JPH0696606B2 - Dispersant for reverse phase suspension polymerization and method for reverse phase suspension polymerization - Google Patents

Dispersant for reverse phase suspension polymerization and method for reverse phase suspension polymerization

Info

Publication number
JPH0696606B2
JPH0696606B2 JP2120631A JP12063190A JPH0696606B2 JP H0696606 B2 JPH0696606 B2 JP H0696606B2 JP 2120631 A JP2120631 A JP 2120631A JP 12063190 A JP12063190 A JP 12063190A JP H0696606 B2 JPH0696606 B2 JP H0696606B2
Authority
JP
Japan
Prior art keywords
polymerization
suspension polymerization
reverse phase
phase suspension
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2120631A
Other languages
Japanese (ja)
Other versions
JPH03231901A (en
Inventor
武史 斉藤
貴弘 岡本
弘史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP2120631A priority Critical patent/JPH0696606B2/en
Publication of JPH03231901A publication Critical patent/JPH03231901A/en
Publication of JPH0696606B2 publication Critical patent/JPH0696606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水溶性単量体を疎水性溶媒中で懸濁させなが
ら重合を行なう場合に用いる逆相懸濁重合用分散剤及び
該分散剤を用いる逆相懸濁重合方法に関し、更に詳述す
ると重合系の懸濁状態を安定に保ち、粒状重合体を確実
に得ることのできる逆相懸濁重合用分散剤及び逆相懸濁
重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a dispersant for reversed-phase suspension polymerization used when polymerization is carried out while suspending a water-soluble monomer in a hydrophobic solvent, and the dispersion. More specifically, it relates to a reverse phase suspension polymerization method using a dispersant, and a dispersant for reverse phase suspension polymerization and a reverse phase suspension polymerization capable of stably maintaining a suspended state of a polymerization system and reliably obtaining a granular polymer. Regarding the method.

〔従来の技術〕 従来より、水溶性単量体を重合させる方法としては、重
合不活性でかつ疎水性の溶媒中に水溶性単量体の水溶液
を懸濁、分散させて重合する、いわゆる逆相懸濁重合方
法が周知である。
[Prior Art] Conventionally, as a method of polymerizing a water-soluble monomer, a so-called reverse polymerization is carried out by suspending and dispersing an aqueous solution of a water-soluble monomer in a polymerization-inert and hydrophobic solvent. Phase suspension polymerization methods are well known.

この方法を実施するにあたっては、重合する単量体を安
定に分散させるため、分散剤を適確に選択することが重
要であり、このため、従来より種々の分散剤が提案され
ている。
In carrying out this method, it is important to appropriately select the dispersant in order to stably disperse the polymerizable monomer, and therefore various dispersants have been conventionally proposed.

例えば、ショ糖脂肪酸エステル、ソルビタン脂肪酸エス
テル、エトキシ化された脂肪酸アミド、グリセリン脂肪
酸エステル等の非イオン型界面活性剤を分散剤として用
いることが提案されている(特公昭54−30710号公報
等)。
For example, it has been proposed to use a nonionic surfactant such as sucrose fatty acid ester, sorbitan fatty acid ester, ethoxylated fatty acid amide, or glycerin fatty acid ester as a dispersant (Japanese Patent Publication No. 54-30710). .

また、メタクリル酸−メタクリル酸メチル−アクリル酸
−2−エチルヘキシル共重合体等の有機溶剤親和性のカ
ルボキシル基含有重合体(特開昭57−98512号公報)、
親水部としてカチオン部を、親油部としてスチレン誘導
体を選択した逆相懸濁重合用分散剤(特開昭63−8402号
公報)、アリル基を有する樹脂の無水マレイン酸処理物
等の高分子化合物や直鎖アルキル基を有するモノアルキ
ルリン酸(特開昭61−209201号公報)、分子中にエチレ
ン性不飽和結合を有する特定のリン酸モノエステル化合
物からなる、水溶性のエチレン性不飽和単量体を反応性
分散剤として用いる方法(特開昭61−231003号公報)等
も提案されている。
In addition, a carboxyl group-containing polymer having an organic solvent affinity such as a methacrylic acid-methyl methacrylate--2-ethylhexyl acrylate copolymer (JP-A-57-98512),
Polymers such as a dispersant for reversed-phase suspension polymerization in which a cation portion is selected as a hydrophilic portion and a styrene derivative is selected as a lipophilic portion (JP-A-63-8402), a maleic anhydride-treated product of a resin having an allyl group, and the like. A water-soluble ethylenically unsaturated compound consisting of a compound or a monoalkyl phosphoric acid having a linear alkyl group (JP-A-61-209201) and a specific phosphoric acid monoester compound having an ethylenically unsaturated bond in the molecule A method using a monomer as a reactive dispersant (Japanese Patent Laid-Open No. 61-231003) has been proposed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、非イオン型界面活性剤を分散剤として用
いた場合、生成した重合体が微粒状となり、分離,乾燥
工程での粉ジンを発生するなどの問題が生じ、その取扱
いが困難である。
However, when a nonionic surfactant is used as a dispersant, the produced polymer becomes fine particles, and problems such as generation of powder gin in the separation and drying steps occur, and the handling thereof is difficult.

一方、高分子化合物等を分散剤として使用した場合は、
生成した重合物は小粒状となり、上記欠点をある程度改
良できるものの、その反面、重合操作の間に重合物粒子
と重合槽の槽壁或いは攪拌機との間でかなりの粘着が起
こり、反応させた単量体の一部が使用不能の重合槽付着
物として失われることは免れ得ない。このような水溶性
単量体の重合槽付着物を除去するには一般に多大の労力
を要し、このため粒状重合体の効率的な生産の妨げとな
っている。
On the other hand, when a polymer compound or the like is used as the dispersant,
The produced polymer becomes small particles and although the above drawbacks can be improved to some extent, on the other hand, during the polymerization operation, a considerable amount of adhesion occurs between the polymer particles and the tank wall of the polymerization tank or the stirrer, and the reaction is performed. It is unavoidable that a part of the polymer will be lost as unusable polymerization vessel deposits. A great deal of labor is generally required to remove such water-soluble monomer deposits in the polymerization tank, which hinders efficient production of the granular polymer.

本発明は上記事情に鑑みなされたもので、水溶性単量体
を疎水性の溶媒中に安定に分散させ、取扱い易い粒状の
重合体を得ることができると共に、重合装置や攪拌機等
への重合物の付着を可及的に抑制し得、作業性、生産性
を向上させることのできる逆相懸濁重合用分散剤及び該
分散剤を用いた逆相懸濁重合方法を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and it is possible to stably disperse a water-soluble monomer in a hydrophobic solvent to obtain a granular polymer that is easy to handle, and to polymerize it in a polymerization device, a stirrer, or the like. An object of the present invention is to provide a dispersant for reverse phase suspension polymerization capable of suppressing adhesion of substances as much as possible and improving workability and productivity, and a reverse phase suspension polymerization method using the dispersant. And

〔課題を解決するための手段及び作用〕[Means and Actions for Solving the Problems]

本発明者らは、上記目的を達成すべく鋭意研究を重ねた
結果、水溶性単量体を疎水性溶媒中で逆相懸濁重合させ
るに際し、親油化処理された無機微粉末を分散剤として
使用することが有効であることを知見した。
The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object. As a result, when reverse-phase suspension polymerization of a water-soluble monomer in a hydrophobic solvent, the lipophilic inorganic fine powder is used as a dispersant. It was found that it is effective to use as.

即ち、親油化処理無機微粉末、例えば親水性の無機微粉
末を表面処理し、溶媒親和性を与えた無機微粉末を逆相
懸濁重合方法において分散剤として用いた場合、意外に
も水溶性の単量体を安定に疎水性溶媒中に分散し得、重
合体の凝集物の生成がほとんど認められず、安定な生産
が可能である上、微粒子状重合体をほとんど含まない取
扱い易い粒子(主に230〜730μmの平均一次粒子径)の
重合体を得ることができると共に、重合装置や攪拌機等
への重合物の付着を可及的に抑制し得、これにより重合
体製造の全工程に亘って、作業性、生産性を顕著に向上
できることを見い出し、本発明をなすに至ったものであ
る。
That is, when a lipophilic treatment-treated inorganic fine powder, for example, a hydrophilic inorganic fine powder is surface-treated and the solvent-affined inorganic fine powder is used as a dispersant in the reverse phase suspension polymerization method, it is unexpectedly water-soluble. Particles that can be stably dispersed in a hydrophobic solvent with little formation of polymer aggregates, stable production is possible, and easy-to-handle particles containing almost no fine-particle polymer It is possible to obtain a polymer (mainly having an average primary particle diameter of 230 to 730 μm), and to suppress the adhesion of the polymer to a polymerization device, a stirrer, etc. as much as possible, and thereby the whole process of polymer production. The inventors have found that the workability and the productivity can be remarkably improved, and have completed the present invention.

なお、従来より連続相が親水性溶媒(通常水)で分散相
が例えばスチレンモノマー等の疎水性単量体である懸濁
重合方法においては、ポリビニルアルコールやヒドロキ
シエチルセルロース等の分散剤のほかに、無機化合物を
保護コロイド剤、分散安定剤として用いる例が知られて
いる。
In the suspension polymerization method in which the continuous phase is a hydrophilic solvent (usually water) and the dispersed phase is a hydrophobic monomer such as a styrene monomer, conventionally, in addition to a dispersant such as polyvinyl alcohol or hydroxyethyl cellulose, An example is known in which an inorganic compound is used as a protective colloid agent or a dispersion stabilizer.

例えば非イオン界面活性剤及びアニオン界面活性剤の存
在下、珪酸コロイドを増粘剤として乳化重合する方法
(特開昭49−113839号公報)、炭酸カルシウムなどの無
機フィラーを保護コロイドとして酢酸ビニル単量体等を
乳化重合する方法(特開昭57−67609号公報)、分散安
定剤としてリン酸カルシウム等の難水溶性無機化合物を
用いて懸濁重合する方法(特開平1−100562号公報)等
が提案されている。また、タルクやモンモリロナイト等
の無機物質の存在下で架橋させる方法(特開昭62−2548
41号公報,同62−254842号公報)、逆相懸濁重合により
得られたスラリーに無機物質を添加する方法(特開昭59
−8711号公報)、重合体の改質や表面処理として無機物
質を混合する方法(特開昭56−133028号公報,同59−80
459号公報,同60−84360号公報)等が提案されている。
For example, in the presence of a nonionic surfactant and an anionic surfactant, a method of emulsion polymerizing a silicic acid colloid as a thickening agent (JP-A-49-113839), an inorganic filler such as calcium carbonate as a protective colloid and vinyl acetate monohydrate. Methods such as emulsion polymerization of monomers and the like (JP-A-57-67609), suspension polymerization using a poorly water-soluble inorganic compound such as calcium phosphate as a dispersion stabilizer (JP-A-1-100562), and the like. Proposed. Further, a method of crosslinking in the presence of an inorganic substance such as talc or montmorillonite (Japanese Patent Laid-Open No. 62-2548).
41, 62-254842), a method of adding an inorganic substance to a slurry obtained by reverse phase suspension polymerization (JP-A-59-59).
No. 8711), a method of mixing an inorganic substance for polymer modification and surface treatment (JP-A-56-133028, 59-80).
No. 459 and No. 60-84360) are proposed.

しかしながら、上記方法を逆相懸濁重合法に応用して重
合不活性な無機物質を添加すると、後述する比較例で示
したように、一般に懸濁系が不安定となり、集塊化し易
く、粒状の重合体が得られないばかりでなく、攪拌機の
過負荷や重合槽からの取り出しが不可能になるなどの問
題点があるものである。
However, when the above-mentioned method is applied to the reverse phase suspension polymerization method and a polymerization-inert inorganic substance is added, the suspension system generally becomes unstable and easily agglomerates, as shown in Comparative Examples to be described later, and it becomes granular. In addition to not being able to obtain the above polymer, there is a problem that the stirrer is overloaded and it is impossible to take it out of the polymerization tank.

以下、本発明について更に詳しく説明する。Hereinafter, the present invention will be described in more detail.

本発明に係る逆相懸濁重合用の分散剤は、親油化処理さ
れた無機微粉末からなるものである。
The dispersant for reverse phase suspension polymerization according to the present invention is composed of an inorganic fine powder that has been subjected to a lipophilic treatment.

ここで、本発明に係る分散剤の親油性の程度は、例えば
試験管に単量体水溶液と疎水性溶媒を同容量取り、これ
に少量の無機微粉末を入れ、よく振とうしてから静置し
て、無機微粉末がどちらの液体の方へ移行するかを観察
することにより識別でき、好ましい親油性を有する無機
微粉末としては、疎水性溶媒中に移行するもの、あるい
は両液体の界面に浮くものが挙げられる。
Here, the degree of lipophilicity of the dispersant according to the present invention is determined by, for example, taking an equal volume of the monomer aqueous solution and the hydrophobic solvent in a test tube, adding a small amount of inorganic fine powder thereto, and thoroughly shaking and then statically stirring. The inorganic fine powder can be identified by observing which liquid the inorganic fine powder migrates to, and as the inorganic fine powder having preferable lipophilicity, one that migrates into a hydrophobic solvent, or an interface between both liquids The ones that float are.

本発明の逆相懸濁重合方法において、分散剤として用い
る無機微粉末としては、親油化処理されたもので、親水
性であれば疎水化処理して親油性を付与することにより
使用することができるが、シリカ系、酸化アルミニウム
系、酸化チタン系の微粉末が好適に用いられる。なお、
疎水化処理を行なう場合は、疎水化度を35以上にするこ
とが好ましく、また、無機微粉末の粒径、比表面積は特
に制限されないが、通常平均一次粒子径が10μm以下、
比表面積(BET法)が約1m2/g以上とすることが分散性の
点から好ましい。
In the reverse phase suspension polymerization method of the present invention, the inorganic fine powder used as a dispersant is a lipophilic treatment, and if it is hydrophilic, it may be used by hydrophobizing it to impart lipophilicity. However, silica-based, aluminum oxide-based, and titanium oxide-based fine powders are preferably used. In addition,
When the hydrophobic treatment is carried out, the degree of hydrophobicity is preferably 35 or more, and the particle size and specific surface area of the inorganic fine powder are not particularly limited, but usually the average primary particle size is 10 μm or less,
From the viewpoint of dispersibility, it is preferable that the specific surface area (BET method) is about 1 m 2 / g or more.

ここで、親水性の無機微粉末に親油性を付与するための
疎水化処理方法としては、例えば含水ケイ酸、無水ケイ
酸、これらの塩、二酸化ケイ素などのシリカ径無機微粉
末の表面に存在するシラノール基を化学的に変化させて
親油化し、疎水性溶媒への親和性を高める方法が好適に
採用される。更に、この方法では、シラノール基又は金
属酸化物表面のOH基と化学的に反応し得るシランカップ
リング剤、チンカ系カップリング剤、アルミニウム系カ
ップリング剤等が好適に用いられ、例えばシランカップ
リング剤としてジメチルジクロロシラン等の有機ケイ素
化合物を用いて、シラノール基にメチル基等の親油性基
を導入することが好ましい。この場合、シラノール基の
約10%以上、特に30%以上を有機ケイ素化合物を用いて
疎水化処理することが好ましく、かかる親油性のシリカ
を逆相懸濁重合用分散剤として用いることにより、凝集
した重合物の発生を防止して安定に、しかも微粒子状重
合体の生成を抑制してビーズ状ないしは楕円形状(カプ
セル形)の粒状重合体を確実に製造することができる。
Here, as the hydrophobic treatment method for imparting lipophilicity to the hydrophilic inorganic fine powder, for example, hydrous silicic acid, silicic acid anhydride, a salt thereof, or a silica diameter inorganic fine powder such as silicon dioxide is present on the surface. The method of chemically changing the silanol group to make it lipophilic and increasing the affinity to the hydrophobic solvent is suitably adopted. Furthermore, in this method, a silane coupling agent that can chemically react with a silanol group or an OH group on the surface of a metal oxide, a tinca-based coupling agent, an aluminum-based coupling agent, or the like is preferably used. For example, silane coupling It is preferable to use an organosilicon compound such as dimethyldichlorosilane as the agent to introduce a lipophilic group such as a methyl group into the silanol group. In this case, it is preferable that about 10% or more, especially 30% or more of the silanol groups be subjected to a hydrophobic treatment with an organosilicon compound. By using such lipophilic silica as a dispersant for reverse phase suspension polymerization, aggregation It is possible to reliably produce a bead-shaped or elliptical (capsule-shaped) granular polymer by preventing the generation of the polymer and stably suppressing the generation of the fine-particle polymer.

なお、酸化アルミニウム系、酸化チタン系微粒子も同様
の処理をすることができる。
The same treatment can be applied to aluminum oxide-based particles and titanium oxide-based particles.

このように、シリカの表面のシラノール基にメチル基を
導入して疎水化した市販品としては、商品名R−972,R
−974(日本アエロジル社製,表面のシラノール基の約7
5%をCH3グループで親油化処理したもの)が挙げられ、
酸化アルミニウムを疎水化した市販品としては、商品名
H−32ST,H−42STV,H−320ST(昭和電工社製)が挙げら
れる。
As described above, as a commercial product in which a methyl group is introduced into the silanol group on the surface of silica to make it hydrophobic, trade name R-972, R
-974 (manufactured by Nippon Aerosil Co., Ltd., containing approximately 7 silanol groups on the surface)
5% of which was subjected to lipophilic treatment with CH 3 group),
Commercially available products obtained by hydrophobizing aluminum oxide include trade names H-32ST, H-42STV, and H-320ST (manufactured by Showa Denko KK).

また、種々の無機微粉末(親水性)の疎水性溶媒への親
和性を高める他の方法としては、コーティングによる改
質(例えば透明な陽性の水和金属酸化物のヒドロゾルを
作り、これに陰イオン性界面活性剤を加えてヒドロゾル
中のコロイド粒子を親油性転換する方法)、トポケミカ
ルな改質(例えばシリカ,酸化アルミニウム,酸化チタ
ン,酸化亜鉛,酸化マグネシウム,酸化鉄等の金属酸化
物又はシリカ−アルミナなどの複合酸化物をアルコール
処理する方法、カップリング剤で処理する方法、あるい
は、炭酸カルシウム,硫酸バリウム、硫酸カルシウム,
水酸化アルミニウム,水酸化マグネシウム,タルクなど
をカップリング剤により処理する方法)、無機粉体の破
砕面に発現する反応活性点を利用した改質(例えば粉体
表面にグラフト重合する方法)、カプセル化による改
質、紫外線,放射線,プラズマ等の高エネルギー利用に
よる改質(例えばアルミナへのスチレンの放射線グラフ
ト重合する方法)、更に沈殿反応による改質などが挙げ
られるが、これらに限定されるものではなく、無機微粉
末を親油性とすることのできるいずれの方法も採用し得
る。
Another method for increasing the affinity of various inorganic fine powders (hydrophilic) for hydrophobic solvents is to modify by coating (for example, to make a transparent positive hydrated metal oxide hydrosol, and then Lipophilic conversion of colloidal particles in hydrosol by adding ionic surfactant), topochemical modification (eg silica, metal oxides such as aluminum oxide, titanium oxide, zinc oxide, magnesium oxide, iron oxide or silica) -A method of treating a complex oxide such as alumina with alcohol, a method of treating with a coupling agent, or calcium carbonate, barium sulfate, calcium sulfate,
A method of treating aluminum hydroxide, magnesium hydroxide, talc, etc. with a coupling agent), modification utilizing reaction active points that appear on the crushed surface of the inorganic powder (for example, a method of graft polymerization on the powder surface), capsules Examples include, but are not limited to, modification by oxidization, modification by using high energy such as ultraviolet rays, radiation, and plasma (for example, a method of radiation graft polymerization of styrene on alumina), and modification by precipitation reaction. Instead, any method that can make the inorganic fine powder lipophilic can be employed.

本発明の逆相懸濁重合方法においては、上述した親油性
無機微粉末からなる分散剤の1種を単独で又は2種以上
を併用して、水溶性単量体に対して通常0.01〜15重量
%、好ましくは0.05〜8重量%の範囲で添加使用するこ
とができる。添加量が0.01重量%未満であると目的とす
る分散効果が得られず、一方15重量%より多く添加した
場合には、製造される重合体の物性などに好ましくない
影響を与える場合がある。
In the reverse phase suspension polymerization method of the present invention, one type of the above-mentioned dispersant comprising the lipophilic inorganic fine powder is used alone or in combination of two or more types, and usually 0.01 to 15 with respect to the water-soluble monomer. It can be added and used in the range of wt%, preferably 0.05 to 8 wt%. If the addition amount is less than 0.01% by weight, the desired dispersion effect cannot be obtained, while if the addition amount is more than 15% by weight, the physical properties of the polymer produced may be adversely affected.

なお、本発明の逆相懸濁重合方法においては、上述した
親油性の無機微粉末の分散効果を妨げない範囲で従来公
知の分散剤を併用しても差し支えない。
In the reverse phase suspension polymerization method of the present invention, a conventionally known dispersant may be used in combination within a range that does not impair the dispersing effect of the lipophilic inorganic fine powder described above.

本発明の逆相懸濁重合方法では、上述した分散剤を用い
る以外は通常の方法で水溶性単量体を疎水性溶媒中で重
合させることができる。
In the reverse phase suspension polymerization method of the present invention, a water-soluble monomer can be polymerized in a hydrophobic solvent by a usual method except that the above-mentioned dispersant is used.

例えば、疎水性溶媒としては、重合不活性で水を溶解し
ない性質を有する全ての疎水性溶媒が使用可能である
が、重合熱の除去並びに得られる重合体の乾燥工程等を
考慮すると、沸点が30〜200℃の脂肪族炭化水素、脂環
式炭化水素又は芳香族炭化水素あるいはこれらの混合溶
媒を使用することが好ましく、特にヘプタン、オクタ
ン、n−ヘキサン、シクロヘキサン、メチルシクロヘキ
サン、ベンゼン、トルエン、キシレン又はこれらの混合
溶媒が好ましく用いられる。
For example, as the hydrophobic solvent, it is possible to use all hydrophobic solvents which are inactive in polymerization and do not dissolve water, but in consideration of removal of heat of polymerization and drying step of the resulting polymer, the boiling point is It is preferable to use an aliphatic hydrocarbon, an alicyclic hydrocarbon or an aromatic hydrocarbon or a mixed solvent thereof having a temperature of 30 to 200 ° C., especially heptane, octane, n-hexane, cyclohexane, methylcyclohexane, benzene, toluene, Xylene or a mixed solvent thereof is preferably used.

一方、水溶性単量体としても、逆相懸濁重合方法により
重合可能な水溶性の単量体であればいずれのものをも使
用することができる。例えば、アクリル酸又はメタクリ
ル酸やそれらのアルカリ金属塩,アンモニウム塩,アミ
ン塩,アクリルアミド又はメタクリルアミド、水溶性の
N−置換アクリルアミド又はメタクリルアミド、ビニル
イミダゾール、ビニルピリジン、ビニルピロリドン、ス
ルホン化スチレン、更にビニルスルホン酸又はそのアル
カリ金属塩などが挙げられ、これらの単量体の1種を単
独で又は2種以上を任意に組み合わせて共重合させるこ
とができる。また、単量体の水溶液の溶解性を損なわな
い範囲(均一溶液)で、例えばアクリル酸エステルなど
の他の水溶性単量体を共重合させることもできる。
On the other hand, as the water-soluble monomer, any water-soluble monomer that can be polymerized by the reverse phase suspension polymerization method can be used. For example, acrylic acid or methacrylic acid or their alkali metal salts, ammonium salts, amine salts, acrylamides or methacrylamides, water-soluble N-substituted acrylamides or methacrylamides, vinylimidazoles, vinylpyridines, vinylpyrrolidones, sulfonated styrenes, and Examples thereof include vinyl sulfonic acid and alkali metal salts thereof, and one of these monomers may be copolymerized alone or two or more of them may be arbitrarily combined and copolymerized. Further, other water-soluble monomers such as acrylic acid ester may be copolymerized within a range (homogeneous solution) that does not impair the solubility of the aqueous monomer solution.

更には、必要に応じて、上記単量体の(共)重合中ある
いは重合後に2個以上の重合性不飽和基を有する水溶性
の架橋剤で架橋反応させることもできる。この架橋剤と
しては、例えばメチレンビスアクリルアミドやエチレン
性不飽和単量体の官能基と反応し得る2個以上の官能基
を有する水溶性の架橋剤、例えばエチレングリコールジ
グリシジルエーテル等が挙げられるが、これらに限定さ
れるものではない。
Furthermore, if necessary, a crosslinking reaction can be carried out with a water-soluble crosslinking agent having two or more polymerizable unsaturated groups during (co) polymerization of the above-mentioned monomer or after the polymerization. Examples of the cross-linking agent include methylenebisacrylamide and water-soluble cross-linking agents having two or more functional groups capable of reacting with the functional groups of the ethylenically unsaturated monomer, such as ethylene glycol diglycidyl ether. However, the present invention is not limited to these.

上記水溶性単量体は、逆相懸濁重合に際し、一般に水溶
液として使用するが、この場合、単量体濃度は広い範囲
で変更が可能であり、一般には10〜80重量%とすること
ができる。
The above water-soluble monomer is generally used as an aqueous solution in reverse phase suspension polymerization, but in this case, the monomer concentration can be changed within a wide range, and generally 10 to 80% by weight. it can.

また、この単量体水溶液と疎水性溶媒との割合も広い範
囲に亘って変更することができるが、通常容量比で1:1
〜1:10の範囲が好適である。
Further, the ratio of the aqueous monomer solution and the hydrophobic solvent can be changed over a wide range, but the volume ratio is usually 1: 1.
A range of up to 1:10 is preferred.

更に、重合開始剤としては、公知の水溶性ラジカル開始
剤、例えば過硫酸塩やアゾ化合物等の1種を単独で又は
2種以上を併用して常用量で使用することができ、ま
た、これらに加えてクロムイオン、亜硫酸塩、ヒドロキ
シルアミン、ヒドラジン等を添加してレドックス系重合
開示剤として使用することもできる。
Further, as the polymerization initiator, known water-soluble radical initiators such as persulfates and azo compounds can be used alone or in combination of two or more at a usual dose, and In addition to the above, chromium ion, sulfite, hydroxylamine, hydrazine and the like can be added to be used as a redox polymerization disclosure agent.

〔発明の効果〕〔The invention's effect〕

本発明によれば、逆相懸濁重合用分散剤として親油化処
理された無機微粉末を分散剤として用いることにより、
水溶性の単量体を疎水性の溶媒中に安定に分散させ、取
り扱い易い粒状の重合体を選択的に得ることができる
上、広範囲に粒径をコントロールし得ると共に、重合装
置や攪拌機等への重合物の付着を可及的に抑制し得るも
ので、これにより重合体製造の全工程に亘って作業性、
生産性を著しく向上させることができる。このため重合
装置を従来の回分式から連続式に変換することも可能と
するもので、本発明の逆相懸濁重合方法は、従来より逆
相懸濁重合方法により得られている増粘剤、凝集剤、架
橋型重合体等の製造に好適に適用することができる。
According to the present invention, by using the lipophilic inorganic fine powder as a dispersant as a dispersant for reverse phase suspension polymerization,
A water-soluble monomer can be stably dispersed in a hydrophobic solvent, and a granular polymer that is easy to handle can be selectively obtained, and the particle size can be controlled in a wide range, and it can be used in a polymerization device or a stirrer. It is possible to suppress the adhesion of the polymer of the polymer as much as possible, whereby the workability throughout the entire process of polymer production,
The productivity can be remarkably improved. Therefore, it is possible to convert the conventional batch system from a conventional batch system to a continuous system, and the reverse phase suspension polymerization method of the present invention is a thickener obtained by the conventional reverse phase suspension polymerization method. It can be suitably applied to the production of coagulants, cross-linking polymers and the like.

以下、実施例及び比較例を挙げて本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではな
い。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

なお、以下の例において、親油性化合物の疎水化度は下
記方法に基づいて評価した。
In addition, in the following examples, the degree of hydrophobicity of the lipophilic compound was evaluated based on the following method.

疎水化度の評価試験方法 200ccのビーカーに蒸留水50ccを入れ、親油性微粉末試
料を0.2g入れた(なおこの場合、試料が十分疎水性であ
れば完全に水面に浮く)。次に、この試料の浮いている
水に小さなマグネティックスターラーで攪拌下、先端を
水中に入れたビューレットからメタノールを加えた。メ
タノールが加えられるにつれて水面に浮いていた試料粉
末が濡れて水中に分散するが、浮いている試料がなくな
って完全に濡れてしまった点のメタノール滴下量を測定
し、この測定値をAccとして下記式から疎水化度を求め
た。
Hydrophobicity evaluation test method In a 200 cc beaker, 50 cc of distilled water was added, and 0.2 g of a sample of lipophilic fine powder was added (in this case, if the sample was sufficiently hydrophobic, it completely floated on the water surface). Next, methanol was added to the floating water of this sample while stirring with a small magnetic stirrer from a burette with the tip placed in water. As methanol is added, the sample powder floating on the water surface gets wet and disperses in water, but the amount of methanol dropped at the point where the floating sample disappeared and became completely wet was measured, and this measured value was used as Acc The degree of hydrophobicity was calculated from the formula.

なお、疎水化度の値が大きい程、高濃度のメタノール水
溶液にならないと濡れないことから、疎水性が高いこと
になる。
It should be noted that the larger the value of the degree of hydrophobicity, the higher the degree of hydrophobicity, because the higher the concentration of the aqueous methanol solution is, the more the water does not get wet.

〔実施例1〕 攪拌機、還流冷却器及び窒素ガス導入管を備えた14
つ口セパラブルフラスコにシクロヘキサン357g、親油性
二酸化ケイ素2gを仕込み、窒素ガスを吹込んで溶存酸素
を追い出し、73℃まで加温した、なお、親油性二酸化ケ
イ素としては、親水性二酸化ケイ素エアロゾル(粒径10
〜40nm)表面のシラノール基とジメチルジクロロシラン
とを化学的に反応させた生成物で、シラノール基の約75
%をCH3グループで親油化処理を施した疎水性二酸化ケ
イ素(商品名R−972,日本アエロジル社製,平均粒径約
16nm、疎水化度45)を用いた。
Example 1 14 equipped with a stirrer, a reflux condenser and a nitrogen gas introduction pipe
Cyclohexane 357 g and lipophilic silicon dioxide 2 g were charged into a two-necked separable flask, nitrogen gas was blown in to expel dissolved oxygen, and the mixture was heated to 73 ° C. As lipophilic silicon dioxide, hydrophilic silicon dioxide aerosol (particle Diameter 10
~ 40nm) The product of chemically reacting the surface silanol groups with dimethyldichlorosilane.
% Of CH 3 hydrophobic silicon dioxide which has been subjected to the parent oil processing in the group (trade name: R-972, manufactured by Nippon Aerosil Co., Ltd., average particle size of about
16 nm, hydrophobicity 45) was used.

一方、別のフラスコにアクリル酸100gを仕込み、外部よ
り冷却しながら水酸化ナトリウム水溶液により部分中和
した。このときの水酸化ナトリウム/アクリル酸のモル
比は0.75、単量体水溶液の濃度は40重量%であった。次
に、これに過硫酸アンモニウム0.395gを添加溶解した
後、窒素ガスを吹き込んで水溶液内に存在する酸素を除
去した。
On the other hand, 100 g of acrylic acid was charged into another flask and partially neutralized with an aqueous sodium hydroxide solution while cooling from the outside. At this time, the molar ratio of sodium hydroxide / acrylic acid was 0.75, and the concentration of the aqueous monomer solution was 40% by weight. Next, 0.395 g of ammonium persulfate was added and dissolved therein, and nitrogen gas was blown into the solution to remove oxygen existing in the aqueous solution.

このアクリル酸部分中和水溶液を上記セパラブルフラス
コ内容物に攪拌回転数500rpmにおいて60分で滴下して重
合させた。重合終了後、73℃に保持して更に60分反応を
続けた。次いで、架橋剤(エチレングリコールジグリシ
ジルエーテル)0.06gを添加して60分攪拌を続けた。そ
の後、共沸脱水により水140gを留去し、溶媒のシクロヘ
キサンを減圧下に留出し、残った重合体部分を100〜110
℃にて減圧乾燥したところ、平均粒径が420μmで粒径1
80μm以下の割合が4.2重量%の架橋型アクリル酸ソー
ダのビーズ状重合体が得られた。なお、このときの反応
槽内への付着物の量は0.15gと極めて少なかった。
The partially neutralized aqueous solution of acrylic acid was added dropwise to the content of the separable flask at a stirring speed of 500 rpm for 60 minutes for polymerization. After the completion of the polymerization, the temperature was maintained at 73 ° C. and the reaction was continued for another 60 minutes. Next, 0.06 g of a crosslinking agent (ethylene glycol diglycidyl ether) was added and stirring was continued for 60 minutes. Then, 140 g of water was distilled off by azeotropic dehydration, the solvent cyclohexane was distilled off under reduced pressure, and the remaining polymer portion was removed by 100 to 110.
When dried under reduced pressure at ℃, average particle size is 420μm and particle size is 1
A crosslinked sodium acrylate bead-shaped polymer having a proportion of 80 μm or less at 4.2% by weight was obtained. The amount of deposits in the reaction vessel at this time was extremely small at 0.15 g.

〔実施例2〕 実施例1において、親油化した二酸化ケイ素(R−97
2)の使用量を2gから0.45gにした以外は実施例1に準じ
て重合を行なったところ、平均粒径が680μmで粒径180
μm以下の割合が1.1重量%の架橋型ビーズ状重合体が
得られた。なお、重合終了後のスラリーを観察したとこ
ろ、集塊化したものは観察されず、また反応槽内への付
着量は0.30gであった。
Example 2 In Example 1, the lipophilic silicon dioxide (R-97
Polymerization was carried out according to Example 1 except that the amount of 2) used was changed from 2 g to 0.45 g. The average particle size was 680 μm and the particle size was 180 μm.
A crosslinked beaded polymer having a ratio of less than μm of 1.1% by weight was obtained. When the slurry after the completion of the polymerization was observed, no agglomerates were observed, and the amount of adhesion to the reaction tank was 0.30 g.

〔実施例3〕 実施例1において、部分中和したアクリル酸水溶液の代
わりに15重量%のアクリル酸水溶液153.5g及び2,2′−
アゾビス−(2−アミジノプロパン)二塩素酸0.23gを
用い、架橋剤エチレングリコールジグリシジルエーテル
0.06gを用いなかった以外は実施例1に準じて重合を行
なった。次いで、共沸脱水により水を115.2g留去した
後、減圧乾燥したところ、平均粒径が500μmのビーズ
状ポリアクリル酸重合体が得られた。なお、反応槽内へ
の付着量は0.25gであった。
Example 3 Instead of the partially neutralized acrylic acid aqueous solution in Example 1, 153.5 g of a 15 wt% acrylic acid aqueous solution and 2,2′-
Azobis- (2-amidinopropane) dichloric acid 0.23g is used as a cross-linking agent ethylene glycol diglycidyl ether.
Polymerization was carried out according to Example 1 except that 0.06 g was not used. Next, 115.2 g of water was distilled off by azeotropic dehydration and then dried under reduced pressure to obtain a bead-shaped polyacrylic acid polymer having an average particle size of 500 μm. In addition, the amount of adhesion to the reaction tank was 0.25 g.

この重合体1gをイオン交換水100gに添加して攪拌混合す
ると粘性のある液体となった。
When 1 g of this polymer was added to 100 g of ion-exchanged water and mixed with stirring, a viscous liquid was obtained.

〔実施例4〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりにR−972と同様に表面をCH3グループで親油化
した平均粒径が約12nmの親油性二酸化ケイ素(R−974,
商品名,日本アエロジル社製)2gを用いた以外は実施例
1に準じて重合を行なったところ、平均粒径が460μm
の架橋型ポリアクリル酸ソーダが得られた。なお、反応
槽内への付着量は0.2gであった。
Example 4 In Example 1, 2 g of lipophilic silicon dioxide (R-972)
Instead of R-972, the surface is oleophilized with CH 3 group, and the average particle size is about 12 nm.
Polymerization was carried out according to Example 1 except that 2 g was used (trade name, manufactured by Nippon Aerosil Co., Ltd.), and the average particle size was 460 μm.
As a result, a cross-linked sodium polyacrylate was obtained. In addition, the adhesion amount in the reaction tank was 0.2 g.

〔実施例5〕 実施例1において、アクリル酸部分中和水溶液に対して
アクリルアミド2gを添加した以外は実施例1に準じて重
合を行なったところ、平均粒径が430μmの架橋型アク
リルアミド−アクリル酸ソーダ共重合体が得られた。な
お、反応槽内への付着量は0.18gであった。
Example 5 Polymerization was carried out in the same manner as in Example 1 except that 2 g of acrylamide was added to the partially neutralized acrylic acid aqueous solution. As a result, a crosslinked acrylamide-acrylic acid having an average particle size of 430 μm was obtained. A soda copolymer was obtained. The amount attached to the reaction tank was 0.18 g.

〔実施例6〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりに同二酸化ケイ素(R−972)1gとシリコーン
オイルで表面処理して親油化した二酸化ケイ素(商品名
R−202,日本アエロジル社製)0.1gを用いた以外は実施
例1に準じて重合を行なったところ、平均粒径が430μ
mの重合体が得られた。なお、重合終了後のスラリーに
は集塊化は観察されず、また、反応槽内への付着量は0.
3gであった。
[Example 6] In Example 1, 2 g of lipophilic silicon dioxide (R-972)
According to Example 1, except that 1 g of the same silicon dioxide (R-972) and 0.1 g of silicon dioxide (trade name R-202, manufactured by Nippon Aerosil Co., Ltd.) surface-treated with silicone oil to make it lipophilic were used instead of The average particle size was 430μ.
A polymer of m was obtained. Note that no agglomeration was observed in the slurry after the completion of polymerization, and the amount attached to the reaction vessel was 0.
It was 3 g.

〔実施例7〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりに同二酸化ケイ素(R−972)1gとトリメチル
シリル基で表面を親油性した二酸化ケイ素(商品名R−
812,日本アエロジル社製)0.1gを用いた以外は実施例1
に準じて重合を行なったところ、平均粒径が410μmの
重合体が得られた。なお、重合終了後のスラリーには凝
集物はほとんど観察されず、また、反応槽内への付着量
は0.43gであった。
[Example 7] In Example 1, 2 g of lipophilic silicon dioxide (R-972)
Instead of 1 g of silicon dioxide (R-972) and trimethylsilyl group on the surface of lipophilic silicon dioxide (trade name R-
812, manufactured by Nippon Aerosil Co., Ltd.) Example 1 except that 0.1 g was used.
Polymerization was carried out according to the above procedure to obtain a polymer having an average particle size of 410 μm. It should be noted that almost no aggregate was observed in the slurry after the completion of polymerization, and the amount attached to the reaction tank was 0.43 g.

〔実施例8〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりに同二酸化ケイ素(R−972)1.5gとエステル
化法により親油化したアルミナ〔アルミナゲルをエタノ
ールの還流下に疎水化処理した反応生成物(AlOH+ROH
→AlOR+H2O↑,R:エチル基),(平均粒径1μm以
下)〕0.1gを用いた以外は実施例1に準じて重合を行な
ったところ、平均粒径が460μmの架橋型ポリアクリル
酸ソーダが得られた。なお、反応槽内への付着量は0.42
gであった。
[Example 8] In Example 1, 2 g of lipophilic silicon dioxide (R-972) was used.
Instead of 1.5 g of the same silicon dioxide (R-972) and alumina lipophilicized by the esterification method [The reaction product (AlOH + ROH of alumina gel hydrophobized under the reflux of ethanol
→ AlOR + H 2 O ↑, R: ethyl group), (average particle size 1 μm or less)] Polymerization was carried out in the same manner as in Example 1 except that 0.1 g was used. Crosslinked polyacrylic acid having an average particle size of 460 μm. I got soda. The amount attached to the reaction tank was 0.42.
It was g.

〔実施例9〕 実施例3において、15重量%のアクリル酸水溶液153.5g
の代わりに15重量%のアクリルアミド水溶液、及び親油
性二酸化ケイ素(R−972)2gを0.8gにした以外は実施
例1に準じて反応を行なったところ、楕円形状(平均長
径約760μm,平均短径約380μm)を有する水溶性のアク
リルアミド重合体が得られた。この重合体の顕微鏡写真
(倍率50倍)を参考図に示す。なお、反応槽内への付着
量は0.1gと非常に少なかった。
Example 9 In Example 3, 153.5 g of a 15% by weight acrylic acid aqueous solution
Instead of 15 wt% acrylamide aqueous solution and 2 g of lipophilic silicon dioxide (R-972) was changed to 0.8 g, the reaction was carried out in the same manner as in Example 1 to obtain an elliptical shape (average major axis about 760 μm, average short axis). A water-soluble acrylamide polymer having a diameter of about 380 μm) was obtained. A micrograph (50 times magnification) of this polymer is shown in the reference figure. Note that the amount attached to the reaction tank was 0.1 g, which was very small.

〔実施例10〕 実施例1において、アクリル酸部分中和水溶液に対して
10%ポリビニルアルコール(商品名GH−17,日本合成社
製)6g、シクロヘキサン100gを加えてO/Wエマルジョン
型単量体乳化液を調整した以外は実施例1に準じて重合
を行なったところ、平均粒径が230μmの架橋型多孔質
アクリル酸ソーダのビーズ状重合体が得られた。なお、
反応槽内への付着量は0.42gであった。
Example 10 In Example 1, with respect to the partially neutralized aqueous solution of acrylic acid
Polymerization was carried out in the same manner as in Example 1 except that 6 g of 10% polyvinyl alcohol (trade name: GH-17, manufactured by Nippon Gosei Co., Ltd.) and 100 g of cyclohexane were added to prepare an O / W emulsion-type monomer emulsion, A beaded polymer of crosslinked porous sodium acrylate having an average particle diameter of 230 μm was obtained. In addition,
The amount attached to the reaction tank was 0.42 g.

〔実施例11〕 実施例1の重合装置にシクロヘキサン380g、分散剤R−
972 0.6gを仕込み、75℃まで昇温した。別に、三角フ
ラスコ中でアクリル酸30g、ジメチルアミノエチルメタ
クリレート65.5gを175gのイオン交換水に溶解し、35%
塩酸12.5gを加えた。更に10%部分ケン化ポリビニルア
ルコール(日本合成社製GH−17)6g、シクロヘキサン10
0gを添加し、攪拌下で単量体水溶液を乳化(O/Wエマル
ジョン)したのち、重合開始剤として過硫酸アンモニウ
ム0.05gを加え、溶解させ、このO/W型単量体液を上記重
合装置に窒素雰囲気下で60分かけて滴下して重合せしめ
た後、70〜75℃で30分間放置し、重合を完了させた。
Example 11 380 g of cyclohexane and a dispersant R- were added to the polymerization apparatus of Example 1.
0.62 g of 972 was charged and the temperature was raised to 75 ° C. Separately, dissolve 30 g of acrylic acid and 65.5 g of dimethylaminoethyl methacrylate in 175 g of ion-exchanged water in an Erlenmeyer flask to give 35%
12.5 g of hydrochloric acid was added. Furthermore, 10% partially saponified polyvinyl alcohol (GH-17, manufactured by Nippon Gosei Co., Ltd.) 6 g, cyclohexane 10
After adding 0 g and emulsifying the monomer aqueous solution under stirring (O / W emulsion), 0.05 g of ammonium persulfate as a polymerization initiator was added and dissolved, and this O / W type monomer liquid was added to the above polymerization apparatus. The mixture was added dropwise under nitrogen atmosphere over 60 minutes for polymerization and then left at 70 to 75 ° C. for 30 minutes to complete the polymerization.

この後、シクロヘキサンの還流下で共重合体中に含まれ
ている水分を20%まで共沸脱水し、更にシクロヘキサン
を除去し、共重合体を80〜100℃で減圧下に乾燥し、平
均粒径300μmの多孔質共重合体を得た。この共重合体1
gを攪拌下でイオン交換水100mlに添加すると、経時と共
に粘性のある水溶液になった。なお、槽付着物の量は0.
27gであった。
After this, the water contained in the copolymer was azeotropically dehydrated to 20% under the reflux of cyclohexane, cyclohexane was further removed, and the copolymer was dried under reduced pressure at 80 to 100 ° C. A porous copolymer having a diameter of 300 μm was obtained. This copolymer 1
When g was added to 100 ml of ion-exchanged water with stirring, a viscous aqueous solution was obtained over time. The amount of deposits on the tank is 0.
It was 27 g.

〔実施例12〕 エチレングリコールジグリシジルエーテル0.05gを水2ml
に溶解した水溶液を共沸脱水後に添加した以外は実施例
11と同様にして、平均粒径280μmの架橋型多孔質共重
合体を得た。そのときの槽付着物の量は0.3gであった。
Example 12 0.05 g of ethylene glycol diglycidyl ether was added to 2 ml of water.
Example except that an aqueous solution dissolved in was added after azeotropic dehydration
In the same manner as in 11, a crosslinked porous copolymer having an average particle size of 280 μm was obtained. The amount of the deposit on the tank at that time was 0.3 g.

〔実施例13〕 10%GH−17 6g及びシクロヘキサン100gを添加しなかっ
た以外は実施例12と同様にして、平均粒径600μmの架
橋型共重合体を得た。そのときの槽付着物の量は0.25g
であった。
Example 13 A cross-linked copolymer having an average particle size of 600 μm was obtained in the same manner as in Example 12 except that 6 g of 10% GH-17 and 100 g of cyclohexane were not added. The amount of deposits in the bath at that time is 0.25g
Met.

〔実施例14〕 10%ポリビニルアルコール 6gの代わりに、ホワイトカ
ーボン(徳山曹達社製トクシールN)4gを用いてO/Wエ
マルジョン型単量体乳化液を調整した以外は実施例10と
同様にして重合を完結させ、エチレングリコールジグリ
シジルエーテル0.09gを加え、60分架橋反応(I)させ
た。次に共沸脱水によりポリマー中の水分を20%留去し
て、更にエチレングリコールジグリシジルエーテル0.12
gを加え、60分架橋反応(II)を行ない、常法によって
乾燥することにより平均粒径320μmのビーズ状多孔質
重合体を得た。そのときの槽付着物は0.15gであった。
[Example 14] In the same manner as in Example 10 except that 4 g of white carbon (Tokushiru N manufactured by Tokuyama Soda Co., Ltd.) was used instead of 6 g of 10% polyvinyl alcohol to prepare an O / W emulsion type monomer emulsion. The polymerization was completed, 0.09 g of ethylene glycol diglycidyl ether was added, and a crosslinking reaction (I) was carried out for 60 minutes. Next, 20% of the water in the polymer was distilled off by azeotropic dehydration, and ethylene glycol diglycidyl ether 0.12
g was added, a crosslinking reaction (II) was carried out for 60 minutes, and the mixture was dried by a conventional method to obtain a beaded porous polymer having an average particle size of 320 μm. The deposit on the bath at that time was 0.15 g.

〔実施例15〕 ホワイトカーボン4gの代わりにポリビニルアルコール6g
を用いた以外は実施例14と同様にして、平均粒径360μ
mのビーズ状多孔質重合体を得た。そのときの槽付着物
は0.26gであった。
[Example 15] 6 g of polyvinyl alcohol instead of 4 g of white carbon
The same as in Example 14 except that the average particle size of 360μ
A bead-shaped porous polymer of m was obtained. The deposit on the bath at that time was 0.26 g.

〔実施例16〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりに分散剤として水酸化アルミニウム(商品名:H
−43,昭和電工社製)10gとカップリング剤(イソプロピ
ルトリイソステアロイルチタネート,商品名:KR−TTS,
味の素社製)3g及びシクロヘキサン30gを室温で30分間
混合し、次にシクロヘキサンを留去させ、減圧下、110g
で3時間加熱処理したところ、疎水化度53の微粉体(親
油性水酸化アルミニウム)が得られた。
Example 16 In Example 1, 2 g of lipophilic silicon dioxide (R-972)
Instead of aluminum hydroxide as a dispersant (trade name: H
−43, Showa Denko KK 10 g and coupling agent (isopropyltriisostearoyl titanate, trade name: KR-TTS,
Ajinomoto Co.) 3 g and cyclohexane 30 g are mixed at room temperature for 30 minutes, then cyclohexane is distilled off, and 110 g under reduced pressure.
When heat-treated for 3 hours, a fine powder (lipophilic aluminum hydroxide) having a hydrophobicity of 53 was obtained.

この親油性水酸化アルミニウムを5g用いた以外は実施例
1と同様にしてビーズ状重合体を得た。得られたビーズ
状重合体は平均粒径290μm、槽内付着量0.4gであっ
た。
A bead-like polymer was obtained in the same manner as in Example 1 except that 5 g of this lipophilic aluminum hydroxide was used. The obtained bead-shaped polymer had an average particle size of 290 μm and a deposition amount in the tank of 0.4 g.

〔実施例17〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりに分散剤として酸化チタン(商品名:MT−150A,
テイカ社製)を実施例16と同様にして疎水化処理するこ
とにより得た親油性酸化チタン(疎水化度58)3gを用い
た以外は実施例1と同様にして逆相懸濁重合を行なった
ところ、平均粒径410μmのビーズ状重合体が得られ、
反応槽付着物は0.5gであった。
Example 17 In Example 1, 2 g of lipophilic silicon dioxide (R-972)
Instead of titanium oxide as a dispersant (trade name: MT-150A,
Reverse phase suspension polymerization was carried out in the same manner as in Example 1 except that 3 g of lipophilic titanium oxide (hydrophobicity 58) obtained by subjecting Teika Co., Ltd.) to hydrophobic treatment in the same manner as in Example 16 was used. As a result, a bead-like polymer having an average particle size of 410 μm was obtained,
The amount deposited on the reaction vessel was 0.5 g.

〔実施例18〕 実施例16において、水酸化アルミニウム(H−43)10g
及びカップリング剤(KR−TTS3gの代わりに酸化アルミ
ナ(商品名:Aluminium Oxide C,日本アエロジル社製)1
0g、カップリング剤(アセトアルコキシアルミニウムジ
イソプロピレート,商品名:AL−M,味の素社製)3gを用
いた以外は実施例16と同様にして疎水化処理を行なっ
た。得られた親油性酸化アルミナ(疎水化度48)5gを分
散剤として用いる以外は実施例1と同様にして逆相懸濁
重合を行なったところ、平均粒径430μmのビーズ状重
合体が得られ、反応槽付着物は0.5gと極めて少なかっ
た。
Example 18 In Example 16, 10 g of aluminum hydroxide (H-43)
And a coupling agent (alumina oxide (trade name: Aluminum Oxide C, manufactured by Nippon Aerosil Co., Ltd.) in place of 3 g of KR-TTS) 1
Hydrophobizing treatment was performed in the same manner as in Example 16 except that 0 g and a coupling agent (acetoalkoxyaluminum diisopropylate, trade name: AL-M, manufactured by Ajinomoto Co., Inc.) 3 g were used. Reversed phase suspension polymerization was conducted in the same manner as in Example 1 except that 5 g of the obtained lipophilic alumina oxide (hydrophobicity 48) was used as a dispersant, and a bead-like polymer having an average particle size of 430 μm was obtained. The amount adhering to the reaction vessel was 0.5 g, which was extremely small.

〔比較例1〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりに親水性の二酸化ケイ素(商品名アエロジル社
200,日本アエロジル社製)2gを用いて実施例1に準じて
重合を行なったところ、重合系はゲル化してしまい、粒
子状重合体は得られなかった。
Comparative Example 1 In Example 1, 2 g of lipophilic silicon dioxide (R-972)
Instead of hydrophilic silicon dioxide (trade name Aerosil
200 g, manufactured by Nippon Aerosil Co., Ltd.) was polymerized in the same manner as in Example 1. As a result, the polymerization system gelled and no particulate polymer was obtained.

〔比較例2〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりにソルビタンモノステアレート4gを用いた以外
は実施例1に準じて重合を行なったところ、平均粒径が
30〜70μmの微粒子重合体のみが得られた。なお、反応
槽内への付着量は3.1gと多いものであった。
Comparative Example 2 In Example 1, 2 g of lipophilic silicon dioxide (R-972)
Polymerization was carried out in the same manner as in Example 1 except that 4 g of sorbitan monostearate was used in place of
Only a fine particle polymer of 30 to 70 μm was obtained. In addition, the adhesion amount in the reaction tank was as large as 3.1 g.

〔比較例3〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりにタルク(天然の含水無水ケイ酸マグネシウ
ム、試薬一級、昭和化学社製)2gを用いて実施例1に準
じて重合を行なったところ、重合系はゲル化してしま
い、、安定な懸濁スラリーは得られなかった。
Comparative Example 3 In Example 1, 2 g of lipophilic silicon dioxide (R-972)
When 2 g of talc (natural hydrous anhydrous magnesium silicate, first-class reagent, manufactured by Showa Kagaku Co., Ltd.) was used in place of to carry out the polymerization according to Example 1, the polymerization system gelled and a stable suspension was obtained. No slurry was obtained.

〔比較例4〕 実施例1において、親油性二酸化ケイ素(R−972)2g
の代わりにカオリン(粘度の一種、試薬一級、関東化学
社製)2gを用いた以外は実施例1に準じて重合を行なっ
たところ、重合系はゲル化し、ビーズ状重合体は得られ
なかった。
[Comparative Example 4] In Example 1, 2 g of lipophilic silicon dioxide (R-972)
Polymerization was carried out in the same manner as in Example 1 except that 2 g of kaolin (one kind of viscosity, first-class reagent, manufactured by Kanto Kagaku Co., Ltd.) was used instead of, and the polymerization system gelled and a bead-shaped polymer was not obtained. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】親油化処理された無機微粉末からなる水溶
性単量体用逆相懸濁重合用分散剤。
1. A dispersant for reverse phase suspension polymerization for water-soluble monomers, which comprises an inorganic fine powder subjected to lipophilic treatment.
【請求項2】水溶性単量体を疎水性溶媒中で逆相懸濁重
合させるに際し、親油化処理された無機微粉末を分散剤
として用いることを特徴とする逆相懸濁重合方法。
2. A reverse phase suspension polymerization method, which comprises using, as a dispersant, an inorganic fine powder subjected to lipophilic treatment when reverse phase suspension polymerization of a water-soluble monomer in a hydrophobic solvent.
JP2120631A 1989-12-21 1990-05-10 Dispersant for reverse phase suspension polymerization and method for reverse phase suspension polymerization Expired - Lifetime JPH0696606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120631A JPH0696606B2 (en) 1989-12-21 1990-05-10 Dispersant for reverse phase suspension polymerization and method for reverse phase suspension polymerization

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33309189 1989-12-21
JP1-333091 1989-12-21
JP2120631A JPH0696606B2 (en) 1989-12-21 1990-05-10 Dispersant for reverse phase suspension polymerization and method for reverse phase suspension polymerization

Publications (2)

Publication Number Publication Date
JPH03231901A JPH03231901A (en) 1991-10-15
JPH0696606B2 true JPH0696606B2 (en) 1994-11-30

Family

ID=26458174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120631A Expired - Lifetime JPH0696606B2 (en) 1989-12-21 1990-05-10 Dispersant for reverse phase suspension polymerization and method for reverse phase suspension polymerization

Country Status (1)

Country Link
JP (1) JPH0696606B2 (en)

Also Published As

Publication number Publication date
JPH03231901A (en) 1991-10-15

Similar Documents

Publication Publication Date Title
US3884871A (en) Process for coating pigment particles with organic polymers
Zgheib et al. Cerium oxide encapsulation by emulsion polymerization using hydrophilic macroRAFT agents
JP3692077B2 (en) Method for producing aqueous dispersion of particles composed of polymer and fine inorganic solid
GB2449306A (en) Composite particles
US20080099715A1 (en) Polymer Beads Incorporating Iron Oxide Particles
JP2003183323A (en) Polymer containing silicone ester and composition therefrom
KR101487042B1 (en) Method for producing an aqueous composite particle dispersion
US20050153858A1 (en) Preparation of particles by hydrolysis of a metal cation in the presence of a polymer
Bourgeat-Lami et al. Nucleation of polystyrene latex particles in the presence of γ-methacryloxypropyltrimethoxysilane: Functionalized silica particles
JPS62213839A (en) Preparation of composite particle coated uniformly
Daigle et al. A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water.
JP3122688B2 (en) Inorganic oxide colloid particles
JP4574215B2 (en) Method for producing polymer-coated particle powder and polymer-coated inorganic particle
Herrera et al. Synthesis of polymer latex particles decorated with organically-modified laponite clay platelets via emulsion polymerization
JPH0696606B2 (en) Dispersant for reverse phase suspension polymerization and method for reverse phase suspension polymerization
JPH05125109A (en) Preparation of powdery polymer of hydrolyzed n-vinylformamide and dehydrating agent, retaining agent and coagulator for paper making
Bourgeat‐Lami et al. Polymer encapsulation of inorganic particles
JPH04225827A (en) Aqueous svspension of burnt clay and its manufacture
JPH078881B2 (en) Method for producing beaded polymer
JPH03213136A (en) Dispersant
JP3466301B2 (en) Method for producing monodisperse polystyrene-based particles
CN109311750B (en) Coated polymer particles comprising a water-swellable polymer core and a sol-gel coating
WO1990004610A1 (en) Process for producing particulate polymer
JP3373063B2 (en) Surface-treated calcium carbonate for water-based paint
JP2610055B2 (en) Electrorheological fluid composition