump and issues an alarm as insulation failure when the insulation resistance value falls below a predetermined threshold value. , The coefficient of the linear prediction formula representing the time change of the insulation resistance is determined from the measured value of the insulation resistance obtained at each periodic inspection, and the measured value of the insulation resistance obtained at the next periodic inspection is calculated by the linear prediction formula. First predicting means for predicting; determining a coefficient of a predetermined non-linear prediction equation representing a time change of the insulation resistance from the measured value of the insulation resistance obtained at each periodic inspection, and using the non-linear prediction equation Second predicting means for predicting a measured value of insulation resistance obtained at the time of regular inspection; Which predicting means is significant by testing the prediction by the first predicting means and the prediction by the second predicting means Determining means for determining; and outputting a pre-alarm when the predicted value at the time of the next periodical inspection by the first or second predicting means selected by the determining means is predicted to be less than or equal to the predetermined threshold value. Insulation resistance monitoring device for automatic inspection system of fire extinguishing equipment.
JP33702989A 1989-12-26 1989-12-26 Insulation resistance monitoring device for automatic inspection system of fire extinguishing equipment Expired - Fee Related JPH0698205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33702989A JPH0698205B2 (en) 1989-12-26 1989-12-26 Insulation resistance monitoring device for automatic inspection system of fire extinguishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33702989A JPH0698205B2 (en) 1989-12-26 1989-12-26 Insulation resistance monitoring device for automatic inspection system of fire extinguishing equipment

Publications (2)

Publication Number Publication Date
JPH03195566A JPH03195566A (en) 1991-08-27
JPH0698205B2 true JPH0698205B2 (en) 1994-12-07

Family

ID=18304786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33702989A Expired - Fee Related JPH0698205B2 (en) 1989-12-26 1989-12-26 Insulation resistance monitoring device for automatic inspection system of fire extinguishing equipment

Country Status (1)

Country Link
JP (1) JPH0698205B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551687B2 (en) * 2004-04-12 2010-09-29 ヤマトプロテック株式会社 Fire extinguishing equipment inspection device and inspection method
JP6700509B1 (en) * 2019-04-02 2020-05-27 澪標アナリティクス株式会社 Estimating apparatus, estimating method, and program

Also Published As

Publication number Publication date
JPH03195566A (en) 1991-08-27

Similar Documents

Publication Publication Date Title
US20200371490A1 (en) Method for assessing safety integrity level of offshore oil well control equipment
JP5335144B2 (en) Fire and combustible gas notification system and method
Bhatia et al. Dynamic risk-based inspection methodology
JP3968656B2 (en) Maintenance support device for plant equipment
Adedigba et al. An integrated approach for dynamic economic risk assessment of process systems
WO2003075109A1 (en) Method for assessing the integrity of a structure
JPH0954613A (en) Plant facility monitor device
KR20190115953A (en) System and method for diagnosing risk of power plant using rate of change of deviation
JP2006290446A (en) Disaster preventive system for tank
US9361785B2 (en) System and method for testing battery backup capacities in alarm systems
CN115165725A (en) Data-driven marine equipment corrosion monitoring and safety early warning system
CN115099360A (en) Intelligent sewage treatment equipment fault assessment method and system
JP2544498B2 (en) Remaining life diagnosis method, remaining life diagnosis device, remaining life information display method, display device and expert system
JPH0698205B2 (en) Insulation resistance monitoring device for automatic inspection system of fire extinguishing equipment
JP3020072B2 (en) Plant monitoring apparatus and method
CN112348419B (en) Internet of things processing system and method
JPH1153664A (en) Safety support device for plant or machinery
CN114666361A (en) Fire-fighting Internet of things-based water system overall fault detection system and method
WO2013104419A1 (en) Assistance in preventing failure of an industrial system using a fault model
JP2645017B2 (en) Plant diagnostic method and apparatus
JPH0431083Y2 (en)
JP2524631B2 (en) Inspection equipment for remote monitoring system
EP1598717A2 (en) Method for monitoring of a plurality of gas plants
KR100397191B1 (en) Method of Evaluating Abnormal Groundwater Head of Observation Holes in Rock Surrounding Underground Highly Pressurized Gas Storage Caverns.
US20240176340A1 (en) Causal Analysis of an Anomaly Based on Simulated Symptoms

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20081207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees