JPH0697515B2 - Overwritable magneto-optical recording medium - Google Patents

Overwritable magneto-optical recording medium

Info

Publication number
JPH0697515B2
JPH0697515B2 JP12224987A JP12224987A JPH0697515B2 JP H0697515 B2 JPH0697515 B2 JP H0697515B2 JP 12224987 A JP12224987 A JP 12224987A JP 12224987 A JP12224987 A JP 12224987A JP H0697515 B2 JPH0697515 B2 JP H0697515B2
Authority
JP
Japan
Prior art keywords
film
recording
magnetization
magnetic field
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12224987A
Other languages
Japanese (ja)
Other versions
JPS63288442A (en
Inventor
典雄 後藤
明夫 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12224987A priority Critical patent/JPH0697515B2/en
Publication of JPS63288442A publication Critical patent/JPS63288442A/en
Publication of JPH0697515B2 publication Critical patent/JPH0697515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光磁気記録媒体に係り、特に高速アクセスを行
うのに不可欠なオーバーライトを可能とし、さらに外部
磁界印加手段の設置を不用とすることにより、光ピック
アップの小型堅量化にも寄与するオーバーライト可能な
光磁気記録媒体に関するものである。
The present invention relates to a magneto-optical recording medium, in particular, enables overwriting which is indispensable for high-speed access, and further eliminates the need to install an external magnetic field applying means. Thus, the present invention relates to an overwritable magneto-optical recording medium that contributes to miniaturization of an optical pickup.

〔従来の技術〕[Conventional technology]

光ディスクは高密度記録が可能であり、大容量メモリと
して注目されている。現在、ビデオ用、デジタル音声用
に再生専用の光ディスクが実用化され、さらに一回だけ
記録が可能な追記型、また書き換え可能な消去可能光デ
ィスクが実用化されつつある。
Optical discs are capable of high-density recording and are attracting attention as large-capacity memories. Currently, read-only optical discs for video and digital audio have been put to practical use, and write-once type and rewritable erasable optical discs that can be recorded only once are being put to practical use.

この中で消去可能な光ディスクとしては光磁気ディスク
が注目されている。光ディスクは垂直磁化膜を記録膜と
し、記録膜に磁界Hを印加しながらレーザスポット照射
加熱し、レーザ照射部をキューリ温度まで昇温させて記
録膜の保磁力HCを磁界H以下にして磁化反転させること
により、レーザスポット照射部のみを磁化反転したピッ
トとして情報を記録するものである。
Among them, a magneto-optical disk is attracting attention as an erasable optical disk. An optical disk uses a perpendicularly magnetized film as a recording film and heats a laser spot while applying a magnetic field H to the recording film to raise the laser irradiation portion to a Curie temperature so that the coercive force H C of the recording film is equal to or lower than the magnetic field H. By reversing, information is recorded as pits in which only the laser spot irradiating portion is magnetized reversal.

再生は弱いレーザ光を照射し、その偏光面の回転が磁化
の向きにより変化することを用いて、検出光路中に検光
子を介在させることにより反射光量の変化として上記ピ
ットを再生するものである。
The reproduction is performed by irradiating a weak laser beam, and the rotation of the polarization plane changes depending on the direction of magnetization, and the pit is reproduced by changing the amount of reflected light by interposing an analyzer in the detection optical path. .

さらに、データの消去、書き換えは磁界Hを反転して記
録動作して消去し、後に磁界Hの向きを戻して書き換え
を行なう。
Further, when erasing and rewriting data, the magnetic field H is reversed to perform the recording operation to erase the data, and then the direction of the magnetic field H is returned to perform the rewriting.

しかし、磁界Hをデータの記録速度に相当する高周波で
変化させることが出来ないため、書き換えは一回消去し
てディスクが1回転して来た後に新らしいデータを記録
する方法がとられ、このため書き換えに多大な時間を要
する。
However, since the magnetic field H cannot be changed at a high frequency corresponding to the data recording speed, rewriting is erased once and new data is recorded after the disk has made one revolution. Therefore, it takes a lot of time to rewrite.

この理由は光ディスクの特徴である非接触を達成するた
めに1〜2mm離れたところから強い数百Oeの磁界を印加
する必要があり、磁界印加手段として大きな磁石あるい
はコイルが用いられているためである。
This is because it is necessary to apply a strong magnetic field of several hundred Oe from a distance of 1 to 2 mm in order to achieve the non-contact characteristic of the optical disk, and a large magnet or coil is used as the magnetic field applying means. is there.

すなわち、磁石を用いた方法では磁界反転を機械的に行
わなければならず、磁界反転の速度が遅くなる。一方、
コイルを用いた方法ではインダクタンスが極めて大きく
なり、高周波駆動が出来なくなるためである。
That is, in the method using the magnet, the magnetic field reversal must be performed mechanically, and the magnetic field reversal speed becomes slow. on the other hand,
This is because the method using a coil has an extremely large inductance, making it impossible to drive at a high frequency.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上のように、従来装置を用いてデータの書き換えを行
おうとすると、消去、記録の2度の手間がかかり、デー
タ用の大容量メモリとして不可欠な高速アクセス性能に
対して、十分な配慮がなされていないという問題があつ
た。
As described above, when attempting to rewrite data using the conventional device, it takes two steps of erasing and recording, and sufficient consideration is given to the high-speed access performance that is essential as a large capacity memory for data. There was a problem that not.

さらに、外部磁界を得るには光ピックアップに磁界印加
手段を組込まなければならず、光ピックアップは大き
く、かつ重くなる。このため、光ピックアップのトラッ
ク間の移動は遅くなり、この点においても高速アクセス
の配慮がされていないという問題があった。
Further, in order to obtain the external magnetic field, the magnetic field applying means must be incorporated in the optical pickup, which makes the optical pickup large and heavy. Therefore, the movement of the optical pickup between the tracks becomes slow, and there is a problem in that high speed access is not taken into consideration in this respect as well.

なお、本発明に近い技術としては、特開昭56−153546号
公報および特開昭55−52535号公報に開示されたものが
ある。これらの公報には、記録膜である磁性膜を多層化
する技術が延べられているが、これらは光磁気効果を大
きくし、再生時のS/Nを向上させるものであり、高速ア
クセスを可能とするための配慮はなされていない。
Note that techniques close to the present invention include those disclosed in JP-A-56-153546 and JP-A-55-52535. These publications extend the technology to make the magnetic film, which is a recording film, multi-layer, but these increase the magneto-optical effect and improve the S / N at the time of reproduction, enabling high-speed access. No consideration has been given to this.

本発明の目的は、前記した従来装置の問題点を除去し、
光磁気記録媒体をオーバーライト可能とすると共に、記
録用の外部磁界が不用な光磁気記録媒体を提供すること
により、高速アクセスを可能とするところにある。ま
た、小型かつ軽量な光磁気記録媒体を提供するにある。
An object of the present invention is to eliminate the above-mentioned problems of the conventional device,
The magneto-optical recording medium can be overwritten, and a magneto-optical recording medium that does not require an external magnetic field for recording can be provided to enable high-speed access. Another object is to provide a compact and lightweight magneto-optical recording medium.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、記録膜の磁界印加手段として記録膜に磁気
的に結合した記録磁界発生用磁性膜を設けることにより
達成される。さらに具体的に説明すると、 レーザ照射パワープロファイルを変化させてオーバライ
ト出来るように、前記記録磁界発生用磁性膜を記録膜の
キューリ温度近くの補償点温度をもつフェリ磁性体膜と
そのフェリ磁性体膜の磁化が発する磁界により磁化反転
する磁界反転用磁性膜とで構成し、フェリ磁性体膜と磁
界反転用磁性膜とによる合成磁化MTが昇温・降温過程に
おいて記録膜のキューリ温度をほぼ中心としてヒステリ
シス特性をもつようにし、磁化MTの温度に対するヒステ
リシスループ中で磁化反転する2つの点の温度T1,T2
うち、低温側の温度T1以下において HCR>4πMT (ここに、HCR;記録膜の保磁力、MT;フェリ磁性体膜と
磁界反転用磁性膜の合成磁化) とし、さらに、 4πMR<HCF (ここに、MR;記録膜の磁化、HCF;フェリ磁性体膜の保
磁力) とすることにより達成される。
The above object is achieved by providing a recording magnetic field generating magnetic film magnetically coupled to the recording film as a magnetic field applying means of the recording film. More specifically, the magnetic film for generating the recording magnetic field is a ferrimagnetic film having a compensation point temperature close to the Curie temperature of the recording film and its ferrimagnetic material so that the laser irradiation power profile can be overwritten. It is composed of a magnetic field reversal magnetic film that is magnetically reversed by the magnetic field generated by the magnetization of the film, and the combined magnetization M T of the ferrimagnetic film and the magnetic field reversal magnetic film almost eliminates the Curie temperature of the recording film during the temperature rising / cooling process. and to have a hysteresis characteristic as the center, magnetization M temperature T 1 of the two points in the hysteresis loop magnetization reversal with respect to the temperature T, then one of T 2, H CR> 4πM T ( here below the temperature T 1 of the low-temperature side Where H CR is the coercive force of the recording film, M T is the combined magnetization of the ferrimagnetic film and the magnetic film for magnetic field reversal, and 4πM R <H CF (where M R is the magnetization of the recording film, H CF; ferrimagnetic It is accomplished by the coercive force) of the membrane.

〔作用〕[Action]

室温において、4πMR<HCFの関係から、記録磁界の向
き、すなわち、前記フェリ磁性体膜と磁界反転用磁性膜
との合成磁化から発する磁界の向きは、記録膜に書き込
まれた磁化により、反転することなく、常に初期磁化の
向きを保持している。
From the relationship of 4πM R <H CF at room temperature, the direction of the recording magnetic field, that is, the direction of the magnetic field generated from the combined magnetization of the ferrimagnetic film and the magnetic field reversal magnetic film is determined by the magnetization written in the recording film. The direction of initial magnetization is always retained without reversal.

室温よりレーザ照射してキューリ温度まで加熱し、その
後降温させたとき、前記記録磁界の向きは反転すること
なく室温の向きのままであり、一方、前記キューリ温度
において記憶膜の保持力HCR0となるので、該記録膜
は記録膜の前の磁化方向によらず室温での記録磁界の向
きに磁化される。
When the laser is irradiated from room temperature to heat to the Curie temperature and then the temperature is lowered, the direction of the recording magnetic field does not reverse but remains at the room temperature, while the coercive force H CR 0 of the memory film at the Curie temperature is maintained. Therefore, the recording film is magnetized in the direction of the recording magnetic field at room temperature regardless of the magnetization direction before the recording film.

この磁化方向を“0"の情報記録とし、逆方向の磁化を
“1"の情報記録として説明すると、上位のことから、
“0"の情報をオーバーライトすることが可能であること
は明らかである。
This magnetization direction is referred to as "0" information recording, and the opposite direction magnetization is referred to as "1" information recording.
It is clear that it is possible to overwrite the "0" information.

次に“1"の情報をオーバーライトすることも可能である
ことを説明する。
Next, it will be explained that it is possible to overwrite the information of "1".

室温からより強いパワーでレーザ照射しキューリ温度よ
り所定値だけ高い温度まで加熱すると、記録磁界はフェ
リ磁性体が磁化反転しさらに磁界反転用磁性膜が磁化反
転することにより反転する。したがって、記録膜は前の
状態によらずキューリ温度通過時に一旦“0"の向きに磁
化されるが所定値まで加熱すると“1"の向きに磁化反転
する。この後、降温させるときに、記録磁界にヒステリ
シス特性を持たせてあることにより、キューリ温度まで
温度を下げても、記録磁界は“1"の向きを保持してお
り、記録膜が“0"に反転することはない。
When the laser irradiation from the room temperature is performed with a stronger power and the temperature is raised to a temperature higher than the Curie temperature by a predetermined value, the recording magnetic field is inverted by the magnetization reversal of the ferrimagnetic material and the magnetic reversal of the magnetic film for magnetic field reversal. Therefore, regardless of the previous state, the recording film is once magnetized in the direction of “0” when passing the Curie temperature, but when heated to a predetermined value, the magnetization is reversed in the direction of “1”. After that, when the temperature is lowered, the recording magnetic field retains the direction of "1" even if the temperature is lowered to the Curie temperature because the recording magnetic field has the hysteresis characteristic, and the recording film has "0". Never flip to.

さらに温度を下げると記録磁界は“0"の向きすなわち室
温状態の向きに反転するが、このとき、記録膜はキュー
リ温度より低温のため、その保磁力HCRは零ではなく、
この点での記録磁界の強さHF4πMT<HCRとすること
により、記録磁界は“0"に反転しても記録膜は“1"の記
録状態を保持することが出来る。
When the temperature is further lowered, the recording magnetic field reverses to the direction of “0”, that is, the room temperature state. At this time, the coercive force H CR is not zero because the recording film is lower than the Curie temperature.
By setting the recording magnetic field strength H F 4πM T <H CR at this point, the recording film can maintain the recording state of “1” even if the recording magnetic field is reversed to “0”.

以上のように記録膜の前の状態によらず、レーザ照射パ
ワーを変えて加熱プロファイルを変えることにより一旦
消去することなく“0",“1"の情報をオーバーライト出
来、また外部から新たに記録磁界を印加することも不要
となる。
As described above, regardless of the state before the recording film, by changing the laser irradiation power and changing the heating profile, it is possible to overwrite the information of "0" and "1" without once erasing, and to newly write from outside. It is not necessary to apply a recording magnetic field.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

図において、1はトラッキング用案内溝7を有するポリ
カーボネート射出成形板である。2はSi3N4を母材とし
て基板1の上にスパッタリング成膜したカー回転角のエ
ンハンス膜であり、膜厚は約850Åである。該ヘンハン
ス膜は、カー回転角を該エンハンス膜がなければ約0.3
゜であるところを約0.5゜に増幅する。
In the figure, 1 is a polycarbonate injection molded plate having a tracking guide groove 7. Reference numeral 2 is an enhancement film having a Kerr rotation angle formed by sputtering on the substrate 1 using Si 3 N 4 as a base material, and the film thickness is about 850Å. The Henhans film has a Kerr rotation angle of about 0.3 without the enhancer film.
Amplify the point that is ゜ to about 0.5 ゜.

3は記録膜であり、Tb30Fe62Co8(原子%)の非晶質垂
直磁化膜であり、Tb,Fe,Coの3元同時スパッタ法により
基板を回転させながら成膜した。膜厚は約500Åであ
る。そのキューリ温度TCは約200℃、室温での保磁力HCR
は約5KOe、磁化MRは約80emu/c.c.である。
Reference numeral 3 is a recording film, which is an amorphous perpendicular magnetization film of Tb 30 Fe 62 Co 8 (atomic%), and was formed by rotating the substrate by the ternary simultaneous sputtering method of Tb, Fe, and Co. The film thickness is about 500Å. Its Curie temperature T C is about 200 ° C, and coercive force H CR at room temperature
Is about 5 KOe and the magnetization M R is about 80 emu / cc.

4は磁界反転用磁性膜であり、Co80Cr20の非晶質垂直磁
化膜から形成されている。その膜厚は約500Å、キュー
リ温度TCは約600℃、保磁力は0.5KOe、磁化は100emu/c.
c.である。5はフェリ磁性体膜であり、Tb22Fe63Co15
非晶質垂直磁化膜から形成されている。補償点温度は19
0℃、保磁力は5KOe、磁化は200emu/c.c.である。
4 is a magnetic film for magnetic field reversal, which is formed of an amorphous perpendicular magnetization film of Co 80 Cr 20 . Its film thickness is about 500Å, Curie temperature T C is about 600 ℃, coercive force is 0.5KOe, and magnetization is 100emu / c.
c. Reference numeral 5 is a ferrimagnetic film, which is formed of an amorphous perpendicular magnetization film of Tb 22 Fe 63 Co 15 . Compensation point temperature is 19
At 0 ℃, coercive force is 5KOe and magnetization is 200emu / cc.

6は保護膜であり、エンハンス膜2と同じSi3N4の膜を
約1000Åの厚さにスパッタ成膜した。
Reference numeral 6 is a protective film, and the same Si 3 N 4 film as the enhance film 2 was formed by sputtering to a thickness of about 1000Å.

本実施例では、前記記録膜3の室温での磁化をMR、フェ
リ磁性体膜5の保磁力をHCFとするとき、次の関係が満
されるようになされている。
In the present embodiment, the following relationship is satisfied when the magnetization of the recording film 3 at room temperature is M R and the coercive force of the ferrimagnetic film 5 is H CF.

4πMR<HCF したがって、後述する記憶磁界の向き、すなわちフェリ
磁性体膜5と磁界反転用磁性膜4との合成磁化から発す
る磁界の向きは、記録膜3に書き込まれた磁化により反
転することなく、常に初期磁化の向きを保持することに
なる。
4πM R <H CF Therefore, the direction of the storage magnetic field, which will be described later, that is, the direction of the magnetic field generated from the combined magnetization of the ferrimagnetic film 5 and the magnetic field reversal magnetic film 4 should be reversed by the magnetization written in the recording film 3. Instead, the initial magnetization direction is always maintained.

次に、本実施例の記録動作を説明する前に、記録磁界の
発生方法について説明する。記録すなわち記録膜の磁化
反転の制御はレーザスポット加熱時のレーザパワーを調
節して2値の温度T1,T2を用いて記録膜3,磁界反転用磁
性膜4およびフェリ磁性体膜5を加熱することにより行
う。
Next, before describing the recording operation of this embodiment, a method of generating a recording magnetic field will be described. The recording, that is, the control of the magnetization reversal of the recording film is performed by adjusting the laser power at the time of heating the laser spot and using the binary temperatures T 1 and T 2 to change the recording film 3, the magnetic field reversing magnetic film 4 and the ferrimagnetic film 5. It is performed by heating.

第2図に記録磁界の合成を示す。縦軸は磁化強さであ
り、横軸は温度である。
FIG. 2 shows composition of recording magnetic fields. The vertical axis represents the magnetization strength and the horizontal axis represents the temperature.

曲線5aはフェリ磁性体膜5の磁化の温度変化を示したも
のである。該磁化は記録膜3のキューリ温度は付近に設
定した補償点温度(約200℃)において零となり、より
温度を上げると磁化が再び発生し、その向きは逆にな
る。さらに、この膜のキューリ温度まで上げると、磁化
は零になる。
A curve 5a shows the temperature change of the magnetization of the ferrimagnetic film 5. The Curie temperature of the recording film 3 becomes zero at the compensation point temperature (about 200 ° C.) set in the vicinity, and when the temperature is further raised, the magnetization is generated again, and the direction thereof is reversed. Further, when the Curie temperature of this film is raised, the magnetization becomes zero.

一点鎖線4aは磁界反転用磁性膜4の磁化を示している。
磁界反転用磁性膜4のキューリ温度は600℃と高く、記
録膜のキューリ温度の200℃付近では温度による特性変
化はほぼない。しかし、フェリ磁性体膜5の磁化4πMF
により膜4の保磁力HCS=|4πMF|となる温度T1,T2で磁
化反転する。
The alternate long and short dash line 4a shows the magnetization of the magnetic film 4 for magnetic field reversal.
The Curie temperature of the magnetic film 4 for magnetic field reversal is as high as 600 ° C., and there is almost no characteristic change due to temperature near the Curie temperature of the recording film of 200 ° C. However, the magnetization of the ferrimagnetic film 5 is 4πM F
As a result, the magnetization is inverted at temperatures T 1 and T 2 at which the coercive force H CS = | 4πM F | of the film 4 is obtained.

破線10はフェリ磁性体膜5と磁界反転用磁性膜4の合成
磁化(すなわち、4a+5a)を示したものである。温度に
対して200℃前後で正負の2値の磁化をもち、かつヒス
テリシス動作をする。
A broken line 10 indicates the combined magnetization (that is, 4a + 5a) of the ferrimagnetic film 5 and the magnetic field reversal magnetic film 4. It has positive and negative two-valued magnetization around 200 ° C with respect to temperature, and also operates as a hysteresis.

室温より記録膜3のキューリ温度の200℃まで加熱し、
その後降温すると、合成磁化10はA,H,B,H,Aと負の領域
のみを変化する。よりパワーを強めてキューリ温度(20
0℃)を超えてE点まで加熱し、その後降温すると、A,
H,B,C,D(膜4が正に磁化反転、温度T2)、E,D,F,G,H
(膜4が負に磁化反転、温度T1)、Aの径路で動作し、
降温時の記録膜3のキューリ温度200℃付近で正の磁化
を保持することが出来る。
Heating from room temperature to the Curie temperature of the recording film 3, 200 ° C,
Then, when the temperature is lowered, the synthetic magnetization 10 changes only in A, H, B, H, A and the negative region. Curie temperature (20
(0 ℃) to point E, and then lowering the temperature, A,
H, B, C, D (film 4 has positive magnetization reversal, temperature T 2 ), E, D, F, G, H
(The film 4 has a negative magnetization reversal, temperature T 1 ), and operates in the path of A,
The positive magnetization can be maintained near the Curie temperature of 200 ° C. of the recording film 3 when the temperature is lowered.

本実施例においては、記録膜3の記録磁界の発生源とし
て上記の合成磁化10を用いる。
In this embodiment, the synthetic magnetization 10 is used as a source of the recording magnetic field of the recording film 3.

次に、本実施例の記録動作を第3図を参照して説明す
る。第3図は記録膜3の保磁力HCRと上記の合成磁化に
よる磁界(破線10)4πMT(ここに、MTはフェリ磁性体
膜5と磁界反転用磁性膜4の合成磁化)の温度変化を示
した図である。記録膜3の正側の保磁力の温度変化を1
1、負側の保磁力を温度変化を11′に示した。
Next, the recording operation of this embodiment will be described with reference to FIG. FIG. 3 shows the coercive force H CR of the recording film 3 and the temperature of the magnetic field (broken line 10) 4πM T (where M T is the combined magnetization of the ferrimagnetic film 5 and the magnetic film 4 for magnetic field reversal) due to the above-mentioned combined magnetization. It is the figure which showed change. Change the coercive force on the positive side of recording film 3 with temperature
1. The coercive force on the negative side is shown at 11 'with temperature change.

室温付近では、記録膜3の正および負側の保持力H
CRは、実線11および11′に示されているように、両方共
破線10よりもその絶対値は大きく(すなわち、HCR>4
πMT)、記録膜3の磁化は反転出来ない。このため、該
記録膜3に書き込まれたデータがれば安定である。
Near room temperature, the holding force H on the positive and negative sides of the recording film 3
CR has a larger absolute value than that of the broken line 10 as shown by solid lines 11 and 11 '(ie, H CR > 4
πM T ) and the magnetization of the recording film 3 cannot be reversed. Therefore, the data written on the recording film 3 is stable.

200℃付近まで加熱または降温したとき、記録膜3の負
側の保磁力11′は負から零へと変化する。このとき、記
録磁界はA,H,B,H,Aのプロファイルをたどり、Bにおい
て記録膜3の保磁力HCR11′の大きさは記録磁界よりも
小さくなる。このため、記録膜3は前の状態によらず、
記録磁界の向きである負の向きに磁化し、B,H,Aと降温
のときに正の記録磁界が印加されることがないので負の
向きを保持し、“0"(負を“0"とする)の情報の記録が
出来る。
When heated or cooled down to around 200 ° C., the coercive force 11 ′ on the negative side of the recording film 3 changes from negative to zero. At this time, the recording magnetic field follows the profile of A, H, B, H, A, and the magnitude of the coercive force H CR 11 ′ of the recording film 3 at B becomes smaller than that of the recording magnetic field. Therefore, the recording film 3 does not depend on the previous state,
It is magnetized in the negative direction, which is the direction of the recording magnetic field, and the positive recording magnetic field is not applied when the temperature is lowered to B, H, A. It is possible to record the information of.

また、レーザパワーをより強め、250℃付近まで加熱す
ると、記録磁界10はA,H,B,Cを経てD(温度T2)におい
て負から正に転じる。降温させたとき、記録磁界10はヒ
ステリイス特性をもたせてあるため、D,F,G,H,Aの径路
をとおる。D,G間で記録膜のキューリ温度を通過する際
に記録膜の正側の保磁力11は零であり、記録磁界10より
小となっているため、記録膜3は正に磁化される。温度
T1すなわちG,H間で記録磁界は正から負に反転する。し
かし、このとき既に保磁力11は記録磁界10よりも大とな
っており、記録膜が負に磁化されることはなく、室温に
戻ったとき正の磁化が保存され、“1"の情報記録が出来
る。
When the laser power is further increased and the temperature is increased to around 250 ° C., the recording magnetic field 10 changes from negative to positive at D (temperature T 2 ) via A, H, B and C. When the temperature is lowered, the recording magnetic field 10 has a hysteresis characteristic, and therefore passes through the paths of D, F, G, H, and A. When passing the Curie temperature of the recording film between D and G, the coercive force 11 on the positive side of the recording film is zero and smaller than the recording magnetic field 10, so the recording film 3 is magnetized positively. temperature
The recording magnetic field is inverted from positive to negative between T 1, that is, between G and H. However, at this time, the coercive force 11 is already larger than the recording magnetic field 10, the recording film is not negatively magnetized, and the positive magnetization is preserved when the temperature returns to room temperature. Can be done.

上記の説明は、記録膜3の初期の保持力11′が負の場合
であったが、該記録膜3の初期の保持力11が正の場合で
あっても上記と同じ動作が行われ、記録膜3の初期磁化
状態によらず、オーバーライトをすることができる。
In the above description, the initial holding force 11 'of the recording film 3 is negative, but the same operation as above is performed even when the initial holding force 11 of the recording film 3 is positive. Overwriting can be performed regardless of the initial magnetization state of the recording film 3.

第4図に以上に述べた記録の方法をレーザ照射パワーの
強弱と“0",“1"との対応で示す。小パワーの再生モー
ドから時間t=0において記録を開始し、クロックτ毎
に照射パワーが大のとき、すなわちT2℃以上のとき“1"
の記録、照射パワーが中のとき、すなわちT2℃より小さ
くかつこれに近い温度のとき“0"の記録となる。
The recording method described above is shown in FIG. 4 by the correspondence between the intensity of laser irradiation power and "0" or "1". Recording is started at the time t = 0 from the small power reproduction mode, and when the irradiation power is high at every clock τ, that is, when T 2 ℃ or more, "1"
When the irradiation power is medium, that is, when the temperature is lower than T 2 ℃ and close to this, “0” is recorded.

以上は記録膜3の初期磁化状態によらないから、オーバ
ーライト可能であり、従来のように一旦消去し、後に記
録する必要がなく、アクセス時間を短縮し、高速アクセ
スを可能とする効果がある。さらに、従来必要であった
外部からの磁界印加も不要となる効果がある。
Since the above does not depend on the initial magnetization state of the recording film 3, overwriting is possible, and there is no need to once erase and record later as in the conventional case, and there is an effect that access time is shortened and high speed access is possible. . Furthermore, there is an effect that the magnetic field application from the outside, which is conventionally required, is unnecessary.

なお、実際には記録膜3の磁化が発生する磁界も磁界反
転用磁性膜4の磁化反転のタイミングに関係するが、記
録膜3のキューリ温度付近での磁化は極めて小さくなる
ので、実用的には無視することが出来る。
Although the magnetic field generated by the magnetization of the recording film 3 is actually related to the timing of the magnetization reversal of the magnetic field reversing magnetic film 4, since the magnetization of the recording film 3 near the Curie temperature is extremely small, it is practically used. Can be ignored.

また、前記のように、記録膜3の室温での磁化をMR、フ
ェリ磁性体膜5の保磁力をHCFとするとき、 4πMR<HCF の条件が満されているので、室温における記録磁界の向
きは、該記録膜に書き込まれた磁化により反転すること
はなく、常に初期磁化の向きを保持することができる。
Also, as described above, the magnetization of the M R at room temperature of the recording film 3, when the coercivity of the ferrimagnetic material film 5 and H CF, since the conditions of 4πM R <H CF is satisfied, at room temperature The direction of the recording magnetic field is not reversed by the magnetization written in the recording film, and the initial magnetization direction can always be maintained.

第5図は本発明の第2実施例を示す説明図である。本実
施例の特徴は、基板1に、案内溝ではなくサンプル・サ
ーボ方式のトラッキングピット12を設けた点に特徴があ
る。本実施例は、本発明が基板に依存しないことを示す
ものである。
FIG. 5 is an explanatory view showing the second embodiment of the present invention. The feature of this embodiment is that the substrate 1 is provided with the tracking pits 12 of the sample servo system instead of the guide grooves. This example illustrates that the present invention is substrate independent.

第6図は本発明の第3実施例を示し、保護膜部をAl、ス
テンレス等の金属膜13で形成した点に特徴がある。本実
施例によれば、保護機能とともに金属の高熱伝導性を用
いて熱を膜の積層方向に伝播させ、横方向への拡散を防
ぎ、記録ピットの寸法を安定させること、および記録ピ
ットを小径化させ高密度化をはかる効果がある。
FIG. 6 shows a third embodiment of the present invention, which is characterized in that the protective film portion is formed of a metal film 13 of Al, stainless steel or the like. According to the present embodiment, heat is propagated in the film stacking direction by using the high thermal conductivity of the metal together with the protection function, the lateral diffusion is prevented, the size of the recording pit is stabilized, and the recording pit has a small diameter. Has the effect of increasing the density.

第7図は本発明の第4実施例を示す。この実施例はエン
ハンス膜2と記録膜3の間に保持力の小さなファラデー
膜14を介在させた点に特徴がある。この実施例は、再生
時の偏光の回転角が大きくなり、高S/Nが得られる効果
がある。
FIG. 7 shows a fourth embodiment of the present invention. This embodiment is characterized in that a Faraday film 14 having a small holding force is interposed between the enhancement film 2 and the recording film 3. In this embodiment, the rotation angle of polarized light at the time of reproduction is large, and a high S / N is obtained.

第8図は本発明の第5実施例を示す。本実施例はフェリ
磁性体膜5と磁界反転用磁性膜4とを入換えたものであ
る。本実施例によれば、磁気的結合に大差はなく、第1
図の構成と同様の効果がある。
FIG. 8 shows a fifth embodiment of the present invention. In the present embodiment, the ferrimagnetic film 5 and the magnetic field reversing magnetic film 4 are replaced with each other. According to this embodiment, there is no great difference in magnetic coupling, and
It has the same effect as the configuration of the figure.

第9図は本発明の第6実施例を示す。この実施例は、光
磁気記録媒体2枚を接着層15で張り合せたものであり、
両面使用可能な光磁気記録媒体を提供することが出来
る。
FIG. 9 shows a sixth embodiment of the present invention. In this embodiment, two magneto-optical recording media are laminated with an adhesive layer 15,
It is possible to provide a magneto-optical recording medium that can be used on both sides.

以上の実施例は磁性膜にTbFeCo系の膜を用いたが、本発
明は上記磁性材料のみに制限されるものではない。他の
希土類・遷移金属系の磁性膜、酸化物磁性膜、Mn・Bi系
磁性膜およびそれらに磁気特性および耐食性調整のため
に添加元素を使用したものも使用可能であることは明ら
かである。
Although a TbFeCo-based film was used as the magnetic film in the above examples, the present invention is not limited to the above magnetic material. It is obvious that other rare earth / transition metal based magnetic films, oxide magnetic films, Mn / Bi based magnetic films, and those containing additional elements for adjusting magnetic properties and corrosion resistance can be used.

〔発明の効果〕〔The invention's effect〕

本発明によれば、磁性膜を記録膜に対する磁界印加手段
として用いているので、光ピックアップに磁界印加手段
を組込む必要がなく、光ピックアップが小型かつ軽量に
なる効果がある。また、これに加えて、オーバライトが
可能であるので、アクセス時間を大幅に短縮でき、高速
アクセスが可能になるという大きな効果がある。
According to the present invention, since the magnetic film is used as the magnetic field applying unit for the recording film, there is no need to incorporate the magnetic field applying unit in the optical pickup, and the optical pickup can be made small and lightweight. In addition to this, since overwriting is possible, there is a great effect that access time can be significantly shortened and high-speed access becomes possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例の構成を示す断面図、第2
図は記録磁界の発生方法を説明する図、第3図は本実施
例の記録動作を説明する図、第4図はレーザの照射パワ
ーにより記録動作を説明する図、第5〜9図は、それぞ
れ本発明の第2〜6実施例の構成断面図を示す。 1……基板、3……記録膜、4……磁界反転用磁性膜、
5……フェリ磁性体膜
FIG. 1 is a sectional view showing the structure of the first embodiment of the present invention, and FIG.
FIG. 4 is a diagram for explaining the method of generating a recording magnetic field, FIG. 3 is a diagram for explaining the recording operation of this embodiment, FIG. 4 is a diagram for explaining the recording operation by the irradiation power of the laser, and FIGS. The structural sectional views of Embodiments 2 to 6 of the present invention are shown respectively. 1 ... Substrate, 3 ... Recording film, 4 ... Magnetic field reversal magnetic film,
5: Ferrimagnetic film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】記録膜に磁界および光スポットを印加して
磁化反転させて情報を記録する光磁気記録媒体におい
て、該記録膜に磁界を印加する手段が、該記録膜のキュ
ーリ温度近くの補償点温度をもつフェリ磁性体と該フェ
リ磁性体の磁化により磁化反転する磁性体とからなる磁
性膜から構成され、該磁性膜は前記記録膜と磁気的に結
合され、かつ前記記録膜の保磁力をHCR,磁化をMR,フェ
リ磁性体膜の保磁力をHCF,フェリ磁性体膜および該磁性
体の磁化により磁化反転する磁性体膜の合成磁化をMT
したとき、 4πMR<HCF HCR>4πMT(ただし、キューリ温度以下かつMTが磁化
反転する温度以下において) としたことを特徴とするオーバーライト可能な光磁気記
録媒体。
1. In a magneto-optical recording medium for recording information by applying a magnetic field and a light spot to a recording film to invert the magnetization to record information, a means for applying a magnetic field to the recording film compensates for the Curie temperature of the recording film. The magnetic film is composed of a ferrimagnetic material having a point temperature and a magnetic material whose magnetization is inverted by the magnetization of the ferrimagnetic material. The magnetic film is magnetically coupled to the recording film and has a coercive force of the recording film. Is H CR , the magnetization is M R , the coercive force of the ferrimagnetic film is H CF , and the synthetic magnetization of the ferrimagnetic film and the magnetic film whose magnetization is inverted by the magnetization of the magnetic film is M T , 4πM R < An overwritable magneto-optical recording medium, characterized in that H CF H CR > 4πM T (however, below the Curie temperature and below the temperature at which M T causes magnetization reversal).
【請求項2】前記磁性膜の光入射側にエンハンス膜を設
けたことを特徴とする前記特許請求の範囲第1項記載の
オーバライト可能な光磁気記録媒体。
2. An overwritable magneto-optical recording medium according to claim 1, wherein an enhancing film is provided on the light incident side of the magnetic film.
【請求項3】前記磁性膜の光入射側とは反対側に金属保
護膜を設けたことを特徴とする前記特許請求の範囲第1
項又は第2項記載のオーバライト可能な光磁気記録媒
体。
3. A metal protective film is provided on a side of the magnetic film opposite to a light incident side thereof.
2. An overwritable magneto-optical recording medium according to item 2 or 3.
【請求項4】前記磁性膜の光入射側にファラデー膜を設
けたことを特徴とする前記特許請求の範囲第1項ないし
第3項記載のオーバライト可能な光磁気記録媒体。
4. The overwritable magneto-optical recording medium according to any one of claims 1 to 3, wherein a Faraday film is provided on the light incident side of the magnetic film.
JP12224987A 1987-05-19 1987-05-19 Overwritable magneto-optical recording medium Expired - Lifetime JPH0697515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12224987A JPH0697515B2 (en) 1987-05-19 1987-05-19 Overwritable magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12224987A JPH0697515B2 (en) 1987-05-19 1987-05-19 Overwritable magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS63288442A JPS63288442A (en) 1988-11-25
JPH0697515B2 true JPH0697515B2 (en) 1994-11-30

Family

ID=14831285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12224987A Expired - Lifetime JPH0697515B2 (en) 1987-05-19 1987-05-19 Overwritable magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0697515B2 (en)

Also Published As

Publication number Publication date
JPS63288442A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
JP2839783B2 (en) Magneto-optical recording medium, reproducing apparatus and reproducing method
JP2579631B2 (en) Magneto-optical recording method
US5142513A (en) Magneto-optical storage medium and magneto-optical overwrite system with magnetic characteristic change by variation of thermal condition for recording information
JP2916071B2 (en) Magneto-optical recording device
JPH08273222A (en) Magneto-optical recording medium and its reproducing method
JP3006124B2 (en) Overwritable magneto-optical recording medium and recording / reproducing apparatus therefor
JPH0814900B2 (en) Writing method to magneto-optical recording medium
JPH04119542A (en) Cartridge of magneto-optical recording medium
JPH0697515B2 (en) Overwritable magneto-optical recording medium
JP2910082B2 (en) Magneto-optical recording / reproducing method
JP3091099B2 (en) Magneto-optical recording medium and magneto-optical recording / reproducing method
JP2746313B2 (en) Information recording method
JP2790685B2 (en) Magneto-optical recording method
JPH0316049A (en) Magneto-optical recording medium
JP2815122B2 (en) Information recording device
JPH0721893B2 (en) Magneto-optical recording method
JPH0589536A (en) Magneto-optical recording medium
JPS61182651A (en) Photomagnetic recording medium
JP2589451B2 (en) Magneto-optical recording / reproducing device
JPH01217744A (en) Magneto-optical recording medium
JPH0536147A (en) Magneto-optical recording method
JPH0697516B2 (en) Magneto-optical recording medium
JPS63302415A (en) Magnetic recording medium
JPH03162747A (en) Multilevel recording method
EP0313334A2 (en) Magneto-optic recording medium and method of magneto-optic recording using the same medium