JPH069601A - Production of lactones by hydrogenation - Google Patents

Production of lactones by hydrogenation

Info

Publication number
JPH069601A
JPH069601A JP4187465A JP18746592A JPH069601A JP H069601 A JPH069601 A JP H069601A JP 4187465 A JP4187465 A JP 4187465A JP 18746592 A JP18746592 A JP 18746592A JP H069601 A JPH069601 A JP H069601A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
reaction
potassium
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4187465A
Other languages
Japanese (ja)
Inventor
Takamasa Fuchigami
高正 渕上
Noriko Wakasa
のり子 若狭
Tokuka Ka
徳華 賀
Atsushi Fujimura
敦 藤村
Takashi Okada
隆志 岡田
Hiroyuki Sasakihara
弘之 笹木原
Takanori Miyake
孝典 三宅
Yoshiaki Kano
芳明 加納
Toshihiro Saito
寿広 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Priority to JP4187465A priority Critical patent/JPH069601A/en
Priority to DE69225560T priority patent/DE69225560T2/en
Priority to EP92119629A priority patent/EP0543340B1/en
Publication of JPH069601A publication Critical patent/JPH069601A/en
Priority to US08/328,607 priority patent/US5502217A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide the process for enabling high-selectivity production of lactones, particularly gamma-butyrolactone which is useful as a solvent for an organic electrically conductive solution or as a starting substance for organic syntheses of pyrrolidone, etc., because the process can be operated under mild conditions, even when saturated and/or unsaturated dicarboxylic acid are used. CONSTITUTION:In the hydrogenation of saturated and/or unsaturated acids, nickel, or a combination thereof with at least one element selected from the elements in group VIb, VIIb and VIII of the periodic table is used as a catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はラクトン類の製造法に関
するものであり、特にγ−ブチロラクトンの製造法に関
する。γ−ブチロラクトンは有機電気伝導溶液の溶媒や
ピロリドン類等の合成原料として有用な化合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing lactones, and more particularly to a method for producing .gamma.-butyrolactone. [gamma] -butyrolactone is a compound useful as a solvent for an organic electroconductive solution, a synthetic raw material for pyrrolidones and the like.

【0002】[0002]

【従来の技術】従来、飽和及び/又は不飽和ジカルボン
酸誘導体を液相で水素化してラクトン類を製造するため
の方法に関しては、多くの提案がなされている。
2. Description of the Related Art Hitherto, many proposals have been made regarding a method for producing a lactone by hydrogenating a saturated and / or unsaturated dicarboxylic acid derivative in a liquid phase.

【0003】例えば触媒として、活性炭担持パラジウム
触媒(以下、Pd/Cと略称)を用いる方法(米国特許
3,113,138号)、ニッケル系触媒を用いる方法
(例えば特公昭43−6947号公報)、コバルト−パ
ラジウム系触媒を用いる方法(例えば特公昭58−29
142号公報)が知られている。
For example, as a catalyst, a method using an activated carbon-supported palladium catalyst (hereinafter abbreviated as Pd / C) (US Pat. No. 3,113,138) and a method using a nickel-based catalyst (for example, JP-B-43-6947). , A method using a cobalt-palladium-based catalyst (for example, JP-B-58-29).
No. 142) is known.

【0004】しかしながら、Pd/Cを用いる方法は、
原料として無水コハク酸を使用した場合はγ−ブチロラ
クトンが比較的高収率で得られるものの、無水マレイン
酸を用いた場合は2段反応を必要とし、しかも途中で触
媒を追加するといった操作上の問題がある。
However, the method using Pd / C is
When succinic anhydride is used as a raw material, γ-butyrolactone is obtained in a relatively high yield, but when maleic anhydride is used, a two-step reaction is required, and in addition, a catalyst is added during operation. There's a problem.

【0005】ニッケル系触媒、コバルト−パラジウム系
触媒を使用する方法は、触媒の費用が比較的安価という
利点はあるものの、反応条件が250℃,100kg/
cmGと苛酷であるため、環状エーテルの生成や脱炭
酸等の副反応が進行し、ラクトン類の選択性は満足のい
くものではない。
The method using a nickel-based catalyst or a cobalt-palladium-based catalyst has the advantage that the cost of the catalyst is relatively low, but the reaction conditions are 250 ° C. and 100 kg /
Since it is as rigorous as cm 2 G, side reactions such as formation of cyclic ether and decarboxylation proceed, and the selectivity of lactones is not satisfactory.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、原料
として飽和或いは不飽和どちらのジカルボン酸誘導体を
用いた場合においても、一段の水素化反応で従来知られ
ている触媒よりも温和な条件下、高選択的にラクトン
類、特にγ−ブチロラクトンを製造する方法を提供する
ことにある。
The object of the present invention is to provide a milder condition than a conventionally known catalyst in a one-step hydrogenation reaction, regardless of whether a saturated or unsaturated dicarboxylic acid derivative is used as a raw material. It is an object of the present invention to provide a method for producing lactones, particularly γ-butyrolactone, with high selectivity.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記問題
点を解決すべく鋭意研究を行った結果、ニッケルを触媒
として、アルカリ金属の塩の共存下に水素化反応を行う
ことで、原料として飽和或いは不飽和どちらのジカルボ
ン酸誘導体を用いた場合にでも一段の水素化反応で、か
つ温和な条件下で高選択的にラクトン類が製造できるこ
とを見いだし本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that by performing a hydrogenation reaction in the presence of an alkali metal salt with nickel as a catalyst, The present invention has been completed by finding that lactones can be produced with high selectivity in a single-stage hydrogenation reaction under mild conditions regardless of whether a saturated or unsaturated dicarboxylic acid derivative is used as a raw material.

【0008】即ち、本発明は飽和及び/又は不飽和ジカ
ルボン酸誘導体を水素化するにあたり、触媒としてニッ
ケル、あるいは、ニッケルとVIb族、VIIb族およ
びVIII族の元素の内から選ばれる少なくとも一種以
上の元素からなる触媒を使用し、アルカリ金属の塩の共
存下に水素化反応を行うことを特徴とするラクトン類の
製造法に関するものである。
That is, in the present invention, when hydrogenating a saturated and / or unsaturated dicarboxylic acid derivative, nickel or at least one element selected from nickel and elements of the VIb group, VIIb group and VIII group is used as a catalyst. The present invention relates to a method for producing lactones, which comprises using an element catalyst and carrying out a hydrogenation reaction in the presence of an alkali metal salt.

【0009】以下本発明について詳細に説明する。The present invention will be described in detail below.

【0010】本発明で用いられる原料は、飽和及び/又
は不飽和ジカルボン酸誘導体である。具体的には、無水
マレイン酸、無水コハク酸、無水イタコン酸、無水シト
ラコン酸、無水メチルコハク酸、無水グルタル酸等の飽
和及び/又は不飽和ジカルボン酸の無水物、マレイン
酸、コハク酸、フマル酸、イタコン酸、シトラコン酸、
メサコン酸、メチルコハク酸、グルタル酸等の飽和及び
/又は不飽和ジカルボン酸が挙げられる。特にγ−ブチ
ロラクトンを目的とする場合は無水マレイン酸、マレイ
ン酸、無水コハク酸、コハク酸、フマル酸が挙げられ
る。
The raw materials used in the present invention are saturated and / or unsaturated dicarboxylic acid derivatives. Specifically, maleic anhydride, succinic anhydride, itaconic anhydride, citraconic anhydride, methylsuccinic anhydride, anhydrides of saturated and / or unsaturated dicarboxylic acids such as glutaric anhydride, maleic acid, succinic acid, fumaric acid. , Itaconic acid, citraconic acid,
Examples thereof include saturated and / or unsaturated dicarboxylic acids such as mesaconic acid, methylsuccinic acid, and glutaric acid. Particularly when .gamma.-butyrolactone is intended, maleic anhydride, maleic acid, succinic anhydride, succinic acid and fumaric acid can be mentioned.

【0011】また、これら原料である飽和または不飽和
のジカルボン酸誘導体は、水素化生成物が同じであるな
らばどの様な比率で混合されていても良い。
The saturated or unsaturated dicarboxylic acid derivatives which are the starting materials may be mixed in any proportion as long as the hydrogenation products are the same.

【0012】本発明の方法においては、飽和及び/又は
不飽和ジカルボン酸誘導体は、好ましくは溶媒に溶解さ
せた後、反応に供する。溶媒としては、水素化反応に不
活性で、また、生成物であるラクトン類と反応しないも
のであれば特に制限はなく、例えば、ジエチルエーテ
ル、ジメトキシエタン、ジグライム、トリグライム、テ
トラヒドロフラン、ジオキサン等のエーテル類、アセト
ン、メチルエチルケトン、メチルイソブチルケトン、シ
クロペンタノン、シクロヘキサノン、アセトフェノン等
のケトン類、酢酸メチル、酢酸エチル、安息香酸メチ
ル、安息香酸エチル等のエステル類、メタノール、エタ
ノール、n−ブタノール、iso−ブタノール、ter
t−ブタノール、1,4−ブタンジオール等のアルコー
ル類、n−ヘキサン、シクロヘキサン等の脂肪族炭化水
素、ベンゼン、トルエン、エチルベンゼン、クメン等の
芳香族炭化水素、酢酸等の酸性溶媒、γ−ブチロラクト
ン等のラクトン類、2−ピロリドン、N−メチルピロリ
ドン等の酸アミド類等が挙げられる。中でも、比較的低
沸点で回収の容易なジメトキシエタンやテトラヒドロフ
ラン、若しくは溶媒回収を必要としないγ−ブチロラク
トンを好ましい例として挙げることができる。
In the method of the present invention, the saturated and / or unsaturated dicarboxylic acid derivative is preferably dissolved in a solvent and then subjected to the reaction. The solvent is not particularly limited as long as it is inert to the hydrogenation reaction and does not react with the product lactone, for example, ether such as diethyl ether, dimethoxyethane, diglyme, triglyme, tetrahydrofuran or dioxane. Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, acetophenone, esters such as methyl acetate, ethyl acetate, methyl benzoate, ethyl benzoate, methanol, ethanol, n-butanol, iso- Butanol, ter
Alcohols such as t-butanol and 1,4-butanediol, aliphatic hydrocarbons such as n-hexane and cyclohexane, aromatic hydrocarbons such as benzene, toluene, ethylbenzene and cumene, acidic solvents such as acetic acid, γ-butyrolactone. And amides such as 2-pyrrolidone and N-methylpyrrolidone. Among them, preferable examples include dimethoxyethane and tetrahydrofuran, which have a relatively low boiling point and are easily recovered, or γ-butyrolactone which does not require solvent recovery.

【0013】溶媒の使用量は、反応温度において原料が
溶解する程度であれば、全く限定されない。これらの溶
媒は、使用前に特に乾燥させる必要はなく、逆に原料に
対して1モル当量程度であれば水が共存していても構わ
ない。
The amount of the solvent used is not limited as long as the raw materials are dissolved at the reaction temperature. These solvents do not have to be particularly dried before use, and conversely water may coexist as long as they are about 1 molar equivalent to the raw materials.

【0014】本発明における触媒としては、ニッケル、
あるいは、ニッケルとVIb族、VIIb族およびVI
II族の元素の内から選ばれる少なくとも1種以上の元
素からなる触媒が使用される。また、これらの触媒は、
担体に担持されていても差し支えない。
As the catalyst in the present invention, nickel,
Alternatively, nickel and VIb, VIIb and VI
A catalyst composed of at least one element selected from Group II elements is used. Also, these catalysts
It may be carried on a carrier.

【0015】ニッケル触媒を調製するにあたり使用でき
る化合物としては、水素化反応中あるいは反応に用いる
前に金属状のニッケルに変化できるものであれば特に制
限はない。具体的には、炭酸ニッケル、塩化ニッケル、
水酸化ニッケル、硝酸ニッケル、酸化ニッケル、硫酸ニ
ッケル、酢酸ニッケル、シュウ酸ニッケル等の各種の無
機、有機のニッケル化合物を用いることができる。
The compound that can be used to prepare the nickel catalyst is not particularly limited as long as it can be converted into metallic nickel during or before the hydrogenation reaction. Specifically, nickel carbonate, nickel chloride,
Various inorganic or organic nickel compounds such as nickel hydroxide, nickel nitrate, nickel oxide, nickel sulfate, nickel acetate and nickel oxalate can be used.

【0016】また、ニッケルとVIb族、VIIb族お
よびVIII族の元素の内から選ばれる少なくとも1種
以上の元素を使用する触媒においては、VIb族の元素
としてはモリブデン、VIIb族の元素としてはレニウ
ム、また、VIII族の元素としてパラジウム、白金等
の貴金属を例として挙げることができる。
In a catalyst using nickel and at least one element selected from the group consisting of VIb, VIIb and VIII, molybdenum is a VIb element and rhenium is a VIIb element. Further, noble metals such as palladium and platinum can be cited as an example of the Group VIII element.

【0017】触媒を調製するにあたり、使用できる原料
を具体的に例示すると、VIb族元素の例であるモリブ
デンの場合には、モリブデン酸アンモニウム、酢酸モリ
ブデン、モリブデンへキサカルボニル等を、また、VI
Ib族元素の例であるレニウムの場合には、塩化レニウ
ム、酸化レニウム、過レニウム酸、過レニウム酸アンモ
ニウム等を、さらに、VIII族元素の例としては、例
えばパラジウムの場合には、ヘキサクロロパラジウム酸
アンモニウム、テトラクロロパラジウム酸アンモニウ
ム、ジニトロジアミンパラジウム、臭化パラジウム、ク
ロロカルボニルパラジウム、塩化パラジウム、ヨウ化パ
ラジウム、硝酸パラジウム、酸化パラジウム、硫酸パラ
ジウム、酢酸パラジウム、ジニトロサルファイトパラジ
ウム酸カリウム、ヘキサクロロパラジウム酸カリウム、
テトラブロモパラジウム酸カリウム、テトラクロロパラ
ジウム酸カリウム、ヘキサクロロパラジウム酸ナトリウ
ム、テトラクロロパラジウム酸ナトリウム、テトラアン
ミンパラジウム塩化物、テトラアンミンパラジウム硝酸
塩、cis−ジクロロジアミンパラジウム、trans
−ジクロロジアミンパラジウム、ジクロロ(エチレンジ
アミン)パラジウム、テトラシアノパラジウム酸カリウ
ム等を例示できる。
Specific examples of raw materials that can be used for preparing the catalyst include ammonium molybdate, molybdenum acetate, molybdenum hexacarbonyl, and VI in the case of molybdenum, which is an example of the VIb group element.
In the case of rhenium, which is an example of the Group Ib element, rhenium chloride, rhenium oxide, perrhenic acid, ammonium perrhenate, and the like, and as an example of the Group VIII element, for example, in the case of palladium, hexachloropalladic acid Ammonium, ammonium tetrachloropalladate, dinitrodiaminepalladium, palladium bromide, chlorocarbonylpalladium, palladium chloride, palladium iodide, palladium nitrate, palladium oxide, palladium sulfate, palladium acetate, potassium dinitrosulfite palladium, potassium hexachloropalladate ,
Potassium tetrabromopalladate, potassium tetrachloropalladate, sodium hexachloropalladate, sodium tetrachloropalladate, tetraamminepalladium chloride, tetraamminepalladium nitrate, cis-dichlorodiaminepalladium, trans
Examples thereof include dichlorodiamine palladium, dichloro (ethylenediamine) palladium, and potassium tetracyanopalladate.

【0018】触媒としてニッケルとVIb族、VIIb
族およびVIII族の元素の内から選ばれる少なくとも
1種以上の元素からなる触媒を使用する場合、ニッケル
とニッケル以外の含有される元素の原子比(例えばM
o、ReまたはPd/Ni)は0.01〜0.5とする
ことができる。
Nickel and VIb group, VIIb as catalyst
When a catalyst composed of at least one element selected from the group VIII and VIII elements is used, the atomic ratio of the elements contained other than nickel (for example, M
o, Re or Pd / Ni) may be 0.01 to 0.5.

【0019】担体に担持したニッケルを触媒とする場合
には、担体は多孔性の物質であればよく、具体的に例示
するとシリカ、アルミナ、マグネシア、チタニア、シリ
カアルミナ、ゼオライト、珪藻土、シリカマグネシア等
結晶性または非結晶性の金属酸化物あるいは複合酸化
物、テニオライト、ヘクトライト等の層状粘土化合物、
活性炭等が挙げられる。触媒の形状には特に制限はな
く、反応形式に準じて粉末のまま、若しくは成形して用
いることができる。懸濁床では粉末或いは顆粒を、固定
床ではタブレットの打錠成形品、球状或いは棒柱状の押
し出し成形品等が用いられる。
When nickel supported on a carrier is used as a catalyst, the carrier may be a porous substance, and specific examples include silica, alumina, magnesia, titania, silica alumina, zeolite, diatomaceous earth, silica magnesia, etc. Crystalline or non-crystalline metal oxides or complex oxides, layered clay compounds such as teniolite and hectorite,
Activated carbon etc. are mentioned. The shape of the catalyst is not particularly limited, and it can be used in the form of powder as it is or according to the reaction mode. Powders or granules are used for the suspension bed, and tablet compression molded products, spherical or rod-shaped extrusion molded products, and the like are used for the fixed bed.

【0020】使用する触媒のニッケル担持量は、担体を
含む触媒総重量に対してニッケルの金属として1〜60
重量%、好ましくは5〜50重量%である。この場合、
触媒がニッケルとさらに、VIb族、VIIb族および
VIII族の元素の内から選ばれる少なくとも1種以上
からなる触媒を使用する場合は、ニッケルとニッケル以
外の含有される元素の原子比(例えばMo、Reまたは
Pd/Ni)は0.01〜0.5とすることができる。
The amount of nickel supported on the catalyst to be used is 1 to 60 as nickel metal based on the total weight of the catalyst including the carrier.
% By weight, preferably 5 to 50% by weight. in this case,
When the catalyst comprises nickel and further a catalyst comprising at least one element selected from the group consisting of VIb, VIIb and VIII, the atomic ratio of the elements contained other than nickel (eg Mo, Re or Pd / Ni) may be 0.01 to 0.5.

【0021】本発明に使用する触媒の製造法に特に制限
はなく、公知の方法で製造したものを使用できる。例え
ば沈澱法、混練法、含浸法、イオン交換法、沈着法など
で調製することができる。含浸法で調製する場合には、
例えば、ニッケル化合物、場合においてはさらに、パラ
ジウム、レニウム等の化合物を適当な溶媒に溶解し、こ
こに担体を加え、必要ならば所定の時間静置した後、乾
燥する。乾燥後直接還元しても良いし、場合によっては
焼成した後に還元しても差し支えない。もちろん反応系
中で還元しても構わない。金属状のニッケルが得られれ
ば、還元方法に特に制限はなく、例えば水素などを用い
て気相で還元しても、あるいはヒドラジン等を用いて液
相で還元しても構わない。
The method for producing the catalyst used in the present invention is not particularly limited, and a catalyst produced by a known method can be used. For example, it can be prepared by a precipitation method, a kneading method, an impregnation method, an ion exchange method, a deposition method or the like. When preparing by the impregnation method,
For example, a nickel compound, and in some cases, a compound such as palladium or rhenium is dissolved in a suitable solvent, a carrier is added thereto, and if necessary, the mixture is allowed to stand for a predetermined time and then dried. The reduction may be performed directly after drying, or in some cases, reduction may be performed after firing. Of course, it may be reduced in the reaction system. The reduction method is not particularly limited as long as metallic nickel is obtained. For example, hydrogen may be used for the gas phase reduction, or hydrazine or the like for the liquid phase reduction.

【0022】還元温度についても少なくともニッケルが
金属にまで還元されれば特に制限はない。一般的には6
00℃までの温度で良い。
The reduction temperature is not particularly limited as long as at least nickel is reduced to metal. Generally 6
Temperatures up to 00 ° C are sufficient.

【0023】また、イオン交換法で製造する場合には、
所望の濃度のニッケル化合物、場合によってはさらに、
パラジウム、レニウム等の化合物を用いてイオン交換
し、後は含浸法と同様の方法で調製することができる。
When the ion exchange method is used,
The desired concentration of nickel compound, and optionally further
Ion exchange may be performed using a compound such as palladium or rhenium, and then the same method as the impregnation method may be used.

【0024】さらに沈着法で調製する場合には例えばニ
ッケル化合物、場合によってはさらに、パラジウム、レ
ニウム等の化合物を、適当な溶媒、例えば水などに溶解
し、先に記した担体を加え、攪拌しながら沈澱剤を徐々
に、あるいはいっきに加え、ニッケル、パラジウムおよ
びレニウム成分を沈着させ、得られた混合物を乾燥し、
以後は含浸法と同様の方法で触媒とすることができる。
In the case of further preparing by the deposition method, for example, a nickel compound, and in some cases, a compound such as palladium and rhenium is dissolved in a suitable solvent such as water, and the above-mentioned carrier is added and stirred. While adding a precipitant gradually or all at once to deposit nickel, palladium and rhenium components, dry the resulting mixture,
After that, the catalyst can be obtained by the same method as the impregnation method.

【0025】使用する触媒量は特に限定されないが、好
ましくは原料に対し0.5〜200重量%、更に好まし
くは1〜150重量%が良い。
The amount of the catalyst used is not particularly limited, but is preferably 0.5 to 200% by weight, more preferably 1 to 150% by weight, based on the raw material.

【0026】本発明は、ニッケル触媒と共にアルカリ金
属の塩を添加剤として共存させることを特徴としてい
る。本発明におけるアルカリ金属とは、周期律表Ia族
のアルカリ金属で、例えばリチウム、ナトリウム、カリ
ウム、ルビジウム、セシウムである。
The present invention is characterized by the presence of an alkali metal salt as an additive together with a nickel catalyst. The alkali metal in the present invention is an alkali metal of Group Ia of the periodic table, for example, lithium, sodium, potassium, rubidium and cesium.

【0027】アルカリ金属の塩としては、各種の無機、
有機のアルカリ金属塩を用いることができる。例えば、
無機塩としてはアルカリ金属の塩化物、硝酸塩、炭酸
塩、硫酸塩、リン酸塩、あるいは水酸化物等を挙げるこ
とができる。また、アルカリ金属を含有する粘土に代表
される層状化合物やアルカリ金属でイオン交換された各
種のゼオライトも使用することができる。
Alkali metal salts include various inorganic salts,
Organic alkali metal salts can be used. For example,
Examples of the inorganic salt include alkali metal chlorides, nitrates, carbonates, sulfates, phosphates, hydroxides and the like. Further, a layered compound represented by clay containing an alkali metal and various zeolites ion-exchanged with an alkali metal can also be used.

【0028】具体的には、塩化リチウム、塩化ナトリウ
ム、塩化カリウム、塩化ルビジウム、塩化セシウム等の
塩化物、硝酸リチウム、硝酸ナトリウム、硝酸カリウ
ム、硝酸ルビジウム、硝酸セシウム等の硝酸塩、亜硝酸
リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸
ルビジウム、亜硝酸セシウム等の亜硝酸塩、炭酸リチウ
ム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、
炭酸セシウム等の炭酸塩、硫酸リチウム、硫酸ナトリウ
ム、硫酸カリウム、硫酸ルビジウム、硫酸セシウム等の
硫酸塩、リン酸リチウム、リン酸ナトリウム、リン酸カ
リウム、リン酸ルビジウム、リン酸セシウム等のリン酸
塩、水酸化リチウム、水酸化ナトリウム、水酸化カリウ
ム、水酸化ルビジウム、水酸化セシウム等の水酸化物な
どが挙げられる。
Specifically, chlorides such as lithium chloride, sodium chloride, potassium chloride, rubidium chloride and cesium chloride, nitrates such as lithium nitrate, sodium nitrate, potassium nitrate, rubidium nitrate and cesium nitrate, lithium nitrite and nitrite. Sodium, potassium nitrite, rubidium nitrite, nitrite such as cesium nitrite, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate,
Carbonate such as cesium carbonate, lithium sulfate, sodium sulfate, potassium sulfate, rubidium sulfate, sulfate such as cesium sulfate, lithium phosphate, sodium phosphate, potassium phosphate, rubidium phosphate, cesium phosphate and other phosphates Hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide and cesium hydroxide.

【0029】さらには、ナトリウム型、カリウム型、ル
ビジウム型あるいはセシウム型のモンモリロナイトやカ
リオナイトなどの粘土や、イオン交換可能なカチオン
が、カリウム、ルビジウムあるいはセシウム等のアルカ
リカチオンである各種ゼイライトが挙げられる。例え
ば、フィリップサイト、ハーモトーム、メルリノイト、
ジスモンディン、アミサイト、ガローナイト、ゴビンサ
イト、アナルサイム、ワイラカイト、ポーリンジャイ
ト、ローモンタイト、ユガワラライト、シャバサイト、
ウィルヘンダーソナイト、グメリナイト、フォージャサ
イト、エリオナイト、オフレタイト、レビン、マッザイ
ト、ナトロライト、テトラソーダフッ石、パラソーダフ
ッ石、メソライト、スコレサイト、トムソナイト、ゴン
ナルダイト、エディングトナイト、モルデナイト、ダッ
キャルダイト、エピスライルバイト、フェリエライト、
ビキタイト、ヒューランダイト、クライノタイロライ
ト、スティルバイト、ツテレライト、バーラーライト、
ブリューステライト、コウレンサイト、グースクリーカ
イト等の天然ゼオライトや、A型、X型、Y型、USY
型(US−Y型とも表記される)、L型、HS型、ZK
−5型、B型、R型、S型、G型、D型、T型、W型、
C型、Zeolon型、ZSM−5、モルデナイト、フ
ェリエライト等である。
Further, clay such as sodium-type, potassium-type, rubidium-type or cesium-type montmorillonite and caryonite, and various zeyrites in which the ion-exchangeable cation is an alkali cation such as potassium, rubidium or cesium are mentioned. For example, Philip Sight, Harmotome, Merleneute,
Jismondin, Amysite, Gallonite, Govinsite, Anal Sime, Wairakite, Paulingite, Laumontite, Yugawaralite, Shabasite,
Wilhender Sonite, Gmelinite, Faujasite, Elionite, Offretite, Levin, Mazzite, Natrolite, Tetrasoda Fluorite, Parasoda Fluorite, Mesolite, Scholesite, Tomsonite, Gonnaldite, Edingtonite, Mordenite, Duckardite, Episulile Bite , Ferrierite,
Bikitite, hurlandite, clino tyrolite, still bite, zutellite, barler light,
Natural zeolite such as brewsterite, korensite, goose creakite, A type, X type, Y type, USY
Type (also referred to as US-Y type), L type, HS type, ZK
-5 type, B type, R type, S type, G type, D type, T type, W type,
C type, Zeolon type, ZSM-5, mordenite, ferrierite and the like.

【0030】また、有機塩としては、アルカリ金属のカ
ルボン酸塩、スルホン酸塩を挙げることができる。カル
ボン酸塩として、蟻酸塩、酢酸塩、プロピオン酸塩のよ
うなカルボン酸塩、マレイン酸塩、コハク酸塩のような
ジカルボン酸塩、マレイン酸モノメチルの塩、コハク酸
モノエチルの塩のようなジカルボン酸モノエステルの
塩、ヒドロキシ酪酸塩、サリチル酸塩のようなヒドロキ
シカルボン酸塩、アミノ安息香酸塩、アミノイソ酪酸塩
のようなアミノカルボン酸塩、ホルミル安息香酸塩、ホ
ルミルけい皮酸塩、ホルミルプロピオン酸塩のようなホ
ルミルカルボン酸塩、スルホ酢酸塩、5−スルホイソフ
タル酸塩のようなスルホカルボン酸塩が挙げられる。
Examples of the organic salts include alkali metal carboxylates and sulfonates. As carboxylates, carboxylates such as formate, acetate, propionate, dicarboxylates such as maleate and succinate, dicarboxylates such as monomethyl maleate and monoethyl succinate. Acid monoester salts, hydroxybutyrate, hydroxycarboxylates such as salicylate, aminobenzoates, aminocarboxylates such as aminoisobutyrate, formylbenzoate, formylcinnamate, formylpropionic acid Formyl carboxylates such as salts, sulfoacetates, sulfocarboxylates such as 5-sulfoisophthalates.

【0031】スルホン酸塩としてはベンゼンスルホン酸
塩、p−トルエンスルホン酸塩のようなスルホン酸塩、
ヒドロキシベンゼンスルホン酸塩のようなヒドロキシス
ルホン酸塩、2−アミノエタン−1−スルホン酸塩のよ
うなアミノスルホン酸塩、ホルミルベンゼンスルホン酸
塩のようなホルミルスルホン酸塩、スルホ酢酸メチルの
塩、スルホイソフタル酸エチルの塩のようなスルホカル
ボン酸エステルの塩、m−ベンゼンジスルホン酸塩のよ
うなジスルホン酸塩、スルホサリチル酸塩のようなスル
ホヒドロキシカルボン酸塩、2−ヒドロキシ−4−アミ
ノ安息香酸塩のようなヒドロキシアミノカルボン酸塩が
挙げられる。
As the sulfonate, benzene sulfonate, sulfonate such as p-toluene sulfonate,
Hydroxysulfonates such as hydroxybenzenesulfonate, aminosulfonates such as 2-aminoethane-1-sulfonate, formylsulfonates such as formylbenzenesulfonate, methyl sulfoacetate salts, sulfo Salts of sulfocarboxylic acid esters such as salts of ethyl isophthalate, disulfonates such as m-benzenedisulfonate, sulfohydroxycarboxylates such as sulfosalicylate, 2-hydroxy-4-aminobenzoate Hydroxyaminocarboxylic acid salts such as

【0032】具体的には酢酸リチウム、酢酸ナトリウ
ム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム等の
酢酸塩、トリフルオロ酢酸リチウム、トリフルオロ酢酸
ナトリウム、トリフルオロ酢酸カリウム、トリフルオロ
酢酸ルビジウム、トリフルオロ酢酸セシウム等のトリフ
ルオロ酢酸塩、プロピオン酸リチウム、プロピオン酸ナ
トリウム、プロピオン酸カリウム、プロピオン酸ルビジ
ウム、プロピオン酸セシウム、3−ヒドロキシプロピオ
ン酸リチウム、3−ヒドロキシプロピオン酸ナトリウ
ム、3−ヒドロキシプロピオン酸カリウム、3−ヒドロ
キシプロピオン酸ルビジウム、3−ヒドロキシプロピオ
ン酸セシウム等のプロピオン酸塩、安息香酸リチウム、
安息香酸ナトリウム、安息香酸カリウム、安息香酸ルビ
ジウム、安息香酸セシウム等の安息香酸塩、マレイン酸
リチウム、マレイン酸ナトリウム、マレイン酸カリウ
ム、マレイン酸ルビジウム、マレイン酸セシウム、マレ
イン酸モノメチルリチウム、マレイン酸モノメチルナト
リウム、マレイン酸モノメチルカリウム、マレイン酸モ
ノメチルルビジウム、マレイン酸モノメチルセシウム等
のマレイン酸塩、コハク酸リチウム、コハク酸ナトリウ
ム、コハク酸カリウム、コハク酸ルビジウム、コハク酸
セシウム、コハク酸モノメチルリチウム等のコハク酸
塩、シュウ酸リチウム、シュウ酸ナトリウム、シュウ酸
カリウム、シュウ酸ルビジウム、シュウ酸セシウム、シ
ュウ酸モノメチルリチウム等のシュウ酸塩が挙げられ
る。
Specifically, acetates such as lithium acetate, sodium acetate, potassium acetate, rubidium acetate and cesium acetate, lithium trifluoroacetate, sodium trifluoroacetate, potassium trifluoroacetate, rubidium trifluoroacetate and cesium trifluoroacetate. Such as trifluoroacetate, lithium propionate, sodium propionate, potassium propionate, rubidium propionate, cesium propionate, lithium 3-hydroxypropionate, sodium 3-hydroxypropionate, potassium 3-hydroxypropionate, 3- Rubidium hydroxypropionate, propionates such as cesium 3-hydroxypropionate, lithium benzoate,
Benzoates such as sodium benzoate, potassium benzoate, rubidium benzoate and cesium benzoate, lithium maleate, sodium maleate, potassium maleate, rubidium maleate, cesium maleate, monomethyllithium maleate, monomethyl sodium maleate. , Maleic acid salts such as monomethyl potassium maleate, monomethyl rubidium maleate and monomethyl cesium maleate, succinates such as lithium succinate, sodium succinate, potassium succinate, rubidium succinate, cesium succinate, monomethyl lithium succinate , Oxalates such as lithium oxalate, sodium oxalate, potassium oxalate, rubidium oxalate, cesium oxalate and monomethyllithium oxalate.

【0033】さらに、サリチル酸リチウム、サリチル酸
ナトリウム、サリチル酸カリウム、サリチル酸ルビジウ
ム、サリチル酸セシウム等のサリチル酸塩、3−ホルミ
ルプロピオン酸リチウム、3−ホルミルプロピオン酸ナ
トリウム、3−ホルミルプロピオン酸カリウム、3−ホ
ルミルプロピオン酸ルビジウム、3−ホルミルプロピオ
ン酸セシウム等のホルミルプロピオン酸塩のようなカル
ボン酸塩、メチルスルホン酸リチウム、メチルスルホン
酸ナトリウム、メチルスルホン酸カリウム、メチルスル
ホン酸ルビジウム、メチルスルホン酸セシウム等のメチ
ルスルホン酸塩、ベンゼンスルホン酸ナトリウム、ベン
ゼンスルホン酸カリウム、ベンゼンスルホン酸ルビジウ
ム、ベンゼンスルホン酸セシウム等のベンゼンスルホン
酸塩、p−トルエンスルホン酸ナトリウム、p−トルエ
ンスルホン酸カリウム、p−トルエンスルホン酸ルビジ
ウム、p−トルエンスルホン酸セシウム等のp−トルエ
ンスルホン酸塩、5−スルホサリチル酸リチウム、5−
スルホサリチル酸ナトリウム、5−スルホサリチル酸カ
リウム、5−スルホサリチル酸ルビジウム、5−スルホ
サリチル酸セシウムなどスルホサリチル酸塩のようなス
ルホン酸塩が挙げられる。
Further, salicylates such as lithium salicylate, sodium salicylate, potassium salicylate, rubidium salicylate and cesium salicylate, lithium 3-formylpropionate, sodium 3-formylpropionate, potassium 3-formylpropionate, 3-formylpropionate. Rubidium, carboxylate such as formylpropionate such as cesium 3-formylpropionate, methylsulfonate such as lithium methylsulfonate, sodium methylsulfonate, potassium methylsulfonate, rubidium methylsulfonate and cesium methylsulfonate Salts, benzene sulfonates such as sodium benzene sulfonate, potassium benzene sulfonate, rubidium benzene sulfonate, cesium benzene sulfonate, p-toluene Sodium sulfonate, potassium p- toluenesulfonic acid, p- toluenesulfonic acid rubidium, p- toluenesulfonic acid salt of such p- toluenesulfonic acid cesium, lithium 5-sulfosalicylic acid, 5-
Examples thereof include sodium sulfosalicylate, potassium 5-sulfosalicylate, rubidium 5-sulfosalicylate, cesium 5-sulfosalicylate, and other sulfonates such as sulfosalicylates.

【0034】これら添加剤は、単独で用いても十分有効
であるが、必要に応じて二種以上混合して用いても構わ
ない。
These additives are sufficiently effective when used alone, but may be used as a mixture of two or more if necessary.

【0035】使用する添加剤の量は特に限定されない
が、原料に対し0.1〜100重量%、好ましくは1〜
50重量%が良い。これより多くても、反応装置をいた
ずらに大きくするだけで、また、懸濁床においては反応
後の除去操作に負担がかかるだけであり、逆に少ないと
効果が薄れてくる。
The amount of the additive used is not particularly limited, but is 0.1 to 100% by weight, preferably 1 to 100% by weight based on the raw materials.
50% by weight is good. If the amount is larger than this, the reactor is unnecessarily increased in size, and in the suspension bed, the removal operation after the reaction is burdened, and conversely, the effect is diminished.

【0036】本発明においては、反応は懸濁床による回
分、半回分、連続式でも、又固定床流通式でも実施でき
る。
In the present invention, the reaction can be carried out in a batch system using a suspension bed, a semi-batch system, a continuous system, or a fixed bed flow system.

【0037】本発明の方法による反応は、加温、水素加
圧下で実施される。反応温度は、通常50〜300℃、
好ましくは120〜250℃が選ばれる。これより高く
しても副反応の進行が増すだけであり、低くすると反応
速度の点で不利になる。また、水素の圧力は、通常10
〜150kg/cmG、好ましくは15〜120kg
/cmGが選ばれる。本発明の方法では、この範囲内
で望むべき反応が十分進行するので、これを越える高圧
は不必要であり、これより低圧では反応速度の点で不利
になる。
The reaction according to the method of the present invention is carried out under heating and hydrogen pressure. The reaction temperature is usually 50 to 300 ° C,
120-250 degreeC is selected preferably. If it is higher than this, only the progress of side reactions is increased, and if it is lower, there is a disadvantage in the reaction rate. The pressure of hydrogen is usually 10
~ 150 kg / cm 2 G, preferably 15-120 kg
/ Cm 2 G is selected. In the method of the present invention, since the desired reaction proceeds sufficiently within this range, a high pressure exceeding this is unnecessary, and a pressure lower than this is disadvantageous in terms of reaction rate.

【0038】反応時間は、温度、圧力、触媒量等の設定
の仕方あるいは反応方法によって変わるため一概にその
範囲を決めることは困難であるが、回分式、半回分式に
おいては通常1時間以上が必要で、好ましくは1〜20
時間が良い。これより長くても構わないが、この範囲内
で反応は終了するので無意味である。これより短いと高
い転化率が得られないことがある。また、懸濁床による
連続式反応あるいは固定床流通式反応においては、滞留
時間は0.1〜10時間で良い。
The reaction time is difficult to unconditionally determine because it varies depending on the method of setting the temperature, pressure, amount of catalyst and the like or the reaction method, but in the batch system and the semi-batch system, it is usually 1 hour or more. Necessary, preferably 1-20
Good time It may be longer than this, but it is meaningless since the reaction is completed within this range. If it is shorter than this, a high conversion rate may not be obtained. In addition, in a continuous reaction using a suspension bed or a fixed bed flow reaction, the residence time may be 0.1 to 10 hours.

【0039】[0039]

【実施例】以下、本反応を実施例によりさらに詳しく説
明するが、本反応がこれら実施例のみに限定されるもの
ではないことは言うまでもない。
EXAMPLES Hereinafter, this reaction will be described in more detail with reference to Examples, but it goes without saying that this reaction is not limited to these Examples.

【0040】実施例1 硝酸ニッケル(Ni(NO・6HO)1.49
gを10mlの水に溶解させる。この溶液に200メッ
シュ以下に粉砕したシリカ(富士デビソン社製、キャリ
アクト10)2.72gを加える。
[0040] Example 1 Nickel nitrate (Ni (NO 3) 2 · 6H 2 O) 1.49
g is dissolved in 10 ml of water. 2.72 g of silica (Carrieract 10 manufactured by Fuji Devison Co., Ltd.) ground to 200 mesh or less is added to this solution.

【0041】過剰の水分をロータリーエバポレーターで
減圧下に除去し、得られたペーストを減圧下に80℃で
2時間乾燥し、さらに110℃で2時間乾燥させ触媒粉
体を得た。
Excess water was removed under reduced pressure by a rotary evaporator, and the obtained paste was dried under reduced pressure at 80 ° C. for 2 hours and further at 110 ° C. for 2 hours to obtain a catalyst powder.

【0042】上述の粉体をガス流通式還元装置に入れ、
窒素100ml/minと水素10ml/minで混合
したガスを用いて、それぞれ400℃で2時間還元し、
10%Ni/SiO触媒を得た。
The above powder was put into a gas flow type reduction device,
Using a gas mixed with 100 ml / min of nitrogen and 10 ml / min of hydrogen, each was reduced at 400 ° C. for 2 hours,
A 10% Ni / SiO 2 catalyst was obtained.

【0043】10mlのステンレス製オートクレーブ
に、無水マレイン酸98mg(1mmol)、10%N
i/シリカ21mg、MS3A10mg及びジメトキシ
エタン1mlを仕込み、系内を水素で十分置換した後、
50kg/cmGになるように水素を圧入した。加熱
撹拌しながら180℃に昇温し、2時間水素化反応を行
った。
98 mg (1 mmol) of maleic anhydride and 10% N in a 10 ml stainless steel autoclave.
After charging 21 mg of i / silica, 10 mg of MS3A and 1 ml of dimethoxyethane and sufficiently replacing the system with hydrogen,
Hydrogen was injected under pressure so that the pressure was 50 kg / cm 2 G. The temperature was raised to 180 ° C. with heating and stirring, and a hydrogenation reaction was carried out for 2 hours.

【0044】反応終了後、オートクレーブを室温まで冷
却し、続いて水素をパージし反応液を取り出した。触媒
等をろ別してから、ろ液をガスクロマトグラフィーによ
り分析した結果、γ−ブチロラクトンの収率は原料の無
水マレイン酸に対して、80.0mol%であった。
After completion of the reaction, the autoclave was cooled to room temperature, subsequently purged with hydrogen, and the reaction liquid was taken out. After the catalyst and the like were filtered off, the filtrate was analyzed by gas chromatography. As a result, the yield of γ-butyrolactone was 80.0 mol% based on the maleic anhydride as a raw material.

【0045】実施例2〜7 添加剤としてMS3Aの代わりに表1の化合物を用いた
以外は実施例1と同様にして反応及び分析を行った。結
果を表1に示す。
Examples 2 to 7 Reactions and analyzes were carried out in the same manner as in Example 1 except that the compounds shown in Table 1 were used instead of MS3A as an additive. The results are shown in Table 1.

【0046】実施例8〜9 触媒として10%Ni/シリカの代わりに10%Ni/
活性炭および10%Ni/珪藻土を使用した以外は実施
例1と同様にして反応及び分析を行った。結果を表1に
示す。
Examples 8-9 10% Ni / silica instead of 10% Ni / silica as catalyst
The reaction and analysis were performed in the same manner as in Example 1 except that activated carbon and 10% Ni / diatomaceous earth were used. The results are shown in Table 1.

【0047】実施例10 原料として無水コハク酸100mg(1mmol)を用
いたこと以外は実施例1と同様にして反応を行った。
Example 10 A reaction was carried out in the same manner as in Example 1 except that 100 mg (1 mmol) of succinic anhydride was used as a raw material.

【0048】実施例1と同様に分析した結果γ−ブチロ
ラクトンの収率は原料の無水コハク酸に対して、74.
5%であった。
As a result of analysis in the same manner as in Example 1, the yield of γ-butyrolactone was 74.
It was 5%.

【0049】実施例11 溶媒としてジメトキシエタンの代わりにTHFを用い、
さらにMS3Aの代わりにマレイン酸セシウムを用いた
以外は実施例1と同様にして反応及び分析を行った。結
果を表1に示す。
Example 11 THF was used in place of dimethoxyethane as a solvent,
Further, the reaction and analysis were carried out in the same manner as in Example 1 except that cesium maleate was used instead of MS3A. The results are shown in Table 1.

【0050】[0050]

【表1】 実施例12 硝酸ニッケル(Ni(NO・6HO)1.49
gと酢酸パラジウム0.12gを10%アンモニア水に
溶解させる。この溶液に200メッシュ以下に粉砕した
シリカ(富士デビソン社製、キャリアクト10)2.7
2gを加える。所定時間静置した後、過剰の水分をロー
タリーエバポレーターで減圧下に除去し、得られたペー
ストを減圧下に80℃で2時間乾燥し、さらに110℃
で2時間乾燥させ触媒粉体を得た。
[Table 1] Example 12 Nickel nitrate (Ni (NO 3) 2 · 6H 2 O) 1.49
g and 0.12 g of palladium acetate are dissolved in 10% aqueous ammonia. Silica crushed to 200 mesh or less in this solution (Carrieract 10 manufactured by Fuji Devison Co., Ltd.) 2.7
Add 2 g. After standing for a predetermined time, excess water was removed under reduced pressure with a rotary evaporator, and the obtained paste was dried under reduced pressure at 80 ° C for 2 hours, and further dried at 110 ° C.
And dried for 2 hours to obtain a catalyst powder.

【0051】上述の粉体をガス流通式還元装置に入れ、
窒素100ml/minと水素10ml/minで混合
したガスを用いて、それぞれ400℃で2時間還元し、
Ni−Pd/SiO触媒を得た。
The above powder was put into a gas flow type reduction device,
Using a gas mixed with 100 ml / min of nitrogen and 10 ml / min of hydrogen, each was reduced at 400 ° C. for 2 hours,
To obtain a Ni-Pd / SiO 2 catalyst.

【0052】10mlのステンレス製オートクレーブ
に、無水マレイン酸98mg(1mmol)、Ni−P
d/シリカ21mg、硫酸セシウム10mg及びジメト
キシエタン1mlを仕込み、系内を水素で十分置換した
後、50kg/cmGになるように水素を圧入した。
加熱撹拌しながら180℃に昇温し、2時間水素化反応
を行った。
98 mg (1 mmol) of maleic anhydride and Ni-P were placed in a 10 ml autoclave made of stainless steel.
21 mg of d / silica, 10 mg of cesium sulfate and 1 ml of dimethoxyethane were charged, the system was sufficiently replaced with hydrogen, and then hydrogen was injected under pressure to 50 kg / cm 2 G.
The temperature was raised to 180 ° C. with heating and stirring, and a hydrogenation reaction was carried out for 2 hours.

【0053】反応終了後、オートクレーブを室温まで冷
却し、続いて水素をパージし反応液を取り出した。触媒
等をろ別してから、ろ液をガスクロマトグラフィーによ
り分析した結果、γ−ブチロラクトンの収率は原料の無
水マレイン酸に対して、92.9mol%であった。
After completion of the reaction, the autoclave was cooled to room temperature, and then hydrogen was purged to take out the reaction solution. After filtering off the catalyst and the like, the filtrate was analyzed by gas chromatography. As a result, the yield of γ-butyrolactone was 92.9 mol% based on the maleic anhydride as a raw material.

【0054】実施例13〜17 原料および添加剤を変えた以外は実施例12と同様にし
て反応および分析を行った。結果を表2に示す。
Examples 13 to 17 Reactions and analyzes were carried out in the same manner as in Example 12 except that the raw materials and additives were changed. The results are shown in Table 2.

【0055】実施例18 硝酸ニッケル(Ni(NO・6HO)1.49
gと過レニウム酸0.13gを蒸留水に溶解させる。こ
の溶液に200メッシュ以下に粉砕したシリカ(富士デ
ビソン社製、キャリアクト10)2.72gを加える。
[0055] Example 18 Nickel nitrate (Ni (NO 3) 2 · 6H 2 O) 1.49
g and 0.13 g of perrhenic acid are dissolved in distilled water. 2.72 g of silica (Carrieract 10 manufactured by Fuji Devison Co., Ltd.) ground to 200 mesh or less is added to this solution.

【0056】所定時間静置した後、過剰の水分をロータ
リーエバポレーターで減圧下に除去し、得られたペース
トを減圧下に80℃で2時間乾燥し、さらに110℃で
2時間乾燥させ触媒粉体を得た。
After standing for a predetermined time, excess water was removed under reduced pressure by a rotary evaporator, and the obtained paste was dried under reduced pressure at 80 ° C. for 2 hours and further at 110 ° C. for 2 hours to obtain a catalyst powder. Got

【0057】上述の粉体をガス流通式還元装置に入れ、
窒素100ml/minと水素10ml/minで混合
したガスを用いて、それぞれ400℃で2時間還元し、
Ni−Re/SiO触媒を得た。
The above powder was put into a gas flow type reduction device,
Using a gas mixed with 100 ml / min of nitrogen and 10 ml / min of hydrogen, each was reduced at 400 ° C. for 2 hours,
To obtain a Ni-Re / SiO 2 catalyst.

【0058】10mlのステンレス製オートクレーブ
に、無水マレイン酸98mg(1mmol)、Ni−R
e/シリカ21mg、硫酸セシウム10mg及びジメト
キシエタン1mlを仕込み、系内を水素で十分置換した
後、50kg/cmGになるように水素を圧入した。
加熱撹拌しながら180℃に昇温し、2時間水素化反応
を行った。
98 mg (1 mmol) of maleic anhydride and Ni-R were placed in a 10 ml autoclave made of stainless steel.
e / Silica (21 mg), cesium sulfate (10 mg) and dimethoxyethane (1 ml) were charged, and the inside of the system was sufficiently replaced with hydrogen, and then hydrogen was press-fitted to 50 kg / cm 2 G.
The temperature was raised to 180 ° C. with heating and stirring, and a hydrogenation reaction was carried out for 2 hours.

【0059】反応終了後、オートクレーブを室温まで冷
却し、続いて水素をパージし反応液を取り出した。触媒
等をろ別してから、ろ液をガスクロマトグラフィーによ
り分析した結果、γ−ブチロラクトンの収率は原料の無
水マレイン酸に対して、79.3mol%であった。こ
の時、THF、1,4−BDO等の副生は全く見られな
かった。
After completion of the reaction, the autoclave was cooled to room temperature, and then hydrogen was purged to take out the reaction liquid. After filtering off the catalyst and the like, the filtrate was analyzed by gas chromatography. As a result, the yield of γ-butyrolactone was 79.3 mol% based on maleic anhydride as a raw material. At this time, by-products such as THF and 1,4-BDO were not found at all.

【0060】実施例19〜21 原料および添加剤を変えた以外は実施例18と同様にし
て反応および分析を行った。結果を表2に示す。
Examples 19 to 21 Reactions and analyzes were carried out in the same manner as in Example 18 except that the raw materials and additives were changed. The results are shown in Table 2.

【0061】[0061]

【表2】 比較例1 MS3Aを用いなかった以外は実施例1と同様に反応及
び分析を行った。結果を表3に示す。
[Table 2] Comparative Example 1 Reaction and analysis were carried out in the same manner as in Example 1 except that MS3A was not used. The results are shown in Table 3.

【0062】比較例2〜3 触媒として10%Ni/シリカの代わりに表3の化合物
を用いたこと以外は比較例1と同様にして反応及び分析
を行った。結果を表3に示す。
Comparative Examples 2 to 3 Reactions and analyzes were carried out in the same manner as Comparative Example 1 except that the compounds shown in Table 3 were used instead of 10% Ni / silica as the catalyst. The results are shown in Table 3.

【0063】比較例4 原料として無水マレイン酸の代わりに無水コハク酸を用
いたこと以外は比較例1と同様にして反応及び分析を行
った。結果を表3に示す。
Comparative Example 4 Reaction and analysis were carried out in the same manner as Comparative Example 1 except that succinic anhydride was used instead of maleic anhydride as a raw material. The results are shown in Table 3.

【0064】比較例5 溶媒としてジメトキシエタンの代わりにTHFを用いた
こと以外は比較例1と同様にして反応及び分析を行っ
た。結果を表3に示す。
Comparative Example 5 Reaction and analysis were carried out in the same manner as in Comparative Example 1 except that THF was used instead of dimethoxyethane as the solvent. The results are shown in Table 3.

【0065】比較例6 MS3Aを用いなかった以外は実施例12と同様に反応
及び分析を行った。結果を表3に示す。
Comparative Example 6 The reaction and analysis were carried out in the same manner as in Example 12 except that MS3A was not used. The results are shown in Table 3.

【0066】比較例7 原料を無水コハク酸に変え、添加剤を使用しなかった以
外は実施例12と同様に反応及び分析を行った。結果を
表3に示す。
Comparative Example 7 The reaction and analysis were carried out in the same manner as in Example 12 except that the raw material was changed to succinic anhydride and no additive was used. The results are shown in Table 3.

【0067】比較例8 硫酸セシウムを用いなかった以外は実施例18と同様に
反応及び分析を行った。結果を表3に示す。
Comparative Example 8 The reaction and analysis were carried out in the same manner as in Example 18 except that cesium sulfate was not used. The results are shown in Table 3.

【0068】比較例9 原料を無水コハク酸に変え、添加剤を使用しなかった以
外は実施例18と同様に反応及び分析を行った。結果を
表3に示す。
Comparative Example 9 Reaction and analysis were carried out in the same manner as in Example 18 except that the raw material was changed to succinic anhydride and no additive was used. The results are shown in Table 3.

【0069】[0069]

【表3】 [Table 3]

【0070】[0070]

【発明の効果】本発明によれば、飽和及び/又は不飽和
ジカルボン酸誘導体を水素化するにあたり、ニッケルを
触媒とし、アルカリ金属の塩の共存下に水素化反応を行
うことにより従来の不均一系触媒と比較し温和な条件で
高収率、高選択的にラクトン類を製造することができ
る。
According to the present invention, when hydrogenating a saturated and / or unsaturated dicarboxylic acid derivative, the hydrogenation reaction is carried out in the presence of an alkali metal salt using nickel as a catalyst to obtain a conventional heterogeneous compound. It is possible to produce lactones in high yield and high selectivity under mild conditions as compared with the system catalyst.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 (72)発明者 藤村 敦 三重県四日市市別名6−7−8 (72)発明者 岡田 隆志 三重県四日市市羽津中1−6−17 (72)発明者 笹木原 弘之 三重県四日市市桜町6618−12 (72)発明者 三宅 孝典 三重県四日市市別名3−5−1 (72)発明者 加納 芳明 三重県四日市市みゆきヶ丘2丁目1504−67 (72)発明者 斎藤 寿広 三重県四日市市別名4−14−22─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location // C07B 61/00 300 (72) Inventor Atsushi Fujimura Yokkaichi, Mie Alias 6-7-8 ( 72) Inventor Takashi Okada 1-6-17 Hatunaka, Yokkaichi-shi, Mie (72) Inventor Hiroyuki Sasakihara 6618-12 Sakuramachi, Yokkaichi-shi, Mie (72) Takanori Miyake Another name 3-5-1, Yokkaichi-shi, Mie (72) Yoshiaki Kano, Miyukigaoka, 2-chome, Yokkaichi, Mie 1504-67 (72) Inventor, Toshihiro Saito Yokkaichi, Mie Also known as 4-14-22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】飽和及び/又は不飽和ジカルボン酸誘導体
を水素化するにあたり、ニッケルを触媒として、アルカ
リ金属の塩の共存下に水素化反応を行うことを特徴とす
るラクトン類の製造法。
1. A method for producing a lactone, which comprises hydrogenating a saturated and / or unsaturated dicarboxylic acid derivative in the presence of an alkali metal salt with nickel as a catalyst.
【請求項2】コハク酸及び/又はマレイン酸誘導体を水
素化するにあたり、ニッケルを触媒として、アルカリ金
属の塩の共存下に水素化反応を行うことを特徴とするγ
−ブチロラクトンの製造法。
2. When hydrogenating a succinic acid and / or maleic acid derivative, a hydrogenation reaction is carried out in the presence of an alkali metal salt with nickel as a catalyst.
-A method for producing butyrolactone.
【請求項3】触媒としてニッケルとVIb族、VIIb
族およびVIII族の元素の内から選ばれる少なくとも
1種以上の元素を使用することを特徴とする特許請求の
範囲第1項または第2項記載の製造法。
3. Nickel and VIb group, VIIb as catalyst
3. The method according to claim 1 or 2, wherein at least one element selected from Group VIII and Group VIII elements is used.
JP4187465A 1991-11-18 1992-06-23 Production of lactones by hydrogenation Pending JPH069601A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4187465A JPH069601A (en) 1992-06-23 1992-06-23 Production of lactones by hydrogenation
DE69225560T DE69225560T2 (en) 1991-11-18 1992-11-17 Process for the production of lactones
EP92119629A EP0543340B1 (en) 1991-11-18 1992-11-17 Process for preparing lactones
US08/328,607 US5502217A (en) 1991-11-18 1994-10-25 Process for preparing lactones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4187465A JPH069601A (en) 1992-06-23 1992-06-23 Production of lactones by hydrogenation

Publications (1)

Publication Number Publication Date
JPH069601A true JPH069601A (en) 1994-01-18

Family

ID=16206560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4187465A Pending JPH069601A (en) 1991-11-18 1992-06-23 Production of lactones by hydrogenation

Country Status (1)

Country Link
JP (1) JPH069601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352031B1 (en) * 2000-05-12 2002-09-11 애경유화 주식회사 Method for producing r-butyrolactone
KR100446655B1 (en) * 2002-04-09 2004-09-04 주식회사 엘지화학 Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352031B1 (en) * 2000-05-12 2002-09-11 애경유화 주식회사 Method for producing r-butyrolactone
KR100446655B1 (en) * 2002-04-09 2004-09-04 주식회사 엘지화학 Hydrogenation reaction catalyst for preparing gamma-butyrolactone and method for preparing thereof, and method for preparing gamma-butyrolactone using the same

Similar Documents

Publication Publication Date Title
DE19510438A1 (en) Process for the preparation of 1,4-butanediol and tetrahydrofuran from furan
JP2001523653A (en) Method for producing 1,6-hexanediol and 6-hydroxycaproic acid or ester thereof
KR20010041628A (en) Method for Hydrogenating Aliphatic Alpha, Omega-Dinitriles
Rossi et al. Selective palladium-mediated synthesis of racemic 4, 5-disubstituted 5H-furan-2-ones from 3-ynoic acids and organic halides
WO1999031035A1 (en) Method for hydrogenating carboxylic acids or the anhydrides or esters thereof into alcohol
JPH069601A (en) Production of lactones by hydrogenation
US5502217A (en) Process for preparing lactones
JP4033916B2 (en) Method for producing alicyclic group-containing alcohol
KR100326495B1 (en) How to prepare gamma-butyrolactone
US5945571A (en) Preparation of 1,4-butanediol
JP3194816B2 (en) Method for producing lactones
JPH08291158A (en) Production of new 3-methyltetrahydrofuran
JPH06135953A (en) Production of lactones by hydrogenation
JPH0641106A (en) Production of lactones
JP3132532B2 (en) Lactone production method
JP3194799B2 (en) Production method of lactones
JPH06157490A (en) Tetrahydrofuran manufacturing method
JP3062327B2 (en) Production method of lactones
US5994562A (en) Preparation of N-alkenylcarboxamides
JPH06321925A (en) Method for producing lactones
JP4237500B2 (en) One-step preparation method of toluene derivatives
JPH05222022A (en) Production of lactone compound from dicarboxylic acid derivative
JPH05279352A (en) Production of lactones by hydrogenation
JP3194801B2 (en) Method for producing lactones by hydrogenation
JPH05148254A (en) Method for producing lactones