JPH0696A - Preservation of microorganism immobilized membrane - Google Patents

Preservation of microorganism immobilized membrane

Info

Publication number
JPH0696A
JPH0696A JP4159863A JP15986392A JPH0696A JP H0696 A JPH0696 A JP H0696A JP 4159863 A JP4159863 A JP 4159863A JP 15986392 A JP15986392 A JP 15986392A JP H0696 A JPH0696 A JP H0696A
Authority
JP
Japan
Prior art keywords
membrane
biosensor
immobilized microbial
microbial membrane
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4159863A
Other languages
Japanese (ja)
Inventor
Kensuke Isobe
磯部  健介
Yoshiharu Tanaka
良春 田中
Yasushi Zaitsu
靖史 財津
Shigeru Hatsumata
繁 初又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4159863A priority Critical patent/JPH0696A/en
Publication of JPH0696A publication Critical patent/JPH0696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To ensure starting assays immediately after installing a microorganism immobilized membrane on a biosensor. CONSTITUTION:A microorganism immobilized membrane is held, together with a buffer solution containing substrate nutrient components at specified concentrations, in a polyvinyl chloride pack followed by immersion in a buffer solution and sealing the pack which is then wet-preserved at low temperatures. When the membrane is to be used, the porous membrane is in a swollen state and the microorganisms exist in the substrate nutrient components; therefore, the microorganisms sustain activity similar to that during use immediately after installing the membrane on a biosensor. Thus, there becomes unnecessary for microorganisms activation prior to the above installation and the aging operation until sensor output gets stabilized, leading to ensuring assays to be started immediately after installing the membrane on the biosensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酵素,微生物などを分
子識別素子(レセプタ)として、多孔性膜に固定化した
固定化膜によって、試料液の成分分析を行なうバイオセ
ンサに用いる固定化微生物膜の保存方法に関する。
FIELD OF THE INVENTION The present invention relates to an immobilized microorganism used in a biosensor for analyzing components of a sample liquid by an immobilization membrane in which an enzyme, a microorganism or the like is used as a molecular identification element (receptor) and immobilized on a porous membrane. A method for storing a membrane.

【0002】[0002]

【従来の技術】このバイオセンサは、試料液中の測定対
象物質を認識する分子識別素子として、酵素,微生物な
どの生体機能性物質を利用して、多孔性膜に固定化した
固定化膜と、電極を使用した電気化学的検出器とを組み
合わせて、試料液の成分分析を行なうものである。原理
的には、試料液を固定化膜に接触させ、これによって生
ずる生化学的反応による変化を、電極の出力電流として
検出し、この計測値を演算・制御部で信号処理して得ら
れる値を測定するものであり、微生物や酵素を変えるこ
とにより、測定対象物質を種々選べるという測定の選択
性に優れていることから、血液検査などの医療分野,食
品の品質管理などの発酵・食品工業計測や廃水処理など
の環境計測分野などに広く利用されている。
2. Description of the Related Art This biosensor uses an immobilization membrane immobilized on a porous membrane by utilizing a biofunctional substance such as an enzyme or a microorganism as a molecular identification element for recognizing a substance to be measured in a sample solution. In combination with an electrochemical detector using electrodes, the component analysis of the sample liquid is performed. In principle, the sample solution is brought into contact with the immobilization membrane, the change caused by the biochemical reaction caused by this is detected as the output current of the electrode, and the measured value is the value obtained by signal processing in the calculation / control section. Since it has excellent selectivity in measurement, such that various substances to be measured can be selected by changing microorganisms and enzymes, it is used in the medical field such as blood tests and in the fermentation / food industry such as food quality control. It is widely used in environmental measurement fields such as measurement and wastewater treatment.

【0003】バイオセンサに用いる固定化微生物膜は、
次のようにして作製され保存される。図3はこれを説明
するための模式図であり、図3において、例えば三角フ
ラスコなどの容器中にある微生物の培養液4を、円環状
のスペーサー5を貼り付けた例えばアセチルセルローズ
などの多孔質膜6上に適量を採取するが、その際、多孔
質膜6の下方から図示してないアスピレーターなどを用
いて吸引する。図3では、これをわかりやすくするため
に、培養液4の採取を点線で示し、スペーサー5と多孔
質膜6とを離して描いてある。次いで多孔質膜6と同じ
もう一枚の多孔質膜7をスペーサー5の上に貼り付け
て、これら二枚の多孔質膜6と多孔質膜7によってスペ
ーサー5を挟むようにし、微生物がスペーサー5の中で
多孔質膜6,7に固定され、固定化微生物膜を得るこ
とができる。得られた固定化微生物膜は、その後自然
乾燥させ、乾燥した状態で乾式保存している。
Immobilized microbial membranes used in biosensors are
It is prepared and stored as follows. FIG. 3 is a schematic diagram for explaining this. In FIG. 3, for example, a culture solution 4 of a microorganism in a container such as an Erlenmeyer flask and a porous material such as acetyl cellulose to which an annular spacer 5 is attached. An appropriate amount is collected on the membrane 6, and at this time, suction is performed from below the porous membrane 6 using an aspirator or the like (not shown). In FIG. 3, the collection of the culture solution 4 is shown by a dotted line, and the spacer 5 and the porous membrane 6 are drawn separately in order to make it easy to understand. Next, another porous film 7 which is the same as the porous film 6 is attached onto the spacer 5 so that the spacer 5 is sandwiched between these two porous films 6 and 7, and the microorganisms Among them, the immobilized microbial membrane 2 can be obtained by being immobilized on the porous membranes 6 and 7. The obtained immobilized microbial membrane 2 is then naturally dried and stored in a dry state in a dry state.

【0004】[0004]

【発明が解決しようとする課題】しかし、固定化微生物
を乾式保存することには、次のような問題がある。
固定化微生物膜をバイオセンサに取り付けて使用する
前に、多孔質膜6,7の材料を膨潤させ、乾燥して休眠
状態にある微生物を活性化させるために、例えばリン酸
緩衝溶液の中に一昼夜浸漬させる必要がある。微生物の
活性化は、多孔質膜6,7の膨潤とともに徐々に高まる
ので、バイオセンサに取り付けた後も、2〜3日は安定
な測定を行なうことがでず、この間は微生物に例えばグ
ルコース・グルタミン酸BOD標準溶液などの栄養分を
与えるエージング運転をしなければならない。これらの
ことから、バイオセンサに取り付けた固定化微生物膜
を交換した直後は、安定な測定を再開することができる
ようになるまでに、3〜4日間を要し、時間的な損失が
生じている。
However, the dry storage of the immobilized microbial membrane 2 has the following problems.
Before the immobilized microbial membrane 2 is attached to a biosensor and used, the material of the porous membranes 6 and 7 is swollen and dried to activate microorganisms in a dormant state, for example, in a phosphate buffer solution. It is necessary to soak it all day and night. Since the activation of the microorganisms gradually increases with the swelling of the porous membranes 6 and 7, stable measurement cannot be performed for 2 to 3 days even after the biosensors are attached. Aging operation to provide nutrients such as glutamate BOD standard solution must be performed. From these things, immobilized microbial membrane 2 attached to biosensor
Immediately after the replacement, it takes 3 to 4 days before stable measurement can be resumed, which causes a time loss.

【0005】本発明は上述の点に鑑みてなされたもので
あり、その目的は、固定化微生物膜をバイオセンサに取
り付けた後、速やかに測定を開始することが可能な固定
化微生物膜の保存方法を提供することにある。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to store an immobilized microbial membrane capable of promptly starting measurement after attaching the immobilized microbial membrane to a biosensor. To provide a method.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の固定化微生物膜の保存方法は、固定化微
生物膜をガス透過性の高いビニールパック中に、基質栄
養成分を所定の濃度含む緩衝溶液とともに収容し、緩衝
溶液中に浸漬してビニールパックを密封した後、5℃程
度の低温に湿式保存する。
In order to solve the above problems, the method for preserving an immobilized microbial membrane according to the present invention comprises a fixed microbial membrane in a vinyl pack having a high gas permeability, and a predetermined amount of a substrate nutrient component. Then, the vinyl pack is sealed by immersing it in a buffer solution containing the above-mentioned concentration, immersing it in the buffer solution, and storing it in a wet condition at a low temperature of about 5 ° C.

【0007】[0007]

【作用】本発明の固定化微生物膜の保存方法は、上記の
ように湿式保存としたために、使用するときは初めから
固定化微生物膜の構成材料である多孔質膜が膨潤状態と
なっており、さらに微生物が基質栄養成分中にあるの
で、この固定化微生物膜をバイオセンサに取り付けた直
後に、使用時と同様の微生物活性を持続している。その
ために、従来の乾式保存の場合のような、バイオセンサ
に取り付け前の微生物の活性化や、センサ出力が安定す
るまでのエージンク運転の必要がなくなり、固定化微生
物膜をバイオセンサに取り付けた後、速やかに試料液の
測定を行なうことができる。
Since the method for storing the immobilized microbial membrane of the present invention is wet preservation as described above, the porous membrane which is a constituent material of the immobilized microbial membrane is in a swollen state from the beginning when used. Moreover, since the microorganisms are present in the nutrient component of the substrate, immediately after the immobilized microbial membrane is attached to the biosensor, the same microbial activity as in use is maintained. Therefore, as in the case of conventional dry storage, activation of microorganisms before attachment to the biosensor and aging operation until the sensor output stabilizes are no longer necessary, and after attaching the immobilized microbial membrane to the biosensor. Therefore, the sample liquid can be promptly measured.

【0008】[0008]

【実施例】以下本発明を実施例に基づき説明する。図1
は本発明の固定化微生物膜の保存方法を説明するための
模式図である。本発明は図1に示すように、ガス透過性
の高い無可塑性軟質ビニールパック1などの中に、基質
微量栄養成分(例えばグルコース・グルタミン酸BOD
標準溶液)を所定の濃度(例えば220mg/l)とな
るように添加したリン酸緩衝溶液(例えばpH7.0,
0.1mg/l)3を入れ、この中に固定化微生物膜
を浸漬し、ビニールパック1の開口端を封止し、固定化
微生物膜と緩衝溶液3が密封された状態にして、これ
を例えば冷蔵庫中に5℃以下の低温で保存する。このと
き、保存中の雑菌の繁殖や、緩衝溶液3の腐敗を防ぐた
めに、固定化微生物膜を密封する前に、ビニールパッ
ク1と緩衝溶液3などは、全てオートクレーブで120
℃、20分間の滅菌を行なうことが望ましい。
EXAMPLES The present invention will be described below based on examples. Figure 1
FIG. 3 is a schematic diagram for explaining the method for storing the immobilized microbial membrane of the present invention. As shown in FIG. 1, the present invention includes a substrate micronutrient component (for example, glucose / glutamic acid BOD) in a non-plastic flexible vinyl pack 1 having high gas permeability.
A phosphate buffer solution (for example, pH 7.0, added with a standard solution) so as to have a predetermined concentration (for example, 220 mg / l)
0.1 mg / l) 3 was added, and the immobilized microbial membrane 2 was placed in this
Is immersed, the open end of the vinyl pack 1 is sealed, the immobilized microbial membrane 2 and the buffer solution 3 are sealed, and this is stored in, for example, a refrigerator at a low temperature of 5 ° C. or lower. At this time, in order to prevent the propagation of miscellaneous bacteria during storage and the spoilage of the buffer solution 3, before sealing the immobilized microbial membrane 2 , all of the vinyl pack 1 and the buffer solution 3 are autoclaved to 120
It is desirable to sterilize at 20 ° C for 20 minutes.

【0009】このようにして保存した固定化微生物膜
を、バイオセンサに取り付けた直後のセンサ出力の初期
変動を図2に示す。図2は、縦軸は最初の測定における
センサ出力を1とした相対出力で表わし、横軸を経過時
間(hr)で示した線図であり、比較のために従来の保
存方法による固定化微生物膜を用いた場合も併記して
ある。図2からわかるように、従来の方法で乾式保存し
た固定化微生物膜では、センサ出力が現れるまでに、
約1日、出力が安定するまでに約1日の計2日を必要と
するのに対して、本発明の湿式保存方法による固定化微
生物膜を用いたバイオセンサは、微生物膜の取り付け
後、約3時間でセンサ出力が安定し、速やかに試料液の
測定が可能である。これは前述のように、本発明の保存
方法が固定化微生物膜をバイオセンサに取り付けた後
の使用時と同様の膨潤状態で、微生物の基質栄養成分中
に保存しているので、微生物の活性を持続しているから
である。
Immobilized microbial membrane 2 stored in this way
FIG. 2 shows the initial fluctuation of the sensor output immediately after being attached to the biosensor. FIG. 2 is a diagram in which the vertical axis represents relative output with the sensor output in the first measurement being 1, and the horizontal axis represents elapsed time (hr). For comparison, immobilized microorganisms by a conventional storage method are shown. The case where the film 2 is used is also shown. As can be seen from FIG. 2, in the immobilized microbial membrane 2 dry-stored by the conventional method, before the sensor output appears,
It takes about 1 day, about 1 day for a total of 2 days for the output to stabilize. On the other hand, the biosensor using the immobilized microbial membrane 2 according to the wet preservation method of the present invention is The sensor output is stable in about 3 hours, and the sample liquid can be quickly measured. As described above, this is because the preservation method of the present invention preserves the microbial membrane 2 in the substrate nutrient component of the microorganism in the same swelling state as when used after attaching the biosensor to the biosensor. This is because the activity continues.

【0010】バイオセンサは、一般に固定化微生物膜
の寿命があるので、定期的にこれを交換しなければなら
ない。したがって、固定化微生物膜を交換した後、セ
ンサ出力が安定するまでは試料液の測定が不可能であ
り、出力が安定するまでの時間は短い程、効率がよく実
用性に優れることから、本発明の方法が効果的であるこ
とがわかる。
The biosensor is generally an immobilized microbial membrane 2
It has a limited lifespan and must be replaced on a regular basis. Therefore, after exchanging the immobilized microbial membrane 2 , it is impossible to measure the sample solution until the sensor output becomes stable, and the shorter the time until the output becomes stable, the more efficient and excellent the practicality. It can be seen that the method of the present invention is effective.

【0011】[0011]

【発明の効果】バイオセンサは、固定化微生物膜定期
的に交換する必要があるが、従来の固定化微生物膜の保
存方法は乾式方であるために、バイオセンサに取り付け
た後に出力が安定するまでに、2日程度かかっていた
が、本発明では固定化微生物膜の保存方法を湿式法と
し、膨潤状態の固定化微生物膜の微生物を栄養成分中に
保存して、微生物の活性を維持しているので、これをバ
イオセンサに取り付けた後、僅か3時間程度でセンサ出
力が安定し、速やかに試料液の測定が可能となり、極め
て効率よく稼働する実用性の高いバイオセンサを得るこ
とができる。
EFFECTS OF THE INVENTION In a biosensor, it is necessary to periodically replace the immobilized microbial membrane, but since the conventional method for storing the immobilized microbial membrane is the dry method, the output is stable after being attached to the biosensor. Although it took about 2 days until the preparation, in the present invention, the method for preserving the immobilized microbial membrane is a wet method, and the swelled immobilized microbial membrane is preserved in the nutrient component to maintain the microbial activity. Therefore, after attaching this to the biosensor, the sensor output becomes stable within about 3 hours, the sample solution can be measured quickly, and a highly practical biosensor that operates extremely efficiently can be obtained. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固定化微生物膜の保存方法を説明する
ための模式図
FIG. 1 is a schematic diagram for explaining a method for storing an immobilized microbial membrane of the present invention.

【図2】本発明の固定化微生物膜の保存方法と従来の保
存方法との比較で示したバイオセンサ出力線図
FIG. 2 is a biosensor output diagram showing a comparison between the method for preserving the immobilized microbial membrane of the present invention and the conventional method.

【図3】従来の固定化微生物膜の作製と保存方法を説明
するための模式図
FIG. 3 is a schematic diagram for explaining a conventional method for producing and storing an immobilized microbial membrane.

【符号の説明】[Explanation of symbols]

1 ビニールパック 固定化微生物膜 3 緩衝溶液 4 培養液 5 スペーサー 6 多孔質膜 7 多孔質膜1 Vinyl pack 2 Immobilized microbial membrane 3 Buffer solution 4 Culture solution 5 Spacer 6 Porous membrane 7 Porous membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 初又 繁 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Hatsumata 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】微生物を多孔性膜に固定化した固定化微生
物膜と電気化学的検出器とを組み合わせて、試料液の成
分分析を行なうバイオセンサの前記固定化微生物膜を保
存する方法であって、密封容器内の液中に浸漬し低温で
湿式保存することを特徴とする固定化微生物膜の保存方
法。
1. A method of preserving the immobilized microbial membrane of a biosensor for analyzing the components of a sample solution by combining an immobilized microbial membrane comprising a microorganism immobilized on a porous membrane and an electrochemical detector. Then, the method for preserving an immobilized microbial membrane is characterized by immersing the membrane in a liquid in a sealed container and preserving it at low temperature in a wet manner.
【請求項2】請求項1記載の保存方法において、密封容
器はビニールパックであることを特徴とする固定化微生
物膜の保存方法。
2. The method according to claim 1, wherein the sealed container is a vinyl pack.
【請求項3】請求項1または2記載の保存方法におい
て、固定化微生物膜は基質栄養成分を所定の濃度含む緩
衝溶液中に浸漬保存することを特徴とする固定化微生物
膜の保存方法。
3. The method for storing an immobilized microbial membrane according to claim 1 or 2, wherein the immobilized microbial membrane is immersed and stored in a buffer solution containing a substrate nutrient component at a predetermined concentration.
【請求項4】請求項1ないし3記載の保存方法におい
て、固定化微生物膜は5℃以下に保存することを特徴と
する固定化微生物膜の保存方法。
4. The method for preserving an immobilized microbial membrane according to claim 1, wherein the immobilized microbial membrane is preserved at 5 ° C. or lower.
JP4159863A 1992-06-19 1992-06-19 Preservation of microorganism immobilized membrane Pending JPH0696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4159863A JPH0696A (en) 1992-06-19 1992-06-19 Preservation of microorganism immobilized membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4159863A JPH0696A (en) 1992-06-19 1992-06-19 Preservation of microorganism immobilized membrane

Publications (1)

Publication Number Publication Date
JPH0696A true JPH0696A (en) 1994-01-11

Family

ID=15702868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4159863A Pending JPH0696A (en) 1992-06-19 1992-06-19 Preservation of microorganism immobilized membrane

Country Status (1)

Country Link
JP (1) JPH0696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155821A (en) * 1985-12-27 1987-07-10 昭和電機株式会社 Sanitary toilet seat apparatus for western style toilet
WO1998028569A1 (en) * 1996-12-20 1998-07-02 Kikkoman Corporation Luminescent tool, its auxiliary member and method of preserving bioluminescent composition used in the tool and the auxiliary member
DE102016225150B4 (en) 2015-12-24 2019-10-24 Tsubakimoto Chain Co. Tensioner lever
DE102016202686B4 (en) 2015-02-27 2019-12-19 Tsubakimoto Chain Co. Tensioner lever

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155821A (en) * 1985-12-27 1987-07-10 昭和電機株式会社 Sanitary toilet seat apparatus for western style toilet
WO1998028569A1 (en) * 1996-12-20 1998-07-02 Kikkoman Corporation Luminescent tool, its auxiliary member and method of preserving bioluminescent composition used in the tool and the auxiliary member
US6521304B1 (en) 1996-12-20 2003-02-18 Kikkoman Corporation Luminescent tool, its auxiliary member and method of preserving bioluminescent composition used in the tool and the auxiliary member
DE102016202686B4 (en) 2015-02-27 2019-12-19 Tsubakimoto Chain Co. Tensioner lever
DE102016225150B4 (en) 2015-12-24 2019-10-24 Tsubakimoto Chain Co. Tensioner lever

Similar Documents

Publication Publication Date Title
Hikuma et al. Microbial electrode sensor for alcohols
Hikuma et al. A potentiometric microbial sensor based on immobilized Escherichia coli for glutamic acid
Watanabe et al. Determination of hypoxanthine in fish meat with an enzyme sensor
US5177012A (en) Biosensor containing immobilized Zymomonas mobilis cells for measuring glucose, fructose and sucrose
Karube et al. Glucose sensor using immobilized whole cells of Pseudomonas fluorescens
Hikuma et al. Ammonia electrode with immobilized nitrifying bacteria
US4780191A (en) L-glutamine sensor
Tsuchida et al. Immobilization of D-glucose oxidase onto a hydrogen peroxide permselective membrane and application for an enzyme electrode
Hlavay et al. Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction
Kubo et al. Amperometric determination of creatinine with a biosensor based on immobilized creatininase and nitrifying bacteria
Karube et al. Microbial BOD sensor utilizing thermophilic bacteria
Karube et al. Microbial electrode sensor for vitamin B12
Okada et al. NO2 sensor which uses immobilized nitrite oxidizing bacteria
Riedel et al. Inhibitor-treated microbial sensor for the selective determination of glutamic acid
JPH0696A (en) Preservation of microorganism immobilized membrane
Hikima et al. Enzyme sensor for L-lactate with a chitosan-mercury film electrode
Karube et al. Microbial sensors for volatile compounds
Karube et al. Application of microbiological sensors in fermentation processes
Okada et al. Ammonium ion sensor based on immobilized nitrifying bacteria and a cation-exchange membrane
Okada et al. Hybrid urea sensor using nitrifying bacteria
Matsunaga et al. Rapid determination of phenylalanine with immobilized leuconostoc mesenteroides and a lactate electrode
SU1034618A3 (en) Electrochemical transducer for determining concentration of substances in solutions
Karube et al. Sulfite ion sensor with use of immobilized organelle
Harita et al. BOD quick estimating system utilizing a microbial electrode
Campanella et al. Enzyme-entrapping membranes for enzyme sensors