JPH0697139A - Cleaning method of semiconductor surface - Google Patents

Cleaning method of semiconductor surface

Info

Publication number
JPH0697139A
JPH0697139A JP4244799A JP24479992A JPH0697139A JP H0697139 A JPH0697139 A JP H0697139A JP 4244799 A JP4244799 A JP 4244799A JP 24479992 A JP24479992 A JP 24479992A JP H0697139 A JPH0697139 A JP H0697139A
Authority
JP
Japan
Prior art keywords
semiconductor
cleaning
radical
temperature
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4244799A
Other languages
Japanese (ja)
Other versions
JP2660944B2 (en
Inventor
Yuichi Ide
雄一 井手
Masamichi Yamada
正理 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP4244799A priority Critical patent/JP2660944B2/en
Publication of JPH0697139A publication Critical patent/JPH0697139A/en
Application granted granted Critical
Publication of JP2660944B2 publication Critical patent/JP2660944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To realize surface cleaning of substrate utilizing hydrogen radicals in which heating temperature of substrate required for surface cleaning is relatively low and the processing time is short by providing specific radical processing step and cleaning step. CONSTITUTION:Under a state where the surface of a semiconductor 2 is exposed to a radical atmosphere containing at least one of atomic hydrogen or atomic deuterium, a first specific processing temperature is sustained for a first specific processing time and a radical processing step for causing radicals to react on the surface of the semiconductor 2 is carried out. Surface of the semiconductor 2 is then heated in an atmosphere containing no radical upto a second processing temperature higher than the first one which is sustained for a second processing time, and reaction products produced during radical processing are desorbed from the surface of the semiconductor 2 thus cleaning the surface of the semiconductor 2. For example, a hydrogen radical cleaning equipment as shown on the drawing is employed and a GaAs substrate 2 is subjected to radical processing at 200 deg.C and then cleaning step is carried out at 400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体表面から酸化物
および炭化物等を脱離させる半導体表面の清浄化方法に
関し、特に、原子状水素もしくは原子状重水素を含むラ
ジカル雰囲気を用いた半導体表面の清浄化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a semiconductor surface by desorbing oxides and carbides from the semiconductor surface, and more particularly to a semiconductor surface using a radical atmosphere containing atomic hydrogen or atomic deuterium. The cleaning method of.

【0002】[0002]

【従来の技術】半導体表面の清浄化方法として、水素ラ
ジカルクリーニングと呼ばれる、原子状の水素もしくは
原子状の重水素を用いた方法が一般に知られている。水
素ラジカルクリーニング法は、単なる昇温脱離法と比較
して、低温で半導体表面の清浄化が可能な点で有用であ
る。尚、ラジカルとは本来、不対電子を有する遊離基を
指すが、一般には励起状態にあるものや、イオン種も含
めてラジカルと総称することが多い。そして、ここで呼
ぶラジカルは、後者の広義のラジカルである。基底状態
にある原子状の物をも含んでいる。以後、同様に、励起
状態にあるものやイオン種をも含めてラジカルと呼ぶこ
とにする。
2. Description of the Related Art A method using atomic hydrogen or atomic deuterium, which is called hydrogen radical cleaning, is generally known as a method for cleaning a semiconductor surface. The hydrogen radical cleaning method is useful in that the semiconductor surface can be cleaned at a low temperature as compared with a simple thermal desorption method. Incidentally, the radical originally means a free radical having an unpaired electron, but in general, it is often generically called a radical including an excited state and an ionic species. The radical referred to here is the latter radical in a broad sense. It also includes atomic objects in the ground state. Hereinafter, similarly, the excited state and the ionic species are also referred to as radicals.

【0003】図3は、この種の水素ラジカルクリーニン
グ法に用いる装置を示す概略図である。図3において、
この装置は、超高真空にする事が可能な真空室1と、真
空室1に弁6を介して接続された水素ガス源4と有して
いる。さらに、真空室1中には、半導体基板2を加熱す
るためのタンタルから成る基板ヒータ3と、水素ガスを
クラッキングして原子状の水素を生成するためのタング
ステン(W)から成るフィラメント5とが設けられてい
てる。この装置中を用いて、半導体基板2を加熱しなが
ら水素ラジカルに曝すことにより、半導体基板2表面の
清浄化がなされている。従来、この種の装置を用いた水
素ラジカルクリーニング法が、例えば、ジャパニーズ・
ジャーナル・オブ・アプライド・フィジックス(Japane
se Journal of Applied Physics )1991年第30巻3A号L4
02頁〜 404頁において提案されている。
FIG. 3 is a schematic view showing an apparatus used for this type of hydrogen radical cleaning method. In FIG.
This apparatus has a vacuum chamber 1 capable of forming an ultrahigh vacuum, and a hydrogen gas source 4 connected to the vacuum chamber 1 via a valve 6. Further, in the vacuum chamber 1, a substrate heater 3 made of tantalum for heating the semiconductor substrate 2 and a filament 5 made of tungsten (W) for cracking hydrogen gas to generate atomic hydrogen are provided. It is provided. The surface of the semiconductor substrate 2 is cleaned by exposing the semiconductor substrate 2 to hydrogen radicals while heating the semiconductor substrate 2 in this apparatus. Conventionally, the hydrogen radical cleaning method using this type of device is, for example, Japanese
Journal of Applied Physics (Japane
se Journal of Applied Physics) 1991 Volume 30 Issue 3A L4
Proposed on pages 02-404.

【0004】この提案において、酸化膜や炭素の付いた
GaAs基板を200℃に加熱して30分間水素ラジカ
ル処理した場合には、炭素は除去されるものの、酸化物
は完全には除去されずに残存している。一方、図4に示
すように、400℃で30分間水素ラジカル処理した場
合にはじめて、酸化物が無くなっている。このことは、
本発明者らの実験によれば、比較的低温(200℃)の
加熱において、炭素は、水素原子と反応して蒸気圧の高
い炭化水素となり、GaAs基板の表面から脱離可能で
あるに対し、GaAsの酸化物、例えば、Ga2
3 は、水素原子との反応も遅くかつ反応生成物も蒸気圧
が低く、容易に脱離しないためと考えられる。
In this proposal, when a GaAs substrate having an oxide film or carbon is heated to 200 ° C. and subjected to hydrogen radical treatment for 30 minutes, carbon is removed but oxides are not completely removed. It remains. On the other hand, as shown in FIG. 4, the oxide is eliminated only when the hydrogen radical treatment is performed at 400 ° C. for 30 minutes. This is
According to the experiments conducted by the present inventors, when heated at a relatively low temperature (200 ° C.), carbon reacts with hydrogen atoms to become a hydrocarbon having a high vapor pressure, and can be desorbed from the surface of the GaAs substrate. , GaAs oxides such as Ga 2 O
It is considered that 3 is because the reaction with the hydrogen atom is slow and the vapor pressure of the reaction product is low, so that it is not easily desorbed.

【0005】[0005]

【発明が解決しようとする課題】前述したように、水素
ラジカルクリーニング法は、比較的低温で半導体表面の
清浄化が可能な点で有用であるのに対し、実際には、酸
化物を完全に脱離させるためには、比較的高温で長時間
加熱を行わなければならず、半導体素子の高性能化、製
造の高効率化の点で好ましくない。特に、水素原子は半
導体中に拡散しやすく、デバイス特性に影響を与えるの
で長時間のラジカル処理は好ましくない。
As described above, the hydrogen radical cleaning method is useful in that the semiconductor surface can be cleaned at a relatively low temperature. In order to be desorbed, it is necessary to perform heating at a relatively high temperature for a long time, which is not preferable in terms of high performance of semiconductor elements and high manufacturing efficiency. In particular, hydrogen atoms are easily diffused in the semiconductor and affect device characteristics, so that radical treatment for a long time is not preferable.

【0006】本発明の課題は、表面清浄化に要する基板
加熱温度が比較的低く、工程の時間も短い水素ラジカル
を利用した半導体の表面清浄化方法を提供することであ
る。
An object of the present invention is to provide a method for cleaning the surface of a semiconductor using hydrogen radicals, in which the substrate heating temperature required for surface cleaning is relatively low and the process time is short.

【0007】[0007]

【課題を解決するための手段】本発明によれば、原子状
水素および原子状重水素のうち少なくとも一方を含むラ
ジカル雰囲気に半導体の表面を曝した状態で、所定の第
1の処理時間だけ所定の第1の処理温度に保ち、前記半
導体の表面を該ラジカルと反応させるラジカル処理工程
と、前記半導体の表面を、前記ラジカルを含まない雰囲
気中で、前記第1の処理温度より高い第2の処理温度ま
で昇温した後、第2の処理時間だけ保ち、前記半導体の
表面から前記ラジカル処理工程において生成された反応
生成物を脱離させ、前記半導体の表面を清浄化する清浄
化工程とを有することを特徴とする半導体表面の清浄化
方法が得られる。
According to the present invention, the surface of a semiconductor is exposed to a radical atmosphere containing at least one of atomic hydrogen and atomic deuterium, and a predetermined first processing time is applied. A radical treatment step in which the surface of the semiconductor is reacted with the radicals, and the surface of the semiconductor is heated in an atmosphere containing no radicals to a second treatment temperature higher than the first treatment temperature. After the temperature is raised to the treatment temperature, the second treatment time is maintained, and the reaction product generated in the radical treatment step is desorbed from the surface of the semiconductor to clean the surface of the semiconductor. A method for cleaning a semiconductor surface is obtained, which comprises:

【0008】本発明によればまた、前記第2の処理温度
は、前記ラジカル処理工程において前記半導体の表面の
酸化物が還元されて生成された還元生成物を脱離可能な
温度である前記半導体表面の清浄化方法が得られる。
According to the present invention, the second treatment temperature is a temperature at which the reduction product produced by reducing the oxide on the surface of the semiconductor in the radical treatment step can be desorbed. A surface cleaning method is obtained.

【0009】本発明によればさらに、前記第2の処理時
間は、前記第1の処理時間より短い前記半導体表面の清
浄化方法が得られる。
Further, according to the present invention, there can be obtained a method for cleaning the semiconductor surface, wherein the second processing time is shorter than the first processing time.

【0010】本発明によればまた、前記半導体は、Ga
AsおよびGaAsを含む混晶半導体のうちどちらか一
方の半導体であり、前記第1の処理温度は、100℃以
上350℃以下である前記半導体表面の清浄化方法が得
られる。
Also according to the invention, said semiconductor is Ga
A method for cleaning the semiconductor surface is obtained, which is one of the mixed crystal semiconductors containing As and GaAs, and the first processing temperature is 100 ° C. or higher and 350 ° C. or lower.

【0011】本発明によればさらに、前記ラジカル処理
工程と前記清浄化工程とを順次繰返す前記半導体表面の
清浄化方法が得られる。
According to the present invention, there is further provided a method for cleaning the surface of a semiconductor, in which the radical treatment step and the cleaning step are sequentially repeated.

【0012】即ち、本発明は、高温まで安定なGa2
3 を効率良く除去するために、半導体の表面を少なくと
も原子状水素もしくは原子状重水素を含むラジカル雰囲
気に曝し、該表面を一定の時間、所定の処理温度に保ち
該原子状水素もしくは原子状重水素と反応させるラジカ
ル処理工程と、次に該表面を前記原子状水素原子もしく
は原子状重水素原子を含まない雰囲気中で前記処理温度
より高い温度に昇温し、前記ラジカル処理工程の反応生
成物を脱離させる清浄化工程とを有することを特徴とし
ている。特に酸化物を除去するためには、ラジカル処理
工程は半導体の表面酸化物を還元する反応を有し、清浄
化工程の温度は該ラジカル処理工程による反応生成物が
脱離可能な温度である事が必要である。また、酸化物が
厚い場合にはラジカル処理工程と清浄化工程とを順次繰
り返す事が有効である事も本発明者らの実験から明らか
になった本発明の他の特徴である。
That is, according to the present invention, Ga 2 O which is stable up to high temperature is used.
In order to remove 3 efficiently, the surface of the semiconductor is exposed to a radical atmosphere containing at least atomic hydrogen or atomic deuterium, and the surface is kept at a predetermined processing temperature for a certain period of time, and the atomic hydrogen or atomic deuterium is maintained. A radical treatment step of reacting with hydrogen, and then heating the surface to a temperature higher than the treatment temperature in an atmosphere not containing the atomic hydrogen atoms or atomic deuterium atoms, and a reaction product of the radical treatment step. And a cleaning step for desorbing. In particular, in order to remove the oxide, the radical treatment step has a reaction of reducing the surface oxide of the semiconductor, and the temperature of the cleaning step is a temperature at which the reaction product of the radical treatment step can be desorbed. is necessary. Further, it is another feature of the present invention that has been clarified from the experiments by the present inventors that it is effective to repeat the radical treatment step and the cleaning step sequentially when the oxide is thick.

【0013】また半導体基板を高温に曝す時間を短縮
し、ひいては全工程の所要時間を短縮する観点から清浄
化工程においてラジカル処理工程の処理温度より高い温
度に保つ時間が前記ラジカル処理工程の一定の時間より
短い事も本発明の特徴である。より具体的に、GaAs
もしくはGaAsを含む混晶半導体の清浄化に適用する
場合においては、ラジカル処理工程の際の所定の処理温
度が100℃以上350℃以下である事が本発明の特徴
である。
Further, from the viewpoint of shortening the time of exposing the semiconductor substrate to a high temperature, and thus shortening the time required for all the steps, the time for which the temperature is kept higher than the processing temperature of the radical processing step in the cleaning step is constant in the radical processing step. It is also a feature of the present invention that the time is shorter than the time. More specifically, GaAs
Alternatively, when applied to the cleaning of a mixed crystal semiconductor containing GaAs, it is a feature of the present invention that the predetermined processing temperature in the radical processing step is 100 ° C. or higher and 350 ° C. or lower.

【0014】[0014]

【作用】本発明による半導体表面の清浄化方法の作用
を、GaAs化合物半導体を例に取って説明する。Ga
Asの表面を汚染している炭素は、水素ラジカル処理に
よって、前述したとおり、比較的低温で除去される。表
面酸化物のうち、As酸化物は、300℃以下の比較的
低温で脱離するため、特に問題はない。一方、Ga酸化
物には、高温まで安定なGa2 3 と比較的蒸気圧の高
いGa2 Oとが存在することが本発明者らにより明らか
になっている。
The operation of the semiconductor surface cleaning method according to the present invention will be described by taking a GaAs compound semiconductor as an example. Ga
The carbon contaminating the surface of As is removed by the hydrogen radical treatment at a relatively low temperature as described above. Of the surface oxides, As oxide is desorbed at a relatively low temperature of 300 ° C. or lower, so that there is no particular problem. On the other hand, the Ga oxide, has been revealed by the present inventors that there is a relatively high Ga 2 O vapor pressure and stable Ga 2 O 3 to a high temperature.

【0015】ところで、従来、これらのGa酸化物に対
する水素ラジカルの効果は、これら酸化物を還元して水
(H2 O)を生成することと考えられてきた。即ち、H
2 Oは、真空中で基板を100℃程度に加熱すれば極め
て容易に脱離するため、基板表面から酸素原子が除去さ
れると考えられてきた。しかしながら、本発明者らが、
X線光電子分光法と昇温脱離法を組み合わせた実験を行
ったところ、水素ラジカルは、Ga2 3 と反応してこ
れを還元し、H2 Oの他にGa2 Oをも生成すること、
また、Ga2 Oの生成は、200℃という低温でも生じ
ることが発見された。Ga2 Oは、水素が存在しなくて
も350℃以上の温度で容易に脱離する。したがって、
従来の水素ラジカル処理法の400℃×30分という温
度および時間は、必要以上に高くまた長かったと考えら
れる。また、350℃より低い温度で清浄化が進まなか
ったことは、Ga2 Oが脱離出来なかったためと理解さ
れる。
By the way, it has been conventionally considered that the effect of hydrogen radicals on these Ga oxides is to reduce these oxides to produce water (H 2 O). That is, H
It has been considered that 2 O is desorbed very easily when the substrate is heated to about 100 ° C. in a vacuum, so that oxygen atoms are removed from the substrate surface. However, the present inventors
An experiment in which X-ray photoelectron spectroscopy and thermal desorption were combined was carried out. As a result, hydrogen radicals react with Ga 2 O 3 to reduce them, and produce Ga 2 O in addition to H 2 O. thing,
It was also discovered that the formation of Ga 2 O occurs even at a low temperature of 200 ° C. Ga 2 O easily desorbs at a temperature of 350 ° C. or higher even in the absence of hydrogen. Therefore,
It is considered that the temperature and time of 400 ° C. × 30 minutes of the conventional hydrogen radical treatment method were unnecessarily high and long. Further, the fact that the cleaning did not proceed at a temperature lower than 350 ° C. is understood to be because Ga 2 O could not be desorbed.

【0016】本発明においては、工程を2段階に分け、
まず、ラジカル処理工程において200℃程度の低温で
還元反応を起こさせて安定なGa2 3 から蒸気圧の高
いGa2 Oを生成しておき、その後、清浄化工程でGa
2 Oを必要最低限の昇温によって脱離させる事で、半導
体基板を不必要に高温にすること無く、表面酸化物を除
去できるものである。
In the present invention, the process is divided into two steps,
First, in the radical treatment step, a reduction reaction is caused at a low temperature of about 200 ° C. to generate Ga 2 O having a high vapor pressure from stable Ga 2 O 3 , and then in the cleaning step, Ga
By desorbing 2 O by raising the minimum necessary temperature, the surface oxide can be removed without raising the temperature of the semiconductor substrate unnecessarily.

【0017】[0017]

【実施例】以下、図面を参照して、本発明の実施例によ
る半導体表面の清浄化方法を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for cleaning a semiconductor surface according to an embodiment of the present invention will be described below with reference to the drawings.

【0018】[実施例1]実施例1においては、従来例
と同様に、図3に示す水素ラジカルクリーニング装置を
用いた。この装置の構成は、前述したため、説明を省略
する。
[Embodiment 1] In Embodiment 1, the hydrogen radical cleaning apparatus shown in FIG. 3 is used as in the conventional example. Since the configuration of this device has been described above, the description thereof will be omitted.

【0019】以下、図3を参照して、実施例1による半
導体表面の清浄化工程を示す。
A semiconductor surface cleaning process according to the first embodiment will be described below with reference to FIG.

【0020】図3において、清浄化しようとするGa
Asの半導体基板2を、インジウムを用いてモリブデン
から成る基板ホルダ(図示せず)に貼り付け、真空室1
内に導入してタンタル線から成る基板ヒータ3の前に固
定した。
In FIG. 3, Ga to be cleaned is
The semiconductor substrate 2 of As is attached to a substrate holder (not shown) made of molybdenum using indium, and the vacuum chamber 1
It was introduced inside and fixed in front of the substrate heater 3 made of tantalum wire.

【0021】真空室1の内の真空度を1×10-9To
rr以下に保ちながら、基板ヒータ3に通電して半導体
基板2を200℃まで加熱し、この温度に安定させる。
The degree of vacuum in the vacuum chamber 1 is set to 1 × 10 -9 To
While maintaining the temperature at rr or less, the substrate heater 3 is energized to heat the semiconductor substrate 2 to 200 ° C. and stabilize at this temperature.

【0022】この段階で、一部のAs酸化物は脱離でき
た。
At this stage, some As oxides could be desorbed.

【0023】弁6を開いて水素源4より水素ガスを真
空室1内に導入し、真空室1内の水素ガスの分圧を1×
10-6Torr以下に調節する。水素ガス分圧を安定さ
せ、直ちに、フィラメント5に通電して1750℃まで
加熱し、この温度に12分間保った(ラジカル処理工
程)。
The valve 6 is opened to introduce hydrogen gas from the hydrogen source 4 into the vacuum chamber 1, and the partial pressure of the hydrogen gas in the vacuum chamber 1 is set to 1 ×.
Adjust to below 10 -6 Torr. The partial pressure of hydrogen gas was stabilized, the filament 5 was immediately energized, heated to 1750 ° C., and kept at this temperature for 12 minutes (radical treatment step).

【0024】この間、高温のフィラメント5、即ち、高
温のWに触れた水素ガス分子は、水素原子に解離し、真
空中を拡散して半導体基板2の表面に到達する。半導体
基板2の表面に到達した水素原子は、表面の炭素を炭化
水素に変え、さらに安定なGa2 3 を還元してGa2
OとH2 Oを生成した。この段階で、炭化水素とH2
とが脱離し、さらに、まだ残留していたAs酸化物も、
蒸気圧の高いAsH3等のAs水化物となって脱離し
た。Ga2 Oは、200℃では蒸気圧が不十分で脱離出
来なかった。このようにして、工程においては、Ga
2 Oからなる酸化物が表面に生成された。
During this time, the high-temperature filament 5, that is, the hydrogen gas molecules that have come into contact with the high-temperature W are dissociated into hydrogen atoms, diffuse in the vacuum, and reach the surface of the semiconductor substrate 2. The hydrogen atoms that have reached the surface of the semiconductor substrate 2 change the carbon on the surface into hydrocarbons and reduce the more stable Ga 2 O 3 to form Ga 2
O and H 2 O were produced. At this stage, hydrocarbons and H 2 O
, And As oxide that was still remaining,
As As hydrate having a high vapor pressure such as AsH 3 was formed and released. Ga 2 O could not be desorbed at 200 ° C. due to insufficient vapor pressure. Thus, in the process, Ga
An oxide of 2 O was formed on the surface.

【0025】12分間の後、フィラメント5の通電を
止めて放冷し、弁6を閉じて水素ガスの導入を止め、真
空室1から水素ガスを排気して再び真空度を1×10-9
Torr以下に保つ。
After 12 minutes, the filament 5 was de-energized and allowed to cool, the valve 6 was closed to stop the introduction of hydrogen gas, the hydrogen gas was evacuated from the vacuum chamber 1, and the degree of vacuum was again set to 1 × 10 -9.
Keep below Torr.

【0026】基板ヒータ3に通電してGaAs基板2
を400℃に昇温し、この温度に約5分間保った後、直
ちに通電を止めて冷却した(清浄化工程)。
The substrate heater 3 is energized to turn on the GaAs substrate 2.
Was heated to 400 ° C. and kept at this temperature for about 5 minutes, then immediately stopped energization and cooled (cleaning step).

【0027】以上のようにして、GaAs半導体基板2
表面の清浄化がなされた。即ち、Ga2 Oは、半導体基
板2の表面から脱離した。X線光電子分光法により、半
導体基板2の表面を観察したところ、酸素も炭素も検出
困難なほどに清浄化されていた。
As described above, the GaAs semiconductor substrate 2
The surface was cleaned. That is, Ga 2 O was desorbed from the surface of the semiconductor substrate 2. When the surface of the semiconductor substrate 2 was observed by X-ray photoelectron spectroscopy, both oxygen and carbon were found to be so clean that they were difficult to detect.

【0028】実施例1による半導体表面の清浄化方法の
工程図を、図1に示す。図1において、横軸は時間を示
し、縦軸は半導体基板2の加熱温度を示す。
FIG. 1 shows a process diagram of the method for cleaning the semiconductor surface according to the first embodiment. In FIG. 1, the horizontal axis represents time and the vertical axis represents the heating temperature of the semiconductor substrate 2.

【0029】[実施例2]次に、本発明による半導体基
板表面の清浄化方法の実施例2を説明する。
[Second Embodiment] Next, a second embodiment of the method for cleaning the surface of a semiconductor substrate according to the present invention will be described.

【0030】半導体基板表面の除去すべき酸化膜が比較
的厚い場合に、実施例1におけるラジカル処理工程と清
浄化工程のそれぞれの時間を長くする方法が考えられ
る。しかし、本発明者らの実験結果によると、いたずら
にラジカル処理工程を長くしても、生成されるGa2
の量は、何らかの理由で飽和してしまい、時間に比例し
て増加しないことがわかった。そこで、このような場合
に対し、実施例2では、ラジカル処理工程と清浄化工程
とを必要なだけ反復することで有効に表面を清浄化す
る。尚、実施例2においても、実施例1と同様に、図3
に示す水素ラジカルクリーニング装置を用いることがで
きる。
When the oxide film to be removed on the surface of the semiconductor substrate is relatively thick, a method of prolonging each time of the radical treatment step and the cleaning step in the first embodiment can be considered. However, according to the experimental results of the present inventors, even if the radical treatment step is unnecessarily lengthened, Ga 2 O generated
It was found that the amount of was saturated for some reason and did not increase in proportion to time. Therefore, in such a case, in the second embodiment, the radical treatment step and the cleaning step are repeated as many times as necessary to effectively clean the surface. In the second embodiment as well, as in the first embodiment, as shown in FIG.
The hydrogen radical cleaning device shown in can be used.

【0031】図2は、実施例2による半導体表面の清浄
化方法の工程図である。図2において、横軸は時間を示
し、縦軸は半導体基板2の加熱温度を示す。実施例2に
おいては、ラジカル処理工程と清浄化工程とを3回繰返
している。そして、ラジカル処理工程において、実施例
1の工程およびと同様に、水素ラジカル雰囲気中で
GaAsの半導体基板を200℃に加熱し、清浄化工程
において、実施例1の工程およびと同様に、水素ラ
ジカルを含まない雰囲気中でGaAsの半導体基板を4
00℃に加熱している。
FIG. 2 is a process diagram of a semiconductor surface cleaning method according to the second embodiment. In FIG. 2, the horizontal axis represents time and the vertical axis represents the heating temperature of the semiconductor substrate 2. In Example 2, the radical treatment step and the cleaning step are repeated three times. Then, in the radical treatment step, the GaAs semiconductor substrate is heated to 200 ° C. in a hydrogen radical atmosphere in the same manner as in the step of Example 1, and in the cleaning step, hydrogen radicals are set in the same manner as in the step of Example 1. GaAs semiconductor substrate 4 in an atmosphere not containing
It is heated to 00 ° C.

【0032】以上説明したように、実施例1および2に
おいては、水素ガスを用いたが、重水素ガスであっても
効果は同じである。また、水素ガスを原子状水素に解離
するために1750℃のWフィラメントを用いたが、8
00℃程度以上の温度であれば解離効率は下がるものの
本発明の効果はある。また、水素の分圧を1×10-6
orrとしたが、これを変化させても原子状水素の発生
量が変化するだけで、発明の有する効果は変わらない。
また、原子状水素の発生方法として電子サイクロトロン
共鳴や高周波励起によるプラズマ発生法を用いてもよい
ことは言うまでもない。
As described above, hydrogen gas is used in Examples 1 and 2, but the same effect can be obtained with deuterium gas. Also, a W filament at 1750 ° C. was used to dissociate the hydrogen gas into atomic hydrogen.
If the temperature is about 00 ° C. or higher, the dissociation efficiency is lowered but the effect of the present invention is obtained. In addition, the partial pressure of hydrogen is 1 × 10 −6 T
Orr was used, but even if this is changed, the amount of atomic hydrogen generated only changes, and the effect of the invention does not change.
Further, it goes without saying that a plasma generation method by electron cyclotron resonance or high frequency excitation may be used as a method of generating atomic hydrogen.

【0033】また、基板ヒータ3としてタンタル線を用
いて半導体基板2を傍熱的に昇温したが、半導体基板2
を加熱する方法はこれに限らず、例えば、赤外線ランプ
や電子ビーム、レーザビームによる加熱、直接通電加熱
等でも良い。
Further, the temperature of the semiconductor substrate 2 was indirectly heated by using the tantalum wire as the substrate heater 3.
The heating method is not limited to this, and may be heating with an infrared lamp, an electron beam, a laser beam, direct current heating, or the like.

【0034】さらに、半導体基板2としてGaAsを例
にあげたが、清浄化の対象はInP、InAs、InS
b、GaP、GaSb、AlGaAs、InGaAs、
InGaAsP、AlInGaAs、AlInGaP等
々、混晶半導体を含む他のIII −V族半導体やII−VI族
半導体であっても良いことは言うまでもない。
Further, although GaAs is taken as an example of the semiconductor substrate 2, the object of cleaning is InP, InAs, InS.
b, GaP, GaSb, AlGaAs, InGaAs,
Needless to say, other III-V group semiconductors including mixed crystal semiconductors or II-VI group semiconductors such as InGaAsP, AlInGaAs, and AlInGaP may be used.

【0035】[0035]

【発明の効果】本発明による半導体表面の清浄化方法
は、ラジカル処理工程において、原子状水素および原子
状重水素のうち少なくとも一方のラジカルを含むラジカ
ル雰囲気に半導体の表面を曝した状態で、所定の第1の
処理時間だけ所定の第1の処理温度に保ち、半導体の表
面をラジカルと反応させ、清浄化工程において、半導体
の表面を、ラジカルを含まない雰囲気中で、第1の処理
温度より高い第2の処理温度まで昇温した後、第2の処
理時間だけ保ち、半導体の表面からラジカル処理工程に
おいて生成された反応生成物を脱離させ、半導体の表面
を清浄化するため、半導体表面を不必要な高温に長時間
曝す事無く清浄化することができる。
According to the method for cleaning a semiconductor surface of the present invention, in the radical treatment step, the semiconductor surface is exposed to a radical atmosphere containing at least one radical of atomic hydrogen and atomic deuterium in a predetermined state. Is kept at a predetermined first treatment temperature for a first treatment time, and the surface of the semiconductor is reacted with radicals in a cleaning process so that the surface of the semiconductor is higher than the first treatment temperature in a radical-free atmosphere. After the temperature is raised to the high second treatment temperature, the second treatment time is maintained and the reaction product generated in the radical treatment step is desorbed from the semiconductor surface to clean the semiconductor surface. Can be cleaned without exposing it to unnecessary high temperatures for a long time.

【0036】これにより、一般的に好ましくないデバイ
ス構造の変化が防止できるのはもちろん、原子状の水素
が半導体中に拡散するのを最小限に抑える事ができデバ
イス特性の劣化が防げる。また、製造工程の時間短縮が
行える。このように本発明を適用すれば高性能な各種の
電子デバイスをはじめ、半導体レーザをはじめとする発
光、受光デバイスの製造が可能となる。
As a result, in general, it is possible to prevent unfavorable changes in the device structure, and it is possible to minimize the diffusion of atomic hydrogen into the semiconductor and prevent the deterioration of the device characteristics. In addition, the manufacturing process time can be shortened. As described above, by applying the present invention, it becomes possible to manufacture various high-performance electronic devices and light-emitting and light-receiving devices such as semiconductor lasers.

【0037】また、前記ラジカル処理工程と前記清浄化
工程とを順次繰返せば、除去すべき酸化膜が比較的厚い
場合に対して、さらに効果的である。
Further, repeating the radical treatment step and the cleaning step in sequence is more effective for the case where the oxide film to be removed is relatively thick.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による半導体表面の清浄化方
法の工程図である。
FIG. 1 is a process diagram of a method for cleaning a semiconductor surface according to a first embodiment of the present invention.

【図2】本発明の実施例2による半導体表面の清浄化方
法の工程図である。
FIG. 2 is a process diagram of a semiconductor surface cleaning method according to a second embodiment of the present invention.

【図3】本実施例および従来例に用いられる水素ラジカ
ルクリーニング装置の概略図である。
FIG. 3 is a schematic view of a hydrogen radical cleaning device used in this embodiment and a conventional example.

【図4】従来の水素ラジカルクリーニング方法の工程図
である。
FIG. 4 is a process diagram of a conventional hydrogen radical cleaning method.

【符号の説明】[Explanation of symbols]

1 真空室 2 半導体基板 3 基板ヒータ 4 水素源 5 フィラメント 6 弁 1 vacuum chamber 2 semiconductor substrate 3 substrate heater 4 hydrogen source 5 filament 6 valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原子状水素および原子状重水素のうち少
なくとも一方を含むラジカル雰囲気に半導体の表面を曝
した状態で、所定の第1の処理時間だけ所定の第1の処
理温度に保ち、前記半導体の表面を該ラジカルと反応さ
せるラジカル処理工程と、前記半導体の表面を、前記ラ
ジカルを含まない雰囲気中で、前記第1の処理温度より
高い第2の処理温度まで昇温した後、第2の処理時間だ
け保ち、前記半導体の表面から前記ラジカル処理工程に
おいて生成された反応生成物を脱離させ、前記半導体の
表面を清浄化する清浄化工程とを有することを特徴とす
る半導体表面の清浄化方法。
1. A semiconductor device, which is exposed to a radical atmosphere containing at least one of atomic hydrogen and atomic deuterium at a surface of a semiconductor, is kept at a predetermined first processing temperature for a predetermined first processing time, A radical treatment step of reacting the surface of the semiconductor with the radicals, and heating the surface of the semiconductor to a second treatment temperature higher than the first treatment temperature in an atmosphere containing no radicals, and then performing a second treatment And a cleaning step of cleaning the surface of the semiconductor by desorbing the reaction product generated in the radical processing step from the surface of the semiconductor, and cleaning the surface of the semiconductor. Method.
【請求項2】 前記第2の処理温度は、前記ラジカル処
理工程において前記半導体の表面の酸化物が還元されて
生成された還元生成物を脱離可能な温度である請求項1
記載の半導体表面の清浄化方法。
2. The second treatment temperature is a temperature at which a reduction product produced by reducing the oxide on the surface of the semiconductor in the radical treatment step can be desorbed.
A method for cleaning a semiconductor surface according to claim 1.
【請求項3】 前記第2の処理時間は、前記第1の処理
時間より短い請求項1または2記載の半導体表面の清浄
化方法。
3. The method for cleaning a semiconductor surface according to claim 1, wherein the second processing time is shorter than the first processing time.
【請求項4】 前記半導体は、GaAsおよびGaAs
を含む混晶半導体のうちどちらか一方の半導体であり、
前記第1の処理温度は、100℃以上350℃以下であ
る請求項1乃至3のいずれかに記載された半導体表面の
清浄化方法。
4. The semiconductor is GaAs or GaAs
Which is one of the mixed crystal semiconductors including
The method for cleaning a semiconductor surface according to claim 1, wherein the first treatment temperature is 100 ° C. or higher and 350 ° C. or lower.
【請求項5】 前記ラジカル処理工程と前記清浄化工程
とを順次繰返す請求項1乃至4のいずれかに記載された
半導体表面の清浄化方法。
5. The method for cleaning a semiconductor surface according to claim 1, wherein the radical treatment step and the cleaning step are sequentially repeated.
JP4244799A 1992-09-14 1992-09-14 Semiconductor surface cleaning method Expired - Lifetime JP2660944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4244799A JP2660944B2 (en) 1992-09-14 1992-09-14 Semiconductor surface cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4244799A JP2660944B2 (en) 1992-09-14 1992-09-14 Semiconductor surface cleaning method

Publications (2)

Publication Number Publication Date
JPH0697139A true JPH0697139A (en) 1994-04-08
JP2660944B2 JP2660944B2 (en) 1997-10-08

Family

ID=17124114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4244799A Expired - Lifetime JP2660944B2 (en) 1992-09-14 1992-09-14 Semiconductor surface cleaning method

Country Status (1)

Country Link
JP (1) JP2660944B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100047A1 (en) * 2012-12-21 2014-06-26 Applied Materials, Inc. Methods and apparatus for cleaning substrate structures with atomic hydrogen
WO2014100049A1 (en) * 2012-12-21 2014-06-26 Applied Materials, Inc. Methods and apparatus for processing germanium containing material, a iii-v compound containing material, or a ii-vi compound containing material disposed on a substrate using a hot wire source
US9673042B2 (en) 2015-09-01 2017-06-06 Applied Materials, Inc. Methods and apparatus for in-situ cleaning of copper surfaces and deposition and removal of self-assembled monolayers
CN109698114A (en) * 2017-10-20 2019-04-30 山东浪潮华光光电子股份有限公司 A kind of LED wafer low temperature of simplicity goes wax cleaning process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100047A1 (en) * 2012-12-21 2014-06-26 Applied Materials, Inc. Methods and apparatus for cleaning substrate structures with atomic hydrogen
WO2014100049A1 (en) * 2012-12-21 2014-06-26 Applied Materials, Inc. Methods and apparatus for processing germanium containing material, a iii-v compound containing material, or a ii-vi compound containing material disposed on a substrate using a hot wire source
US9673042B2 (en) 2015-09-01 2017-06-06 Applied Materials, Inc. Methods and apparatus for in-situ cleaning of copper surfaces and deposition and removal of self-assembled monolayers
CN109698114A (en) * 2017-10-20 2019-04-30 山东浪潮华光光电子股份有限公司 A kind of LED wafer low temperature of simplicity goes wax cleaning process

Also Published As

Publication number Publication date
JP2660944B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US5403436A (en) Plasma treating method using hydrogen gas
Asakawa et al. Damage and contamination‐free GaAs and AlGaAs etching using a novel ultrahigh‐vacuum reactive ion beam etching system with etched surface monitoring and cleaning method
WO2004093175A1 (en) Hydrogen plasma downflow processing method and hydrogen plasma downflow processing apparatus
JPH11126758A (en) Manufacture of semiconductor element
JPH0496226A (en) Manufacture of semiconductor device
JP2660944B2 (en) Semiconductor surface cleaning method
JP2003142469A (en) Method and apparatus for radical oxidation of silicon
JP2758247B2 (en) Organic metal gas thin film forming equipment
EP0546493B1 (en) Photochemical dry etching method
JP2663583B2 (en) Method for manufacturing heteroepitaxial film on silicon substrate
JP2694625B2 (en) Method for etching compound semiconductor substrate and method for manufacturing the same
JP2726149B2 (en) Thin film forming equipment
JPH1079364A (en) Surface processing method of compound semiconductor
JP3157911B2 (en) Heat treatment method for compound semiconductor substrate and heat treatment apparatus therefor
JP2699928B2 (en) Pretreatment method for compound semiconductor substrate
JP2883918B2 (en) Compound semiconductor pattern formation method
JP2663518B2 (en) Silicon substrate cleaning method
JP2970236B2 (en) GaAs wafer and method of manufacturing the same
JP2511810B2 (en) Processing method
JPS62118521A (en) Formation of semiconductor film
JPS63120424A (en) Optical treatment device
JP2522050B2 (en) Atomic layer dry etching method
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPH05243150A (en) Molecular beam epitaxial growth and device thereof
JPS63117424A (en) Substrate surface treatment device and substrate surface treatment method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970506