JPH0697586A - Multiple quantum well semiconductor laser - Google Patents

Multiple quantum well semiconductor laser

Info

Publication number
JPH0697586A
JPH0697586A JP24832992A JP24832992A JPH0697586A JP H0697586 A JPH0697586 A JP H0697586A JP 24832992 A JP24832992 A JP 24832992A JP 24832992 A JP24832992 A JP 24832992A JP H0697586 A JPH0697586 A JP H0697586A
Authority
JP
Japan
Prior art keywords
layer
quantum well
well
thickness
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24832992A
Other languages
Japanese (ja)
Inventor
Minoru Watanabe
実 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24832992A priority Critical patent/JPH0697586A/en
Publication of JPH0697586A publication Critical patent/JPH0697586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the gain of a quantum well as much as possible and to provide a multiple quantum well layer, which has a low threshold value and is superior in temperature characteristics. CONSTITUTION:An active layer of a multiple quantum well structure and clad layers 111 and 116, which are formed in such a way as to insert at least said active layer between them, are formed on a compound semiconductor substrate 110. Quantum well layers 113 of the active layer are respectively formed into an Inx(Ga1-yAly)1-xP layer and barrier layers 114 of this active layer are respectively formed into an Inn(Ga1-mAlm)1-nP layer (provided that, y<m and m=0.5 to 0.7). The sum total of the thicknesses of the above quantum well layers 113 is formed into a thickness of 15[nm] to 40[nm].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報処理や光計測な
どの光源として用いられる半導体レーザ装置、特に、I
nGaAlP系材料を用いた半導体レーザ装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device used as a light source for optical information processing, optical measurement, etc.
The present invention relates to a semiconductor laser device using an nGaAlP-based material.

【0002】[0002]

【従来の技術】近年、0.6μm帯に発振波長を持つI
nGaAlP系材料を用いた赤色半導体レーザが製品化
され、高密度光ディスク装置、レーザビームプリンタ用
光源、バーコードリーダ及び光計測等の光源として期待
されている。現在では、光情報処理速度の高速化及び光
記録密度の高密度化という点で、この系の半導体レーザ
には、高出力化及び短波長化が求められている。この場
合、井戸層を障壁層で挾んだ量子井戸構造を活性層に用
いて、その量子効果により、利得を増加させることが有
効である。
2. Description of the Related Art Recently, I having an oscillation wavelength in the 0.6 μm band
A red semiconductor laser using an nGaAlP-based material has been commercialized, and is expected as a light source for a high-density optical disk device, a laser beam printer light source, a bar code reader, optical measurement, and the like. At present, in order to increase the optical information processing speed and the optical recording density, the semiconductor laser of this system is required to have high output and short wavelength. In this case, it is effective to use a quantum well structure in which a well layer is sandwiched by barrier layers as an active layer and increase the gain by the quantum effect.

【0003】従来、630nm帯のレーザを作成する場
合、有機金属気相成長法(MOCVD)により、例えば
図11に示したような製造工程が用いられている。図1
1を参照しながら簡単に説明すると、まず、n−GaA
s(100)基板 110上に、厚さが約1.0μmの
n−In0.5 (Ga0.3 Al0.7 0.5 Pクラッド層
111、および、厚さが約50nmの In0.5 (Ga
0.5 Al0.5 0.5 P 光ガイド層 112、および、
厚さが約3nmの In0.5 Ga0.5 P 井戸層 11
3と厚さが約4nmの In0.5 (Ga0.5 Al0.5
0.5 P 障壁層 114とからなる量子井戸構造の活性
層(例えば井戸数4)、および、厚さが約50nmの
In0.5 (Ga0.5 Al0.5 0.5 P 光ガイド層 1
15、および、厚さが約0.2μmの p−In
0.5 (Ga0.3 Al0.7 0.5 P クラッド層 11
6、および、厚さが約5nmの p−In0.5 Ga0.5
P エッチングストップ層 117、および、厚さが約
0.8μmの p−In0.5 (Ga0.3 Al0.7 0.5
P クラッド層 118、および、厚さが約50nmの
p−In0.5 Ga0.5 P 通電容易化層 119、お
よび、厚さが約1μmの n−GaAs 電流狭窄層1
22、および、厚さが約1μmの p−GaAsコンタ
クト層123 をそれぞれ形成する。そして、最後に、
基板側に電極として AuGe/Au 124を形成
し、当該基板と反対側に電極として AuZn/Au
125を形成する。
Conventionally, in the case of producing a laser in the 630 nm band, a manufacturing process as shown in FIG. 11, for example, is used by metal organic chemical vapor deposition (MOCVD). Figure 1
Briefly explaining with reference to No. 1, first, n-GaA
An n-In 0.5 (Ga 0.3 Al 0.7 ) 0.5 P clad layer having a thickness of about 1.0 μm is formed on the s (100) substrate 110.
111 and In 0.5 (Ga of about 50 nm thick)
0.5 Al 0.5 ) 0.5 P optical guide layer 112, and
In 0.5 Ga 0.5 P well layer with a thickness of about 3 nm 11
3 and a thickness of about 4 nm In 0.5 (Ga 0.5 Al 0.5 )
0.5 P barrier layer 114 and a quantum well structure active layer (for example, 4 wells), and a thickness of about 50 nm
In 0.5 (Ga 0.5 Al 0.5 ) 0.5 P optical guide layer 1
15 and p-In having a thickness of about 0.2 μm
0.5 (Ga 0.3 Al 0.7 ) 0.5 P Clad layer 11
6 and p-In 0.5 Ga 0.5 with a thickness of about 5 nm
P etching stop layer 117 and p-In 0.5 (Ga 0.3 Al 0.7 ) 0.5 having a thickness of about 0.8 μm
P clad layer 118, p-In 0.5 Ga 0.5 P conduction facilitating layer 119 having a thickness of about 50 nm, and n-GaAs current constriction layer 1 having a thickness of about 1 μm
22 and a p-GaAs contact layer 123 having a thickness of about 1 μm are formed respectively. And finally,
AuGe / Au 124 is formed as an electrode on the substrate side, and AuZn / Au is formed as an electrode on the opposite side to the substrate.
Form 125.

【0004】この様な従来の多重量子井戸レーザでは、
井戸層にInGaPを用いるので633nm帯のレーザ
を作成するには、井戸幅を3nm程度まで薄くする必要
がある。しかし、井戸がここまで薄くなると、井戸内に
存在する電子の波動関数が、隣の井戸の電子の波動関数
と重なり合うようになる。この時、量子井戸内に形成さ
れる量子レベルは、サブバンド化が進み、その幅は広が
ってくる。また、基底レベルのサブバンドと第2レベル
のサブバンドとのエネルギー差も減少してくる。このサ
ブバンド間のエネルギー差が少なくなるほど量子井戸の
利得が減り、活性層に量子井戸を用いた効果が得られな
い。さらに、井戸層が薄いと、光閉じこめ効率が下がり
しきい値が増加してしまう。従って、この様な従来の多
重量子井戸レーザでは、活性層を多重量子井戸にしたこ
とによる動作特性の改善はほとんど得られない。
In such a conventional multiple quantum well laser,
Since InGaP is used for the well layer, it is necessary to reduce the well width to about 3 nm in order to create a laser in the 633 nm band. However, when the well becomes thin to this extent, the wave function of the electron existing in the well overlaps with the wave function of the electron in the adjacent well. At this time, the quantum level formed in the quantum well is further subbanded, and its width is widened. Also, the energy difference between the base level sub-band and the second level sub-band decreases. As the energy difference between the subbands decreases, the gain of the quantum well decreases, and the effect of using the quantum well in the active layer cannot be obtained. Further, if the well layer is thin, the light confinement efficiency is lowered and the threshold value is increased. Therefore, in such a conventional multi-quantum well laser, almost no improvement in operating characteristics can be obtained by using the multi-quantum well as the active layer.

【0005】[0005]

【発明が解決しようとする課題】この様に、井戸層をI
nGaPにして発振波長を630nmにするには、井戸
幅を3nmにしなければならない。この場合、量子井戸
間の結合が強くなり、量子井戸中の量子レベルのサブバ
ンドは広く、しかも各量子レベル間のエネルギー差が小
さいので、量子井戸の利得が小さくなり、活性層に量子
井戸を用いた効果があまり得られなくなる。この結果、
量子井戸レーザの特性としては、通常のDHレーザと変
わらなくなり、発振しきい値は高く、温度特性もあまり
良くならないという問題がある。
As described above, the well layer is
The well width must be set to 3 nm in order to obtain the oscillation wavelength of 630 nm by nGaP. In this case, the coupling between the quantum wells becomes strong, the quantum level subbands in the quantum wells are wide, and the energy difference between the quantum levels is small. Therefore, the gain of the quantum wells becomes small, and the quantum wells are formed in the active layer. The effect used will not be obtained so much. As a result,
The characteristics of the quantum well laser are the same as those of a normal DH laser, there is a problem that the oscillation threshold is high and the temperature characteristics are not so good.

【0006】本発明は上記事情を考慮してなされたもの
であり、その目的は、多重量子井戸レーザの量子井戸の
利得をできる限り大きくできる構造を提供し、従来より
もしきい値が低く、温度特性の優れた多重量子井戸レー
ザを提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a structure capable of increasing the gain of a quantum well of a multiple quantum well laser as much as possible, having a threshold value lower than that of a conventional one, and a temperature. It is to provide a multi-quantum well laser having excellent characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の多重量子井戸半導体レーザ装置は、化合物
半導体基板上に、多重量子井戸構造の活性層と、少なく
とも該活性層を挾み込むように形成されるクラッド層と
を有し、前記活性層の量子井戸層が、Inx (Ga1-y
Aly 1-x Pであり、前記活性層の障壁層が、Inn
(Ga1-m Alm1-n P(但し、y<m 、m=0.
5〜0.7)である。また、前記量子井戸層の厚さの総
和が、15[nm]〜40[nm]である。
In order to achieve the above object, a multiple quantum well semiconductor laser device of the present invention includes an active layer having a multiple quantum well structure and at least the active layer sandwiched on a compound semiconductor substrate. And a cladding layer formed as described above, wherein the quantum well layer of the active layer is In x (Ga 1 -y
Al y ) 1-x P and the barrier layer of the active layer is In n
(Ga 1-m Al m ) 1-n P (provided that y <m, m = 0.
5 to 0.7). The total thickness of the quantum well layers is 15 [nm] to 40 [nm].

【0008】また、多重量子井戸構造中の各障壁層の厚
さが4nm〜6nmであり、各量子井戸層の厚さが3.
5nm〜9nmである。
Further, the thickness of each barrier layer in the multiple quantum well structure is 4 nm to 6 nm, and the thickness of each quantum well layer is 3.
It is 5 nm to 9 nm.

【0009】また、前記多重量子井戸構造中の各量子井
戸層の縦方向の格子定数が、基板の格子定数よりも0.
5%〜2%小さくなっている。
Further, the lattice constant in the vertical direction of each quantum well layer in the multiple quantum well structure is 0.
It is 5% to 2% smaller.

【0010】さらに、前記多重量子井戸構造中の各障壁
層の縦方向の格子定数が、基板の格子定数よりも0.5
%〜2%大きくなっている。
Further, the vertical lattice constant of each barrier layer in the multiple quantum well structure is 0.5 than the lattice constant of the substrate.
% To 2% larger.

【0011】即ち、本発明の骨子は、活性層の両端にガ
イド層を有するInGaAlP系の多重量子井戸レーザ
を形成し、活性層を構成している多重量子井戸構造中の
井戸層厚の総和が15〜40nmになるように井戸数を
決め、井戸層の厚さとしては3.5nm〜9nmに設定
し、障壁層の厚さとしては4nm〜6nmに設定するこ
とによって、あるいは、さらに、井戸層に[負の格子不
整合(Δa/a=(成長層の縦方向の格子定数−基板の
格子定数)/基板の格子定数)を−0.5%〜−2%]
導入することによって、しきい値が低く温度特性の優れ
た多重量子井戸レーザを製造することにある。
That is, the gist of the present invention is to form an InGaAlP-based multiple quantum well laser having guide layers at both ends of the active layer, and the total well layer thickness in the multiple quantum well structure forming the active layer is The number of wells is determined to be 15 to 40 nm, the thickness of the well layer is set to 3.5 nm to 9 nm, and the thickness of the barrier layer is set to 4 nm to 6 nm. [Negative lattice mismatch (Δa / a = (lattice constant of growth layer-substrate lattice constant) / substrate lattice constant) −0.5% to −2%]
The purpose of this is to manufacture a multi-quantum well laser with a low threshold and excellent temperature characteristics.

【0012】[0012]

【作用】活性層をInGaP、光ガイド層をIn
0.5 (Ga1-x Alx 0.5 P(x=0.5)、クラッ
ド層をIn0.5 (Ga1-x Alx 0.5 P(x=0.
7)とした、SCH(Seperate Confin
ement Heterostructure)構造で
は、図12に示したようにしきい値は活性層厚に依存す
る。活性層厚が薄いうちは、活性層が厚くなるにつれて
発光層の体積が増すためにしきい値が上がるが、光閉じ
こめ効率の増加によるしきい値の減少する割合が大きい
ので、全体としてはしきい値は減少していく。
[Function] The active layer is InGaP and the light guide layer is In
0.5 (Ga 1-x Al x ) 0.5 P (x = 0.5), and the cladding layer is In 0.5 (Ga 1-x Al x ) 0.5 P (x = 0.
7), SCH (Separate Confin)
In the element heterostructure) structure, the threshold value depends on the active layer thickness as shown in FIG. When the active layer is thin, the threshold increases because the volume of the light emitting layer increases as the active layer becomes thicker, but the threshold decreases as a whole due to the increase in light confinement efficiency, so the threshold as a whole. The value decreases.

【0013】しかし、さらに活性層厚が増すと光閉じこ
め効率は1に飽和していくので、発光層の体積の増加に
よるしきい値の増加が支配的になり、全体としてしきい
値が上がっていく。この結果、同図に示したように15
〜40nmでしきい値は最少になる。実験により、この
特性は、活性層が多重量子井戸になっても同じことがい
えるのがわかり、井戸層厚の総和が15〜40nmにな
ったときに最も低いしきい値が得られるのがわかる。
However, as the thickness of the active layer further increases, the light confinement efficiency saturates to 1. Therefore, the increase of the threshold value due to the increase of the volume of the light emitting layer becomes dominant, and the threshold value increases as a whole. Go. As a result, as shown in FIG.
The threshold is minimal at ~ 40 nm. Experiments show that this characteristic is the same even when the active layer is a multiple quantum well, and the lowest threshold value is obtained when the total well layer thickness is 15 to 40 nm. .

【0014】また、多重量子井戸の量子レベルと井戸幅
Lωの関係には図13に示した様になっている。量子レ
ベルがサブバンド化するほど、また、各量子レベル間の
エネルギー差が小さいほど、量子井戸の利得は減少す
る。同図から、井戸幅を3.5nm〜9nmにすること
によって、比較的量子レベル間のエネルギー差を大きく
とることができる。また、障壁層を厚くすることによっ
て、量子井戸間の結合が小さくなるので、サブバンド化
した各量子レベルのエネルギー幅を小さくできる。
Further, the relationship between the quantum level of the multiple quantum well and the well width Lω is as shown in FIG. The gain of the quantum well decreases as the quantum levels become subbands and the energy difference between the quantum levels decreases. From the figure, by setting the well width to 3.5 nm to 9 nm, the energy difference between the quantum levels can be made relatively large. Moreover, since the coupling between the quantum wells is reduced by making the barrier layer thick, the energy width of each subband quantum level can be reduced.

【0015】しかし、あまり障壁層を厚くすると、価電
子帯側で各量子井戸に対して正孔が均一に注入されなく
なる。実験によると、この障壁層の厚さとしては、4n
m〜6nmが良いことがわかる。したがって、量子井戸
の利得を大きくして、多重量子井戸レーザの短波長化を
図るには、井戸層厚および障壁層厚は上述のように選べ
ば良い。
However, if the barrier layer is made too thick, holes will not be uniformly injected into each quantum well on the valence band side. According to experiments, the barrier layer has a thickness of 4n.
It can be seen that m to 6 nm is preferable. Therefore, in order to increase the quantum well gain and shorten the wavelength of the multiple quantum well laser, the well layer thickness and the barrier layer thickness may be selected as described above.

【0016】また、活性層の各量子井戸層に負の格子不
整合をいれることにより、価電子帯のバンド構造を変え
ることができる。すなわち、価電子帯の頂点で縮退して
いた軽い正孔と重い正孔のバンドが分離して、重い正孔
よりも軽い正孔のバンドが頂点にきて、価電子帯で軽い
正孔が支配的になる。この結果、伝導帯と価電子帯での
状態密度がほぼ対称的になるために、反転分布が生じし
やすくレーザ発振しやすくなり、低しきい値化が図れ
る。実験により、負の格子不整合量として−0.5%〜
−2%あればしきい値が低くなることがわかった。
The band structure of the valence band can be changed by introducing a negative lattice mismatch to each quantum well layer of the active layer. That is, the bands of light holes and heavy holes that have degenerated at the apex of the valence band are separated, the band of holes lighter than the heavy holes comes to the apex, and the light holes at the valence band are Become dominant. As a result, the densities of states in the conduction band and the valence band are substantially symmetrical, so that population inversion is likely to occur and laser oscillation is likely to occur, and the threshold value can be lowered. According to the experiment, the negative lattice mismatch amount is -0.5% ~
It was found that the threshold value becomes low when the value is -2%.

【0017】また、活性層の各障壁層に、各量子井戸層
とは逆の正の格子不整合をいれることにより、当該多重
量子井戸構造中における欠陥の発生を防止し得ることが
できる。
By forming a positive lattice mismatch opposite to that of each quantum well layer in each barrier layer of the active layer, it is possible to prevent the occurrence of defects in the multiple quantum well structure.

【0018】[0018]

【実施例】本発明の詳細を図示の実施例によって説明す
る。図1は、本発明における第1の実施例の断面図を示
すものである。まず、同図(a)に示すように、有機金
属気相成長法(MOCVD)により、[011]方向に
15°傾斜したn−GaAs(100)基板 110上
に、厚さ1.0μmの n−In0.5 (Ga0.3 Al
0.7 0.5 P クラッド層 111、および、厚さ50
nmの In0.5 (Ga0.5 Al0.5 0.5 P 光ガイ
ド層 112、および、厚さ6nmの In0.5 Ga
0.5 P 井戸層 113と厚さ4nmのIn0.5 (Ga
0.5 Al0.5 0.5 P 障壁層 114とからなる井戸
数4の多重量子井戸構造の活性層、および、厚さ50n
mの In0.5 (Ga0.5 Al0. 5 0.5 P 光ガイド
層 115、および、厚さ0.2μmの p−In0.5
(Ga0.3 Al0.7 0.5 P クラッド層 116、お
よび、厚さ5nmの p−In0.5 Ga0.5 P エッチ
ングストップ層 117、および、厚さ0.8μmの
p−In0.5 (Ga0.3 Al0.7 0.5 P クラッド層
118、および、厚さ50nmの p−In0.5 (G
0.5 P 通電容易化層 119、および、厚さ150
nmの n−In0.5 (Ga0.3 Al0.7 0.5 P キ
ャップ層 120をそれぞれ形成する。
The details of the present invention will be described with reference to the illustrated embodiments. FIG. 1 shows a sectional view of a first embodiment of the present invention. First, as shown in FIG. 3A, an n-GaAs (100) substrate 110 tilted by 15 ° in the [011] direction was formed on the n-GaAs (100) substrate 110 by a metal organic chemical vapor deposition (MOCVD) method so as to have a thickness of 1.0 μm. -In 0.5 (Ga 0.3 Al
0.7 ) 0.5 P clad layer 111 and thickness 50
nm of In 0.5 (Ga 0.5 Al 0.5 ) 0.5 P optical guide layer 112 and a thickness of 6 nm of In 0.5 Ga
0.5 P well layer 113 and 4 nm thick In 0.5 (Ga
0.5 Al 0.5 ) 0.5 P barrier layer 114 and an active layer having a multiple quantum well structure with four wells and a thickness of 50 n
m of In 0.5 (Ga 0.5 Al 0. 5 ) 0.5 P optical guide layer 115, and a thickness of 0.2μm p-In 0.5
(Ga 0.3 Al 0.7 ) 0.5 P clad layer 116, p-In 0.5 Ga 0.5 P etching stop layer 117 having a thickness of 5 nm, and a thickness of 0.8 μm.
p-In 0.5 (Ga 0.3 Al 0.7 ) 0.5 P clad layer 118 and p-In 0.5 (G having a thickness of 50 nm)
a 0.5 P accelerating electricity conduction layer 119 and thickness 150
nm of n-an In 0.5 the (Ga 0.3 Al 0.7) 0.5 P cap layer 120 are formed, respectively.

【0019】その後、同図(b)に示すように、ストラ
イプ方向が[011]方向となるストライプ状のSiO
2 マスク 121を形成した後にエッチングストップ層
が露出するまでエッチングを行い、ストライプ方向が
[011]方向で幅5μmのリッジストライプを形成す
る。
After that, as shown in FIG. 3B, stripe-shaped SiO whose stripe direction is the [011] direction.
2 After forming the mask 121, etching is performed until the etching stop layer is exposed to form a ridge stripe having a stripe direction of [011] and a width of 5 μm.

【0020】続いて、同図(c)に示すように、SiO
2 121上には成長しないようにn−GaAs電流狭
窄層 122を選択成長する。その後、同図(d)に示
すように、SiO2 121、および、n−In
0.5(Ga0.3 Al0.7 0.5 P キャップ層 120
をエッチングにより取り除いた後に、同一条件でp−G
aAsコンタクト層 123を再成長する。
Then, as shown in FIG.
An n-GaAs current confinement layer 122 is selectively grown so as not to grow on 2 121. After that, as shown in FIG. 3D, SiO 2 121 and n-In
0.5 (Ga 0.3 Al 0.7 ) 0.5 P cap layer 120
Under the same conditions after removing the
The aAs contact layer 123 is regrown.

【0021】最後に、基板側の電極としてAuGe/A
u 124を、基板と反対側の電極としてAuZn/A
u 125をそれぞれ形成する。なお、共振器長は、4
00μmとしている。また、活性層の組成のプロファイ
ルは、図2に示すようになる。
Finally, AuGe / A is used as an electrode on the substrate side.
u 124 as AuZn / A as an electrode on the side opposite to the substrate.
u 125 are each formed. The resonator length is 4
It is set to 00 μm. The composition profile of the active layer is as shown in FIG.

【0022】この他に、上記と同じ工程により、井戸数
を2〜8にしたものを作成した。この結果、図3に示す
ような発振しきい値の井戸数依存性が得られた。井戸数
が4〜6で低いしきい値が得られた。多重量子井戸レー
ザでは、光閉じこめ効率は、井戸数ではなく井戸層11
3の厚さの総和で決まるので、図3の結果から、量子井
戸層厚の総和が15nm〜40nm付近で、しきい値を
低くできるのがわかる。
In addition to this, the number of wells was set to 2 to 8 by the same process as above. As a result, the dependency of the oscillation threshold on the number of wells was obtained as shown in FIG. A low threshold value was obtained when the number of wells was 4 to 6. In the multiple quantum well laser, the light confinement efficiency is determined by the well layer 11 rather than the number of wells.
Since it is determined by the total thickness of the quantum well layers 3, the result of FIG. 3 shows that the threshold value can be lowered when the total thickness of the quantum well layers is around 15 nm to 40 nm.

【0023】この様なしきい値の井戸数依存性は、井戸
幅を4nmあるいは、8nmにした時にも得られた。井
戸幅を6nmで井戸数を5にした時、発振波長は652
nmで、しきい値は30mAであり、90℃まで5mW
の光出力が得られた。本実施例では、基板に(100)
から[011]方向に15°傾斜した基板を用いている
が、これは、上記基板上に多重量子井戸を形成すると、
界面平端性が良く急峻なヘテロ界面が得られ、しかも、
多重量子井戸中の各層の組成の均一性が向上および非発
行中心が減少するので、多重量子井戸レーザの発振特性
が向上するためである。この結果は、基板傾斜角が5〜
40°であればほぼ同様な効果が得られる。基板傾斜角
が[01−1]方向でも同様な効果が得られる。また、
通常のn−GaAs(100)ジャスト基板を用いて
も、多重量子井戸レーザの構造を上述のようにすること
により、従来に比べ動作特性は改善される。
Such a dependency of the threshold value on the number of wells was obtained even when the well width was set to 4 nm or 8 nm. When the well width is 6 nm and the number of wells is 5, the oscillation wavelength is 652.
nm, threshold is 30mA, 5mW up to 90 ° C
The optical output of was obtained. In this embodiment, the substrate is made of (100)
From the substrate is inclined by 15 ° in the [011] direction. This is because when multiple quantum wells are formed on the substrate,
The interface flatness is good and a steep hetero interface is obtained.
This is because the compositional uniformity of each layer in the multiple quantum well is improved and the non-issuing centers are reduced, so that the oscillation characteristics of the multiple quantum well laser are improved. This result shows that the substrate tilt angle is 5 to
If it is 40 °, almost the same effect can be obtained. Similar effects can be obtained even when the substrate tilt angle is in the [01-1] direction. Also,
Even if a normal n-GaAs (100) just substrate is used, the operating characteristics are improved as compared with the conventional case by making the structure of the multiple quantum well laser as described above.

【0024】本発明における第2の実施例を図4に示
す。レーザの形成工程は、図1に示した第1の実施例の
工程と同じである。図4は、本実施例における組成プロ
ファイルを示したものである。同図に示すように、井戸
層を4nmのIn0.5 Ga0.5P 313、井戸数を6
として、In0.5 (Ga0.5 Al0.5 0.5 P 障壁層
314の幅を2nmから8nmまで変化させて多重量子
井戸レーザを作成した。
A second embodiment of the present invention is shown in FIG. The laser forming process is the same as the process of the first embodiment shown in FIG. FIG. 4 shows the composition profile in this example. As shown in the figure, the well layer has a thickness of 4 nm of In 0.5 Ga 0.5 P 313 and the number of wells is 6
As a multi-quantum well laser, the width of the In 0.5 (Ga 0.5 Al 0.5 ) 0.5 P barrier layer 314 was changed from 2 nm to 8 nm.

【0025】この結果、図5に示したように、しきい値
の障壁幅依存性が得られた。障壁幅が4〜6nmで低い
しきい値が得られた。特に障壁幅を5nmにした時に、
発振波長が633nm、しきい値55mAで発振した。
75℃まで光出力3mWが得られた。
As a result, as shown in FIG. 5, the barrier width dependence of the threshold value was obtained. A low threshold was obtained when the barrier width was 4 to 6 nm. Especially when the barrier width is set to 5 nm,
It oscillated at an oscillation wavelength of 633 nm and a threshold value of 55 mA.
A light output of 3 mW was obtained up to 75 ° C.

【0026】本発明における第3の実施例を図6に示
す。本実施例も、図1に示した工程と同様な工程でレー
ザを作成した。ただし、井戸層を8nmの InGaP
413、井戸数を4、また、In0.5 (Ga0.5 Al
0.5 0.5 P 障壁層 414の幅を4nmとして、井
戸層の格子不整合をΔa/a=0〜−2.0%まで変化
させて、多重量子井戸レーザを作成した。
A third embodiment of the present invention is shown in FIG. Also in this example, a laser was produced by the same steps as those shown in FIG. However, the well layer is made of 8 nm InGaP
413, the number of wells is 4, and In 0.5 (Ga 0.5 Al
0.5 ) 0.5 P The barrier layer 414 was set to have a width of 4 nm, and the lattice mismatch of the well layer was changed from Δa / a = 0 to −2.0% to prepare a multiple quantum well laser.

【0027】この結果、光出力3mWが得られる最高連
続発振温度の発振波長依存性として図7が得られた。同
図で、●で示したのが井戸幅を8nmとしてΔa/a=
0〜−2.0%とした場合で、○で示したのがΔa/a
=0として井戸幅を4nmから8nmにした場合であ
る。Δa/a<0にすることによって、最高連続発振温
度が向上している。Δa/a≦−0.5では、格子不整
合量に関係なく、Δa/a=0に比べて最高連続発振温
度が約30℃向上している。井戸幅が8nm、Δa/a
=−2.0%で、井戸数を4にしたとき、発振波長は6
33nm、しきい値55mAで発振し、80℃の動作に
おいても3mWの光出力が得られた。本実施例では、格
子不整合量を−2.0%までとしたが、これは、これ以
上の格子不整合量では、活性層である量子井戸構造が格
子緩和を起こして、レーザの動作特性が劣化するおそれ
があるためである。
As a result, FIG. 7 was obtained as the oscillation wavelength dependence of the maximum continuous oscillation temperature at which an optical output of 3 mW was obtained. In the figure, ● indicates the well width of 8 nm and Δa / a =
In the case of 0 to -2.0%, ○ indicates Δa / a
= 0 and the well width is changed from 4 nm to 8 nm. The maximum continuous oscillation temperature is improved by setting Δa / a <0. When Δa / a ≦ −0.5, the maximum continuous oscillation temperature is improved by about 30 ° C. as compared with Δa / a = 0 regardless of the lattice mismatch amount. Well width 8 nm, Δa / a
= -2.0% and the number of wells is 4, the oscillation wavelength is 6
It oscillated at 33 nm and a threshold value of 55 mA, and an optical output of 3 mW was obtained even at 80 ° C. operation. In this embodiment, the amount of lattice mismatch is set to -2.0%. However, when the amount of lattice mismatch is more than this, the quantum well structure as the active layer causes lattice relaxation, and the operating characteristics of the laser. Is likely to deteriorate.

【0028】本発明における第4の実施例を図8に示
す。本実施例においても、形成工程はこれまでの実施例
と同じである。同図(a)には、組成プロファイルを、
同図(b)には井戸層513をInGaPとした時の発
振波長と井戸幅と格子不整合の関係、および井戸層51
3をIn0.5 (Ga1-x −Alx 0.5 Pとした時の発
振波長と井戸幅とAl組成xの関係を示した。格子不整
合量を一定にして、井戸幅を変化させると発振波長が変
わってしまうので、発振波長が633nmとなるように
同図(b)をもとにして、井戸幅と格子不整合量を変化
させた。In0.5(Ga0.5 Al0.5 0.5 P 障壁層
514の幅は4nmとした。また、井戸層厚の総和が
約24nmとなるように各井戸幅に対して井戸数を決め
た。
A fourth embodiment of the present invention is shown in FIG. Also in this embodiment, the forming process is the same as the previous embodiments. The composition profile is shown in FIG.
FIG. 10B shows the relationship between the oscillation wavelength, the well width, and the lattice mismatch when the well layer 513 is InGaP, and the well layer 51.
3 shows the relationship between the oscillation wavelength, the well width and the Al composition x when In 0.5 (Ga 1-x -Al x ) 0.5 P is set to 3. Since the oscillation wavelength changes when the well width is changed while keeping the lattice mismatch amount constant, the well width and the lattice mismatch amount are set so that the oscillation wavelength becomes 633 nm based on FIG. Changed. The width of the In 0.5 (Ga 0.5 Al 0.5 ) 0.5 P barrier layer 514 was 4 nm. The number of wells was determined for each well width so that the total well layer thickness was about 24 nm.

【0029】この様にして得られた多重量子井戸のしき
い値と井戸幅の関係を図9に示す。ここから、井戸幅が
約6nmの時にしきい値が最も低く45mAであり、9
0℃においても3mWの光出力が得られた。また、この
ときのしきい値に対する特性温度は85Kであった。こ
の特性は、633nm帯のレーザとしてはこれまでにな
い優れた特性である。
FIG. 9 shows the relationship between the threshold value and the well width of the multiple quantum well thus obtained. From here, when the well width is about 6 nm, the lowest threshold value is 45 mA.
A light output of 3 mW was obtained even at 0 ° C. The characteristic temperature with respect to the threshold value at this time was 85K. This characteristic is excellent as never before for a 633 nm band laser.

【0030】また、同図から、井戸幅を3.5nm〜9
nmにすれば、しきい値を65mA以下にすることがで
きる。この様なしきい値と井戸幅の関係は、井戸層に負
の格子不整合をもたせる代わりに同図(b)に示したよ
うにAlを入れて633nmの発振波長をねらった場合
にも、ほぼ同様なしきい値と井戸幅の関係が得られた。
井戸層をAl組成x=0.08で6nmのIn0.5 (G
1-x −Alx 0.5Pとした時、発振しきい値は52
mAであり、85℃においても3mWの光出力が得られ
た。
From the figure, the well width is set to 3.5 nm to 9 nm.
If it is set to nm, the threshold value can be set to 65 mA or less. Such a relationship between the threshold value and the well width is almost the same when Al is added as shown in FIG. 7B instead of giving the negative lattice mismatch to the well layer and the oscillation wavelength of 633 nm is aimed at. A similar relationship between threshold and well width was obtained.
The well layer was made of In 0.5 (G) of 6 nm with Al composition x = 0.08.
a 1−x −Al x ) 0.5 P, the oscillation threshold is 52
It was mA, and a light output of 3 mW was obtained even at 85 ° C.

【0031】本発明における第5の実施例を図10に示
す。本実施例では、第3の実施例において障壁層及び光
ガイド層をIn(Ga0.4 Al0.6 )P(Δa/a=+
2%)として、井戸層とは逆の方向に格子不整合を与え
た。すなわち、井戸層を8nmのInGaP(Δa/a
=−2%)613、障壁層を4nmのIn(Ga0.4
0.6 )P(Δa/a=+2%)614、光ガイド層を
50nmのIn(Ga0.4 Al0.6 )P(Δa/a=+
2%)612および615として、井戸数を4とした。
A fifth embodiment of the present invention is shown in FIG. In this embodiment, the barrier layer and the light guide layer in the third embodiment are made of In (Ga 0.4 Al 0.6 ) P (Δa / a = +
2%) to give a lattice mismatch in the direction opposite to the well layer. That is, the well layer is formed of 8 nm InGaP (Δa / a
= -2%) 613, the barrier layer is made of In (Ga 0.4 A) of 4 nm.
l 0.6 ) P (Δa / a = + 2%) 614, and the optical guide layer is 50 nm thick In (Ga 0.4 Al 0.6 ) P (Δa / a = +
2%) 612 and 615, and the number of wells was 4.

【0032】この様にしたことによって、多重量子井戸
活性層の格子不整合量は平均化されて小さくなり、63
3nmの発振波長で、50℃で光出力3mW動作の寿命
時間が第3の実施例に比べて約2倍向上して、これまで
の4000時間から8000時間になった。この他の諸
特性は第3の実施例の結果とほぼと同じであった。障壁
層に井戸層と逆の方向に格子不整合をもたせることによ
り、多重量子井戸活性層中における歪が減少して、素子
の信頼性が向上した結果と考えられる。
By doing so, the amount of lattice mismatch in the multiple quantum well active layer is averaged and reduced to 63.
The life time of the optical output 3 mW operation at 50 ° C. with the oscillation wavelength of 3 nm was improved by about 2 times as compared with the third embodiment, from 4000 hours to 8000 hours. The other characteristics were almost the same as the results of the third embodiment. It is considered that the strain in the multi-quantum well active layer is reduced and the device reliability is improved by making the barrier layer have a lattice mismatch in the direction opposite to the well layer.

【0033】[0033]

【発明の効果】この様に、多重量子井戸レーザにおい
て、井戸層の厚さを3.5nm〜9nmに設定すること
によって量子井戸による利得が最大になり、井戸層厚の
総和を15〜40nmにすることによってしきい値が最
小になる。この結果、従来の多重量子井戸レーザよりも
しきい値が低下し、温度特性及び長時間動作の信頼性が
向上した。
As described above, in the multiple quantum well laser, the gain of the quantum well is maximized by setting the well layer thickness to 3.5 nm to 9 nm, and the total well layer thickness is set to 15 to 40 nm. By doing so, the threshold is minimized. As a result, the threshold value is lower than that of the conventional multiple quantum well laser, and the temperature characteristics and the reliability of long-term operation are improved.

【0034】また、630nm帯の波長では、従来では
井戸層にIn0.5 Ga0.5 Pを用いていたために、井戸
幅を3nmにしなければならなかったが、井戸層にIn
GaP(Δa/a<0)を用いるか、あるいはIn0.5
(Ga1-x Alx 0.5 Pを用いることにより、井戸幅
を上記の範囲に設定できるので、しきい値が低下し、従
来よりも温度特性及び長時間動作の信頼性は格段に向上
した。特に、井戸層にInGaP(−2.0%≦Δa/
a≦−0.5%)を用いると、価電子帯のバンド構造が
変化するためにさらなるしきい値の低減及び温度特性の
向上が図れた。
Further, at the wavelength of 630 nm band, since In 0.5 Ga 0.5 P was conventionally used for the well layer, the well width had to be 3 nm.
GaP (Δa / a <0) or In 0.5
By using (Ga 1-x Al x ) 0.5 P, the well width can be set within the above range, the threshold value is lowered, and the temperature characteristics and the reliability of long-term operation are significantly improved as compared with the conventional one. . In particular, InGaP (−2.0% ≦ Δa /
a ≦ −0.5%), the band structure of the valence band changes, so that the threshold value can be further reduced and the temperature characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である多重量子井戸レー
ザの製造工程を示す断面図。
FIG. 1 is a sectional view showing a manufacturing process of a multiple quantum well laser according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の組成プロファイルを示
す図。
FIG. 2 is a diagram showing a composition profile of the first example of the present invention.

【図3】本発明の第1の実施例により得られた多重量子
井戸レーザのしきい値の井戸数依存性を示す図。
FIG. 3 is a graph showing the number of wells dependence of the threshold value of the multiple quantum well laser obtained according to the first embodiment of the present invention.

【図4】本発明の第2の実施例の組成プロファイルを示
す図。
FIG. 4 is a diagram showing a composition profile of a second example of the present invention.

【図5】本発明の第2の実施例により得られた多重量子
井戸レーザのしきい値の障壁幅依存性を示す図。
FIG. 5 is a diagram showing the barrier width dependence of the threshold value of the multi-quantum well laser obtained according to the second embodiment of the present invention.

【図6】本発明の第3の実施例の組成プロファイルを示
す図。
FIG. 6 is a diagram showing a composition profile of a third example of the present invention.

【図7】本発明の第3の実施例により得られた多重量子
井戸レーザの最高連続発振温度と発振波長との関係を示
す図。
FIG. 7 is a diagram showing the relationship between the maximum continuous oscillation temperature and the oscillation wavelength of the multiple quantum well laser obtained according to the third embodiment of the present invention.

【図8】本発明の第4の実施例の組成プロファイル
(a)、および、格子不整合量(あるいはAl組成)と
井戸幅と発振波長の関係(b)をそれぞれ示す図。
FIG. 8 is a diagram showing a composition profile (a) and a relationship (b) between a lattice mismatch amount (or Al composition), a well width, and an oscillation wavelength according to a fourth embodiment of the present invention.

【図9】本発明の第4の実施例により得られた多重量子
井戸レーザのしきい値と井戸幅の関係を示す図。
FIG. 9 is a diagram showing the relationship between the threshold and the well width of the multiple quantum well laser obtained according to the fourth embodiment of the present invention.

【図10】本発明の第5の実施例の組成プロファイルを
示す図。
FIG. 10 is a diagram showing a composition profile of a fifth example of the present invention.

【図11】従来の量子井戸レーザの断面素子構造
(a)、および、組成プロファイル(b)をそれぞれ示
す図。
FIG. 11 is a diagram showing a cross-sectional device structure (a) and a composition profile (b) of a conventional quantum well laser, respectively.

【図12】SCH構造レーザのしきい値の活性層厚依存
性を示す図。
FIG. 12 is a diagram showing the dependence of the threshold of the SCH structure laser on the active layer thickness.

【図13】多重量子井戸レーザの量子レベルと井戸幅の
関係を示す図。
FIG. 13 is a diagram showing a relationship between a quantum level and a well width of a multiple quantum well laser.

【符号の説明】[Explanation of symbols]

10 … n−GaAs(100)基板 111 … n−In0.5 (Ga0.3
0.7 0.5 Pクラッド層 112,115 … In0.5 (Ga0.5 Al0.5
0.5 P光ガイド層 113 … In0.5 Ga0.5 P井戸層 114 … In0.5 (Ga0.5 Al0.5
0.5 P障壁層 116 … p−In0.5 (Ga0.3
0.7 0.5 Pクラッド層 117 … p−In0.5 Ga0.5 Pエッチン
グストップ層 118 … p−In0.5 (Ga0.3
0.7 0.5 Pクラッド層 119 … p−In0.5 Ga0.5 P通電容易
化層 120 … n−In0.5 (Ga0.3
0.7 0.5 Pキャップ層 121 … SiO2 マスク 122 … n−GaAs電流狭窄層 123 … p−GaAsコンタクト層 124 … AuGe/Au 125 … AuZn/Au 313 … In0.5 Ga0.5 P(4nm)井
戸層 314 … In0.5 (Ga0.5 Al0.5
0.5 P(厚さ2nm〜8nm)障壁層 413 … In0.5 Ga0.5 P(厚さ8n
m)井戸層 414 … In0.5 (Ga0.5 Al0.5
0.5 P(厚さ4nm)障壁層 513 … In0.5 Ga0.5 P、In
0.5 (Ga1-x Alx 0.5P 井戸層 514 … In0.5 (Ga0.5 Al0.5
0.5 P(厚さ4nm)障壁層 612,615 … In(Ga0.4 Al0.6 )P 光
カイド層、(Δa/a=+2%、50nm) 613 … InGaP 井戸層、(Δa/a
=−2%、8nm) 614 … In(Ga0.4 Al0.6 )P 障
壁層、(Δa/a=+2%、4nm)
10 ... n-GaAs (100) substrate 111 ... n-In 0.5 (Ga 0.3 A
l 0.7 ) 0.5 P clad layer 112, 115 ... In 0.5 (Ga 0.5 Al 0.5 ).
0.5 P optical guide layer 113 ... In 0.5 Ga 0.5 P well layer 114 ... In 0.5 (Ga 0.5 Al 0.5 ).
0.5 P barrier layer 116 ... p-In 0.5 (Ga 0.3 A
l 0.7 ) 0.5 P cladding layer 117 ... p-In 0.5 Ga 0.5 P etching stop layer 118 ... p-In 0.5 (Ga 0.3 A)
1 0.7 ) 0.5 P clad layer 119 ... p-In 0.5 Ga 0.5 P current facilitation layer 120 ... n-In 0.5 (Ga 0.3 A)
1 0.7 ) 0.5 P cap layer 121 ... SiO 2 mask 122 ... n-GaAs current confinement layer 123 ... p-GaAs contact layer 124 ... AuGe / Au 125 ... AuZn / Au 313 ... In 0.5 Ga 0.5 P (4 nm) well layer 314 … In 0.5 (Ga 0.5 Al 0.5 )
0.5 P (thickness 2 nm to 8 nm) barrier layer 413 ... In 0.5 Ga 0.5 P (thickness 8 n
m) Well layer 414 ... In 0.5 (Ga 0.5 Al 0.5 ).
0.5 P (thickness 4 nm) barrier layer 513 ... In 0.5 Ga 0.5 P, In
0.5 (Ga 1-x Al x ) 0.5 P Well layer 514 ... In 0.5 (Ga 0.5 Al 0.5 ).
0.5 P (thickness 4 nm) barrier layer 612, 615 ... In (Ga 0.4 Al 0.6 ) P photo guide layer, (Δa / a = + 2%, 50 nm) 613 ... InGaP well layer, (Δa / a
= -2%, 8 nm) 614 ... In (Ga 0.4 Al 0.6 ) P barrier layer, (Δa / a = + 2%, 4 nm)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体基板上に、多重量子井戸構
造の活性層と、少なくとも該活性層を挾み込むように形
成されるクラッド層とを有する多重量子井戸半導体レー
ザ装置において、 前記活性層の量子井戸層が、Inx (Ga1-y Aly
1-x P、 前記活性層の障壁層が、Inn (Ga1-m Alm 1-n
P(但し、y<m 、m=0.5〜0.7)であり、 前記量子井戸層の厚さの総和が、15[nm]〜40
[nm]であることを特徴とする多重量子井戸半導体レ
ーザ装置。
1. A multiple quantum well semiconductor laser device having an active layer having a multiple quantum well structure on a compound semiconductor substrate, and a cladding layer formed so as to sandwich at least the active layer. The quantum well layer is In x (Ga 1-y Al y ).
1-x P, the barrier layer of the active layer is In n (Ga 1-m Al m ) 1-n
P (however, y <m, m = 0.5 to 0.7), and the total thickness of the quantum well layers is 15 [nm] to 40.
[Nm] is a multiple quantum well semiconductor laser device.
【請求項2】 多重量子井戸構造中の各障壁層の厚さが
4nm〜6nmであり、各量子井戸層の厚さが3.5n
m〜9nmであることを特徴とする請求項1に記載の多
重量子井戸半導体レーザ装置。
2. The barrier layer in the multiple quantum well structure has a thickness of 4 nm to 6 nm, and each quantum well layer has a thickness of 3.5 n.
The multi-quantum well semiconductor laser device according to claim 1, characterized in that the thickness is m to 9 nm.
【請求項3】 前記多重量子井戸構造中の各量子井戸層
の縦方向の格子定数が、基板の格子定数よりも0.5%
〜2%小さいことを特徴とする請求項1に記載の多重量
子井戸半導体レーザ装置。
3. The lattice constant in the vertical direction of each quantum well layer in the multiple quantum well structure is 0.5% of the lattice constant of the substrate.
2. The multiple quantum well semiconductor laser device according to claim 1, wherein the multiple quantum well semiconductor laser device is smaller than .about.2%.
【請求項4】 前記多重量子井戸構造中の各障壁層の縦
方向の格子定数が、基板の格子定数よりも0.5%〜2
%大きいことを特徴とする請求項1に記載の多重量子井
戸半導体レーザ装置。
4. The lattice constant in the vertical direction of each barrier layer in the multi-quantum well structure is 0.5% to 2 than the lattice constant of the substrate.
%. The multiple quantum well semiconductor laser device according to claim 1, wherein the multiple quantum well semiconductor laser device is large.
JP24832992A 1992-09-17 1992-09-17 Multiple quantum well semiconductor laser Pending JPH0697586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24832992A JPH0697586A (en) 1992-09-17 1992-09-17 Multiple quantum well semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24832992A JPH0697586A (en) 1992-09-17 1992-09-17 Multiple quantum well semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0697586A true JPH0697586A (en) 1994-04-08

Family

ID=17176467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24832992A Pending JPH0697586A (en) 1992-09-17 1992-09-17 Multiple quantum well semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0697586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687276B2 (en) 2000-11-20 2004-02-03 Kabushiki Kaisha Toshiba Surface emitting semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687276B2 (en) 2000-11-20 2004-02-03 Kabushiki Kaisha Toshiba Surface emitting semiconductor laser

Similar Documents

Publication Publication Date Title
US7026182B2 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
US4961197A (en) Semiconductor laser device
US6252894B1 (en) Semiconductor laser using gallium nitride series compound semiconductor
KR100394332B1 (en) A semiconductor laser device
US4987096A (en) Manufacturing method of semiconductor laser with non-absorbing mirror structure
US5289484A (en) Laser diode
US4852110A (en) Semiconductor laser of a refractive index-guided type and a process for fabricating the same
EP0579244B1 (en) A semiconductor laser and a method for producing the same
US5065402A (en) Transverse-mode stabilized laser diode
US7098064B2 (en) Semiconductor laser device and its manufacturing method, and optical disc reproducing and recording apparatus
US6647045B2 (en) Semiconductor laser device and method of manufacturing the same
US5202895A (en) Semiconductor device having an active layer made of ingaalp material
JPH06260716A (en) Semiconductor laser
US5181218A (en) Manufacturing method of semiconductor laser with non-absorbing mirror structure
US20060187987A1 (en) Semiconductor laser diode
JPH09205249A (en) Semiconductor laser
US20060222026A1 (en) Semiconductor laser device and manufacturing method therefor
JPH0697586A (en) Multiple quantum well semiconductor laser
JP3387976B2 (en) Semiconductor laser
JP2833962B2 (en) Semiconductor laser and its manufacturing method
US5410562A (en) Strained quantum well semiconductor laser diode
JP3193087B2 (en) AlGaInP semiconductor light emitting device
JP3022351B2 (en) Optical semiconductor device and method of manufacturing the same
JPH11126945A (en) Manufacture of strained semiconductor crystal and manufacture of semiconductor laser using it
JPH07202346A (en) Semiconductor device and manufacture thereof