JPH0695733A - Method for detecting absolute position of self-propelled truck - Google Patents

Method for detecting absolute position of self-propelled truck

Info

Publication number
JPH0695733A
JPH0695733A JP4273740A JP27374092A JPH0695733A JP H0695733 A JPH0695733 A JP H0695733A JP 4273740 A JP4273740 A JP 4273740A JP 27374092 A JP27374092 A JP 27374092A JP H0695733 A JPH0695733 A JP H0695733A
Authority
JP
Japan
Prior art keywords
self
propelled
acceleration
slip
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4273740A
Other languages
Japanese (ja)
Other versions
JP3033363B2 (en
Inventor
Masamichi Ebata
正道 江端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP4273740A priority Critical patent/JP3033363B2/en
Publication of JPH0695733A publication Critical patent/JPH0695733A/en
Application granted granted Critical
Publication of JP3033363B2 publication Critical patent/JP3033363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Distances Traversed On The Ground (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To detect the extent of movement of a self-propelled truck in a free plane with a high precision by detecting a skid of the self-propelled truck and a slip of driving wheels based on the output of an accelerometer and calculating the extent of movement in a minute sampling time. CONSTITUTION:Acceleromaters 1L and 1R on a driving axle 41 detect the acceleration in the running direction, and an accelerometer 2 on an intersection O between the driving axle 41 and an axle 81 detects the acceleration in the direction orthogonal to the running direction. A controller 9 detects a skid and a slip of driving wheels 4L based on outputs of acceler 0 meter 1L, 1R, and 2. The controller 9 calculates the extent of movement in the minute sampling time by an operation routine corresponding to each state. The controller 9 successively adds this extent of movement to the extent of movement calculated till then to detect absolute coordinates of the present position in the absolute coordinate system in the free plane. Thus, the simple system using accelerometers 1L, 1R, and 2 and rotation position detectors 6R and 6L is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は工場、オフィス等の中を
無人で物を搬送する自走台車の移動平面内の絶対位置検
出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an absolute position in a moving plane of a self-propelled carriage for unmanned transportation of goods in factories, offices and the like.

【0002】[0002]

【従来の技術】従来、自由平面を移動する自走台車の自
律走行誘導装置として、自走台車の車輪に設けた回転セ
ンサにより計測した移動距離と、自走台車に設けたレー
トジャイロにより角速度を積分することにより得られた
姿勢角とにより自走台車の位置を検出し、自走台車の停
止ごとに、レートジャイロのオフセット値を検出・記憶
しておき、自走台車の走行中に得られるレートジャイロ
の出力をこのオフセット値で補正するものがある(例え
ば、特開昭58−166406号公報)。
2. Description of the Related Art Conventionally, as an autonomous traveling guide device for a self-propelled vehicle that moves on a free plane, the travel distance measured by a rotation sensor provided on the wheel of the self-propelled vehicle and the angular velocity by a rate gyro provided on the self-propelled vehicle are used. The position of the self-propelled carriage is detected based on the posture angle obtained by integration, and the offset value of the rate gyro is detected and stored every time the self-propelled carriage is stopped, and can be obtained while the self-propelled carriage is running. There is one that corrects the output of the rate gyro with this offset value (for example, Japanese Patent Laid-Open No. 58-166406).

【0003】[0003]

【発明が解決しようとする課題】ところが、移動距離を
車輪に設けた回転センサにより検出しているため、走行
面が傾斜していて車体が横すべりを起こした場合や走行
面の凹凸が激しく車輪がスリップした場合は、累積誤差
が大きい。また、レートジャイロは高価である等の問題
があった。そこで、本発明は、車体の横すべりや車輪の
スリップを補正し、自由平面を移動する自走台車の移動
距離検出方法を精度よく、安価に提供することを目的と
する。
However, since the movement distance is detected by the rotation sensor provided on the wheel, when the running surface is tilted and the vehicle body is skid or the running surface is severely rough, When slipping, the cumulative error is large. Moreover, there is a problem that the rate gyro is expensive. Therefore, it is an object of the present invention to provide a method for detecting a moving distance of a self-propelled vehicle that moves on a free plane with high accuracy and at low cost by correcting side slip of a vehicle body and slip of wheels.

【0004】[0004]

【課題を解決するための手段】自由平面を移動する自走
台車の移動距離を左右の車輪に設けた回転位置検出器に
より検出し、自走台車の現在位置を検出方法において、
自走台車の左右の駆動軸上に、取付けられた進行方向の
加速度を検出する2つの加速度計と、左右の駆動軸と車
軸の交点上に設けた進行方向と直交方向の加速度を検出
する加速度計を設け、各加速度計の出力をもとに、自走
台車の横滑りと駆動輪のスリップを検出し、おのおのの
状態に対応した演算ルーチンにより、微少サンプリング
時間内の移動距離を演算し、それまでの移動距離に逐次
加算し、自走台車の現在位置の絶対座標を検出する。ま
た、各加速度計と回転位置検出器のゲインとオフセット
を補正し、各検出器のマッチングをとる。
In the method for detecting the current position of a self-propelled vehicle by detecting the moving distance of a self-propelled vehicle moving on a free plane by a rotary position detector provided on the left and right wheels,
Two accelerometers mounted on the left and right drive shafts of the self-propelled carriage to detect acceleration in the traveling direction, and accelerations for detecting accelerations in the travel direction and orthogonal direction provided at the intersections of the left and right drive shafts and the axle. A gauge is provided to detect the sideslip of the self-propelled carriage and the slip of the drive wheel based on the output of each accelerometer, and the movement distance within the minute sampling time is calculated by the calculation routine corresponding to each state. It is sequentially added to the moving distance up to and the absolute coordinates of the current position of the self-propelled carriage are detected. In addition, the gain and offset of each accelerometer and rotational position detector are corrected to match each detector.

【0005】[0005]

【作用】各微少サンプリング時間毎の移動距離が、横滑
りやスリップ等の状況に対応して補正される。微少サン
プリング時間毎に、自走台車の自由平面における絶対位
置の座標を正確に把握する。
The movement distance for each minute sampling time is corrected in accordance with the situation such as sideslip or slip. Accurately grasp the coordinates of the absolute position of the self-propelled carriage on the free plane for each minute sampling time.

【0006】[0006]

【実施例】以下に、本発明の実施例を図面により説明す
る。図1は、本発明による自走台車の構成を示す平面図
である。左右の駆動輪4R、4Lは駆動軸41上に一直
線に配置してある。駆動輪4R、4Lは、回転位置検出
器6R、6Lを備えたおのおのの駆動装置5R、5Lに
より回転駆動し、走行方向の制御は左右の駆動輪4R、
4Lに回転速度差を付けることにより行う。駆動軸41
上の任意の位置には、検出方向を車軸81方向(以下、
自走台車の進行方向に相当するx軸方向とする。)とし
た加速度と設置位置回りの角加速度を検出する加速度計
1R、1Lを設けてある。駆動軸41と車軸81の交点
O上には、検出方向を駆動軸41方向(以下、自走台車
の進行方向と直角方向に相当するy軸方向とする。)と
する加速度計2を設けてある。車体の適当な位置に配置
された制御装置9には、移動距離の計算や駆動装置5
R、5Lへの駆動指令を与えるための演算回路が格納さ
れている。図2は駆動指令と演算回路のブロック図を示
したものである。駆動装置5R、5Lに設けた回転位置
検出器6R,6Lの回転量を示すパルス信号は、おのお
ののカウンタ15R、15Lに入力する。カウンタ15
R、15Lの出力は、おのおののラッチ16R,16L
でラッチされCPU17の発する払出し指令により回転
量パルス数を渡し、CPU17内に設けたRAMに回転
量パルス数を記憶する。各加速度計1R、1L、2の出
力は、増幅回路10R、10L、11によって適当なD
Cレベルの信号に変換された後、マルチプレクサ13で
選択されA/Dコンバータ14でデジタル化される。C
PU17は、リアルタイムクロック18によって、微小
なサンプル時間ごとに割り込みがかけられ、内蔵した移
動距離計算ルーチンを呼び出す。移動距離計算ルーチン
は、各サンプル時間毎に、駆動輪4のスリップおよび自
走台車の横滑りを調べ、演算式を選択する。選択した演
算式に対応し、加速度計1R、1L、2により計測され
る加速度をA/Dコンバータ14からサンプリングし、
おのおのの加速度を積分し、サンプル時間内の自走台車
の移動距離を計算する。このとき同時に、回転位置検出
器6R,6Lのカウンタ15R,15Lの値もサンプリ
ングする。各サンプル時間毎の移動距離の演算結果は、
それまでの移動距離に加算し、移動平面の原点(0,
0、0)からの累積移動距離および累積移動方向とし
て、現在位置の絶対座標(X,Y,Θ)をメモリ19に
蓄積する。なお、CPU17の内部にマップ情報をもっ
ている場合は、移動距離とこれを比較し、自走台車のマ
ップ上の位置を把握しながら駆動装置を制御することも
できる。CPU17には、移動距離計算ルーチンのほか
に、走行制御ルーチン(例えば、経路・操舵・速度・加
速度等)を内蔵しており、モータ制御器20R、20L
に指令を出す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing the structure of a self-propelled carriage according to the present invention. The left and right drive wheels 4R and 4L are arranged in a straight line on the drive shaft 41. The drive wheels 4R, 4L are rotationally driven by respective drive devices 5R, 5L equipped with rotational position detectors 6R, 6L, and the driving direction is controlled by the left and right drive wheels 4R, 4L.
It is performed by applying a rotation speed difference to 4L. Drive shaft 41
At any upper position, the detection direction is the axle 81 direction (hereinafter,
The x-axis direction corresponds to the traveling direction of the self-propelled carriage. ) And accelerometers 1R and 1L for detecting the angular acceleration around the installation position. On the intersection O of the drive shaft 41 and the axle 81, the accelerometer 2 having the detection direction as the drive shaft 41 direction (hereinafter, the y-axis direction corresponding to the direction orthogonal to the traveling direction of the self-propelled carriage) is provided. is there. The control device 9 arranged at an appropriate position on the vehicle body includes a drive device 5 for calculating a moving distance.
An arithmetic circuit for giving a drive command to R and 5L is stored. FIG. 2 shows a block diagram of the drive command and the arithmetic circuit. The pulse signals indicating the rotation amounts of the rotation position detectors 6R and 6L provided in the drive devices 5R and 5L are input to the counters 15R and 15L, respectively. Counter 15
The outputs of R and 15L are latches 16R and 16L, respectively.
The number of rotation pulses is passed in accordance with a payout command issued by the CPU 17 and is stored in the RAM provided in the CPU 17. The outputs of the accelerometers 1R, 1L, and 2 are set to appropriate D by the amplifier circuits 10R, 10L, and 11.
After being converted into a C level signal, it is selected by the multiplexer 13 and digitized by the A / D converter 14. C
The PU 17 is interrupted by the real-time clock 18 at every minute sample time and calls the built-in movement distance calculation routine. The movement distance calculation routine checks the slip of the drive wheel 4 and the side slip of the self-propelled carriage for each sample time, and selects an arithmetic expression. The acceleration measured by the accelerometers 1R, 1L, 2 corresponding to the selected arithmetic expression is sampled from the A / D converter 14,
Each acceleration is integrated to calculate the travel distance of the self-propelled carriage within the sample time. At the same time, the values of the counters 15R and 15L of the rotational position detectors 6R and 6L are also sampled. The calculation result of the moving distance for each sample time is
It is added to the moving distance up to that point, and the origin of the moving plane (0,
The absolute coordinates (X, Y, Θ) of the current position are stored in the memory 19 as the cumulative moving distance from 0, 0) and the cumulative moving direction. When the CPU 17 has map information inside, it is possible to control the drive device by comparing this with the moving distance and grasping the position of the self-propelled carriage on the map. The CPU 17 incorporates a traveling control routine (for example, route, steering, speed, acceleration, etc.) in addition to the moving distance calculation routine, and the motor controllers 20R and 20L.
Issue a command to.

【0007】移動距離計算ルーチンの詳細を以下に述べ
る。まず最初に、車輪のスリップ検出方式について述べ
る。加速度計1R、1Lの出力加速度αSR,αSLをもと
に、下記の式によりX方向の加速度αSXとO点周りの角
加速度dωS /dtを計算する。 αSX=(lSR*αSL+lSL*αSR)/(lSR+lSL) (1) dωS /dt=−(αSL−αSR)/(lSR+lSL) (2) ただし、lSR、lSLはO点から加速度センサ1R、1L
までの距離である。つぎに、x方向の速度VSXおよびO
点周りの角速度ωS を計算する。一般的には、(1)式
(2)式を積分して求めるが、サンプル時間tが小さい
場合は、下記の式でよい。 VSX(m) =VXS(m-1) +αSX(m) *t (3) ωS(m) =ωS(m-1)+(dωS /dt)(m) *t (4) ここで,サフィツクスmはm番目のサンプル時間を示
す。従って、加速度計1R、1Lの出力加速度を基準と
して求めた、左右の駆動輪4L,4Rのm番目のサンプ
ル時間における、左右車輪位置の速度VSWL(m),V
SWR(m)は下記の式で表される。 VSWL(m)=VSX(m) −1WL*ωS(m) (5) VSWR(m)=VSX(m) +1WR*ωS(m) (6) ただし、1WL、1WRはO点から駆動輪4L,4Rまでの
距離である。一方、回転位置検出器6L,6Rの検出す
る回転速度ωWL(m),ωWR(m) を基準として求めた、m番
目のサンプル時間における、左右の駆動輪位置の速度を
WL (m) 、VWR(m) とする。左右の駆動輪のスリップV
SLIPXL,VSRIPXRは下記の式で表される。 VSLIPXL=VSWL(m)−VWL(m) (7) VSRIPXR=VSWR(m)−VWR(m) (8)
The details of the moving distance calculation routine will be described below. First, a wheel slip detection method will be described. Based on the output accelerations α SR and α SL of the accelerometers 1R and 1L, the acceleration α SX in the X direction and the angular acceleration dω S / dt around the point O are calculated by the following formulas. α SX = (l SR * α SL + l SL * α SR ) / (l SR + l SL ) (1) dω S / dt =-(α SLSR ) / (l SR + l SL ) (2) However, l SR and l SL are acceleration sensors 1R and 1L from point O
Is the distance to. Next, the speeds V SX and O in the x direction
Calculate the angular velocity ω S around the point. Generally, the equations (1) and (2) are integrated to obtain, but when the sample time t is small, the following equation may be used. V SX (m) = V XS (m-1) + α SX (m) * t (3) ω S (m) = ω S (m-1) + (dω S / dt) (m) * t (4 ) Here, the suffix m indicates the m-th sample time. Therefore, the velocities V SWL (m) and V SWL of the left and right wheel positions at the m-th sample time of the left and right drive wheels 4L and 4R obtained by using the output acceleration of the accelerometers 1R and 1L as a reference.
SWR (m) is expressed by the following formula. V SWL (m) = V SX (m) -1 WL * ω S (m) (5) V SWR (m) = V SX (m) +1 WR * ω S (m) (6) where 1 WL , 1 WR is the distance from point O to drive wheels 4L and 4R. On the other hand, the speeds of the left and right driving wheel positions at the m-th sample time, which are obtained with reference to the rotational speeds ω WL (m) and ω WR (m) detected by the rotational position detectors 6L and 6R, are V WL (m ) And V WR (m) . Left and right drive wheel slip V
SLIPXL and V SRIPXR are represented by the following formulas. V SLIPXL = V SWL (m) -V WL (m) (7) V SRIPXR = V SWR (m) -V WR (m) (8)

【0008】つぎに、O点に設けた加速度計2で検出す
るy方向の加速度αOyを基準として、横滑り加速度α
SLIPy は下記の式で表される。 αSLIPy(m)=αOy(m) −VSX(m) *ωS(m) (9) 一般的には、車輪の横滑り速度VSLIPy(m)はαSLIPy(m)
を積分して求めるが、サンプル時間tが小さい場合は、
下記の式でよい。 VSLIPy(m)=VSLIPy(m-1)+αSLIPy(m)*t (10) したがって、左右車輪4L,4Rのスリップと横滑りに
よる合成速度は、下記の式で表される。 VSLIPL(m)=SQRT(VSLIPXL 2 +VSLIPyL 2 ) (11) VSLIPR(m)=SQRT(VSLIPXR 2 +VSLIPyR 2 ) (12) (10)式、(11)式のいずれかの値が所定の値を越
えたとき、左右の車輪のいずれかにスリップまたは横滑
りが生じたと判断する。
Next, with reference to the acceleration α Oy in the y direction detected by the accelerometer 2 provided at the point O, the sideslip acceleration α
SLIPy is represented by the following formula. α SLIPy (m) = α Oy (m) −V SX (m) * ω S (m) (9) Generally, the sideslip velocity V SLIPy (m) of the wheel is α SLIPy (m)
Is obtained by integrating, but when the sample time t is small,
The following formula can be used. V SLIPy (m) = V SLIPy (m-1) + α SLIPy (m) * t (10) Therefore, the combined speed of the left and right wheels 4L and 4R due to slip and side slip is represented by the following formula. V SLIPL (m) = SQRT (V SLIPXL 2 + V SLIPyL 2 ) (11) V SLIPR (m) = SQRT (V SLIPXR 2 + V SLIPyR 2 ) (12) Either of the formulas (10) and (11) When exceeds a predetermined value, it is determined that slip or skid occurs on either of the left and right wheels.

【0009】(10)式、(11)式の値で走行状況を
判断し、おのおののサンプリング時間において、自走台
車の距離計算式を使いわける。これは、距離計算の過程
の2階積分が含まれ計算誤差もある程度あると思われる
ので、加速度計1R、1Lおよび2の値のみを用いて自
走台車の移動距離を計算すると、積分誤差が大きくなる
からである。よって、車輪のスリップや横滑りが小さい
と思われるときは積分が一回少ない回転位置検出器6
L,6Rの値を使用する。(イ)スリップや横滑りが無
視できないと判断したとき。前記(3)、(4)式で求
めたVSX(m) とωS(m)を積分して求めたθS(m)および
(10)式で求めたVSLIPy(m)から、m番目のサンプル
時間における、自走台車の副座標(x(m) ,y(m) ,θ
(m) )は下記の式で求める。 x(m) =x(m-1) +VSx(m) *t*cos((θS(m)+θ(m-1) )/2) −VSLIPy(m)*t*sin((θS(m)+θ(m-1) )/2) (13) y(m) =y(m-1) +VS(m)*t*sin((θS(m)+θ(m-1) )/2) +VSLIPY(m)*t*cos((θS(m)+θ(m-1) )/2) (14) θ(m) =θ(m-1) +ωSm*t (15) (ロ)スリップや横滑りが無視できると判断したとき。
回転位置検出器6L,6Rの検出する回転速度ωWL(m),
ωWR(m) を基準として求めた、m番目のサンプル時間に
おける、左右車輪位置の速度をVWL(m) ,VWRから、自
走台車のx方向の速度VWx、ωW は下記の式で表され
る。 VWX(m) =(1WR*VWL(m) +1WL*VWR(m) )/(lWL+lWR) (16) ωW(m)=−(VWL(m) −VWR(m) )/(lWL+lWR) (17) ただし、1WR、1WLは、左車輪、右車輪のO点からの距
離である。 x(m) =x(m-1) +VWX(m) *t*cos((θW(m)+θ(m-1) )/2) (18) y(m) =y(m-1) +VWX(m) *t*sin((θW(m)+θ(m-1) )/2) (19) θ(m) =θ(m-1) +ωW(m)*t (20) さて、自走台車の移動平面における絶対座標(X,Y,
Θ)は前記(イ)の場合は(13),(14)および
(15)式を用い、(ロ)の場合は(18),(19)
および(20)式を用い、下記の式で求める。 X(m) =ΣX(m-1) +x(m) (21) Y(m) =ΣY(m-1) +y(m) (22) Θ(m) =ΣΘ(m-1) +θ(m) (23)
The traveling situation is judged by the values of the equations (10) and (11), and the distance calculation equation of the self-propelled carriage is properly used at each sampling time. This is because the second-order integral in the distance calculation process is included and there is a certain degree of calculation error. Therefore, when the travel distance of the self-propelled carriage is calculated using only the values of the accelerometers 1R, 1L and 2, the integration error is Because it will grow. Therefore, when the slip or side slip of the wheel is considered to be small, the rotational position detector 6 with a small integration once.
The values of L and 6R are used. (B) When it is determined that slip or skid cannot be ignored. From θ S (m) obtained by integrating V SX (m) and ω S (m) obtained by the equations (3) and (4) and V SLIPy (m) obtained by the equation (10), Subordinates (x (m) , y (m) , θ ) of the self-propelled carriage at the th sample time
(m) ) is calculated by the following formula. x (m) = x (m -1) + V Sx (m) * t * cos ((θ S (m) + θ (m-1)) / 2) -V SLIPy (m) * t * sin ((θ S (m) + θ (m-1) ) / 2) (13) y (m) = y (m-1) + V S (m) * t * sin ((θ S (m) + θ (m-1) ) / 2) + V SLIPY (m) * t * cos ((θ S (m) + θ (m-1) ) / 2) (14) θ (m) = θ (m-1) + ω Sm * t (15 ) (B) When it is judged that slip or skid can be ignored.
Rotational speed ω WL (m) detected by the rotational position detectors 6L, 6R ,
The speeds of the left and right wheel positions at the m-th sample time obtained with reference to ω WR (m) are V WL (m) and V WR , and the velocities V Wx and ω W of the self-propelled carriage in the x direction are as follows. It is represented by a formula. V WX (m) = (1 WR * V WL (m) +1 WL * V WR (m) ) / (l WL + l WR ) (16) ω W (m) =-(V WL (m) -V WR (m) ) / (l WL + l WR ) (17) where 1 WR and 1 WL are the distances from the O point of the left and right wheels. x (m) = x (m-1) + V WX (m) * t * cos ((θ W (m) + θ (m-1) ) / 2) (18) y (m) = y (m-1 ) + V WX (m) * t * sin ((θ W (m) + θ (m-1) ) / 2) (19) θ (m) = θ (m-1) + ω W (m) * t (20 ) Now, the absolute coordinates (X, Y,
Θ) uses equations (13), (14) and (15) in the case of (a), and (18) and (19) in the case of (b).
And using the equation (20), it is calculated by the following equation. X (m) = ΣX (m-1) + x (m) (21) Y (m) = ΣY (m-1) + y (m) (22) Θ (m) = ΣΘ (m-1) + θ (m ) (23)

【0009】各検出器が絶対的に同一の精度を維持でき
るときは、以上で求めた値を用いてよいが、通常、加速
度計1R、1L、2および回転位置検出器6L,6R等
の検出器はバラツキや温度ドリフト等による誤差の影響
を受けるので、オンラインで補正を行うのが好ましい。
オンラインで各検出器のゲインとオフセットの補正を行
う方法として、推定による同定方法を用いる。新しい推
定は次の一般式で表される。 新しい推定=古い推定+ゲインベクトル*予測誤差 (24) (24)式のゲインベクトルと予測誤差をオンラインで
同定する方法の一例が、'ADAPTIVE FILTERING PREDICTI
ON AND CONTROL'(PRENTICE-HALL,INC,発行 3.3 節)に
記載されている。一例として、(24)式を本発明の加
速度計1Lの検出値αSLに適用すると、下記の式とな
る。 αSL(m+1) =αSL(m) +k(m) *E(m+1) (25) ただし、k(m) はサンプル時間mにおける加速度計1L
のゲイン、E(m+1) は予測誤差(オフセット)である。
(25)式のk(m) およびE(m+1) は下記の式で表され
る。 k(m) =1/Φ(m) T *Φ(m) (26) E(m+1) =y(m+1) −Φ(m) T *αSLest.(m) (27) ただし、αSLest.(m) はサンプル時間mにおける推定
値、Φ(m) T は推定値と観測値の差の転置ベクトルを示
し下記の式で表される。 Φ(m) T =〔−y(m) ,αSL(m) 〕 (28) ただし、y(m) は、サンプル時間mにおける、線形また
は非線形モデルによる推定値である。以下に、加速度計
の基準値をえるための初期補正方法について述べる。ま
ず、自走台車を横滑りやスリップが起きないような理想
平面上を走行させる。この状態では左右の加速度計と回
転位置検出器の出力に外乱が考えられ、左右の加速度計
と回転位置検出器のゲインとオフセットを補正する。次
に、ゲンイを固定と考えオフセットを(27)式で補正
する。これを各サンプル時間毎に行なう。このような初
期補正を十分行なった後、自走台車の距離測定を始め
る。距離測定中も加速度計の補正を行なう。なお、距離
測定中の加速度計の補正は、(11)式(12)式の値
が所定の値の範囲内で車輪のスリップが無視できる程小
さいと判断される時、車輪の回転位置検出器のデータよ
り行なうようにする。
When the respective detectors can maintain the absolutely same accuracy, the values obtained above may be used, but normally, the accelerometers 1R, 1L, 2 and the rotational position detectors 6L, 6R are detected. Since the instrument is affected by errors due to variations and temperature drift, it is preferable to make an online correction.
An identification method by estimation is used as a method of correcting the gain and offset of each detector online. The new estimate is given by the general formula: New estimation = old estimation + gain vector * prediction error (24) An example of the method for identifying the gain vector and prediction error in Eq. (24) online is'ADAPTIVE FILTERING PREDICTI.
ON AND CONTROL '(PRENTICE-HALL, INC, Issue 3.3). As an example, when the equation (24) is applied to the detection value α SL of the accelerometer 1L of the present invention, the following equation is obtained. α SL (m + 1) = α SL (m) + k (m) * E (m + 1) (25) where k (m) is accelerometer 1L at sample time m
, E (m + 1) is a prediction error (offset).
K (m) and E (m + 1) in the equation (25) are represented by the following equations. k (m) = 1 / Φ (m) T * Φ (m) (26) E (m + 1) = y (m + 1) −Φ (m) T * α SLest. (m) (27) , Α SLest. (M) is the estimated value at the sample time m, and Φ (m) T is the transposed vector of the difference between the estimated value and the observed value and is represented by the following formula. Φ (m) T = [-y (m) , α SL (m) ] (28) where y (m) is an estimated value at the sample time m by a linear or nonlinear model. The initial correction method for obtaining the reference value of the accelerometer will be described below. First, the self-propelled carriage is run on an ideal plane that prevents skidding and slipping. In this state, a disturbance may occur in the outputs of the left and right accelerometers and the rotational position detector, and the gain and offset of the left and right accelerometers and the rotational position detector are corrected. Next, it is considered that Geni is fixed and the offset is corrected by the equation (27). This is done every sample time. After sufficiently performing such initial correction, the distance measurement of the self-propelled carriage is started. The accelerometer is corrected even during distance measurement. Incidentally, the correction of the accelerometer during the distance measurement is performed by the rotational position detector of the wheel when it is determined that the slip of the wheel is negligibly small within the range of the predetermined values of the equations (11) and (12). It should be done from the data of.

【0010】[0010]

【発明の効果】以上のように、本発明によれば、加速度
計と駆動系の回転位置検出装置だけの組み合わせの比較
的簡単なシステム構成で、自走台車の移動距離と現在位
置の座標を検出でき、加速度計を用いているので、ジャ
イロスコープによるものよりも安価であるという効果が
ある。
As described above, according to the present invention, the moving distance of the self-propelled carriage and the coordinates of the current position can be calculated with a relatively simple system configuration in which only the accelerometer and the rotational position detecting device of the drive system are combined. Since it can be detected and the accelerometer is used, it has an effect that it is cheaper than the one using the gyroscope.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による自走台車の構成を示す平
面図。
FIG. 1 is a plan view showing the configuration of a self-propelled carriage according to an embodiment of the present invention.

【図2】本発明の実施例による制御装置のブロック図。FIG. 2 is a block diagram of a control device according to an embodiment of the present invention.

【図3】本発明の実施例による加速度検出器等の配置を
示す平面図。
FIG. 3 is a plan view showing the arrangement of an acceleration detector and the like according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1R、1L、2 加速度計 4R、4L 駆動輪 41 駆動軸 5R、5L 駆動装置 6R,6L 回転位置検出器 81 車軸 9 制御装置 10R、10L、11 増幅回路 13 マルチプレクサ 14 A/Dコンバータ 15R、15L カウンタ 16R,16L ラッチ 17 CPU 18 リアルタイムクロック 19 メモリ 20R、20L モータ制御器 1R, 1L, 2 Accelerometer 4R, 4L Drive wheel 41 Drive shaft 5R, 5L Drive device 6R, 6L Rotation position detector 81 Axle 9 Control device 10R, 10L, 11 Amplification circuit 13 Multiplexer 14 A / D converter 15R, 15L Counter 16R, 16L Latch 17 CPU 18 Real Time Clock 19 Memory 20R, 20L Motor Controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 自由平面を移動する自走台車の移動距離
を車輪に設けた回転位置検出器により検出し、自走台車
の現在位置を検出方法において、自走台車の左右の駆動
軸上に、取付けられた進行方向の加速度を検出する2つ
の加速度計と、左右の駆動軸と車軸の交点上に設けた進
行方向と直交方向の加速度を検出する加速度計を設け、
各加速度計の出力をもとに、自走台車の横滑りと駆動輪
のスリップを検出し、おのおのの状態に対応した演算ル
ーチンにより、微少サンプリング時間内の移動距離を演
算し、それまでの移動距離に逐次加算し、自由平面内の
絶対座標系に対する自走台車の現在位置の絶対座標を検
出することを特徴とする自走台車の絶対位置検出方法。
1. A method for detecting a current position of a self-propelled vehicle by detecting a moving distance of the self-propelled vehicle moving on a free plane by a rotational position detector provided on a wheel, and detecting the present position of the self-propelled vehicle on the left and right drive axes of the self-propelled vehicle. , Provided with two accelerometers for detecting acceleration in the traveling direction and an accelerometer for detecting acceleration in the traveling direction and orthogonal direction provided on the intersection of the left and right drive shafts and the axle,
Based on the output of each accelerometer, it detects the sideslip of the self-propelled carriage and the slip of the driving wheel, and the calculation routine corresponding to each state calculates the movement distance within the minute sampling time, and the movement distance up to that point. To the absolute coordinates of the present position of the self-propelled carriage with respect to the absolute coordinate system in the free plane.
【請求項2】 前記自走台車の横滑りの検出を、駆動軸
と車軸の交点に設けた加速度計の検出する車軸方向の加
速度を基準に演算する請求項1記載の自走台車の絶対位
置検出方法。
2. The absolute position detection of the self-propelled vehicle according to claim 1, wherein the skid of the self-propelled vehicle is detected based on the acceleration in the axle direction detected by an accelerometer provided at the intersection of the drive shaft and the axle. Method.
【請求項3】 前記駆動輪のスリップの検出を、駆動軸
上に設けた左右の加速度計の検出する加速度と回転位置
検出器の検出する回転速度の差から演算する請求項1記
載の自走台車の絶対位置検出方法。
3. The self-propelled vehicle according to claim 1, wherein slip of the drive wheels is detected from a difference between acceleration detected by left and right accelerometers provided on the drive shaft and rotational speed detected by a rotational position detector. Absolute position detection method of trolley.
【請求項4】 前記微少サンプリング時間内の移動距離
の演算を、自走台車の横滑りとスリップの状況に対応し
て、演算式を選択する請求項2または3記載の自走台車
の絶対位置検出方法。
4. The absolute position detection of the self-propelled carriage according to claim 2 or 3, wherein an arithmetic expression is selected for the calculation of the moving distance within the minute sampling time in accordance with the situation of the sideslip and slip of the self-propelled carriage. Method.
【請求項5】 前記各加速度計と回転位置検出器のゲイ
ンとオフセットをオンラインで補正する請求項1ないし
4いずれか1項に記載の自走台車の絶対位置検出方法。
5. The absolute position detection method for a self-propelled carriage according to claim 1, wherein the gains and offsets of the accelerometers and the rotational position detectors are corrected online.
JP4273740A 1992-09-16 1992-09-16 Absolute position detection method for self-propelled trolley Expired - Fee Related JP3033363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273740A JP3033363B2 (en) 1992-09-16 1992-09-16 Absolute position detection method for self-propelled trolley

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273740A JP3033363B2 (en) 1992-09-16 1992-09-16 Absolute position detection method for self-propelled trolley

Publications (2)

Publication Number Publication Date
JPH0695733A true JPH0695733A (en) 1994-04-08
JP3033363B2 JP3033363B2 (en) 2000-04-17

Family

ID=17531913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273740A Expired - Fee Related JP3033363B2 (en) 1992-09-16 1992-09-16 Absolute position detection method for self-propelled trolley

Country Status (1)

Country Link
JP (1) JP3033363B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534737A (en) * 2006-04-18 2009-09-24 マースランド エヌ・ヴィ Unmanned autonomous vehicle for feed movement
JP2012032302A (en) * 2010-07-30 2012-02-16 Mori Seiki Co Ltd Transfer detection method and transfer detection unit
CN102819265A (en) * 2012-08-29 2012-12-12 上海富洋自动化工程设备有限公司 Carrier robot self-propelled vehicle for continuous absolute address system
US8634959B2 (en) 2009-08-25 2014-01-21 Samsung Electronics Co., Ltd. Apparatus and method detecting a robot slip
US9186791B2 (en) 2011-09-13 2015-11-17 Kabushiki Kaisha Yaskawa Denki Mobile robot and mobile truck
WO2017065132A1 (en) * 2015-10-15 2017-04-20 株式会社デンソー Display control device, and nontemporary computer readable storage medium in which display control program is stored
JP2021036416A (en) * 2019-08-21 2021-03-04 パナソニックIpマネジメント株式会社 Autonomous robot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534737A (en) * 2006-04-18 2009-09-24 マースランド エヌ・ヴィ Unmanned autonomous vehicle for feed movement
US8634959B2 (en) 2009-08-25 2014-01-21 Samsung Electronics Co., Ltd. Apparatus and method detecting a robot slip
JP2012032302A (en) * 2010-07-30 2012-02-16 Mori Seiki Co Ltd Transfer detection method and transfer detection unit
US8825437B2 (en) 2010-07-30 2014-09-02 DMG Mori Seiki Co., Ltd Relocation detection method and relocation detection unit
US9186791B2 (en) 2011-09-13 2015-11-17 Kabushiki Kaisha Yaskawa Denki Mobile robot and mobile truck
CN102819265A (en) * 2012-08-29 2012-12-12 上海富洋自动化工程设备有限公司 Carrier robot self-propelled vehicle for continuous absolute address system
WO2017065132A1 (en) * 2015-10-15 2017-04-20 株式会社デンソー Display control device, and nontemporary computer readable storage medium in which display control program is stored
JP2017076890A (en) * 2015-10-15 2017-04-20 株式会社デンソー Display control device and display control program
JP2021036416A (en) * 2019-08-21 2021-03-04 パナソニックIpマネジメント株式会社 Autonomous robot

Also Published As

Publication number Publication date
JP3033363B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
Ryu et al. Estimation of vehicle roll and road bank angle
JPH06273187A (en) Vehicle body gravity center slip angle measuring apparatus
US20190368878A1 (en) Method for determining an orientation of a vehicle
EP2942254B1 (en) Vehicle roll angle estimation device
WO2007148818A1 (en) Posture angle detecting device and posture angle detecting method
JPH05170120A (en) Vehicle yaw momentum detecting device, method, and vehicle motion control device using them
CN110073172A (en) For determining the method for the relative position of motor vehicle, for the position determination system and motor vehicle of motor vehicle
JP2552380B2 (en) Detection value offset amount remover
JP3033363B2 (en) Absolute position detection method for self-propelled trolley
CN108426584A (en) The calibration method of automobile multisensor
JPH04113218A (en) Relative bearing detection system
JPH0996535A (en) Navigation device
JP6594546B2 (en) Angle measuring device
CN112577513A (en) State quantity error determination method and vehicle-mounted terminal
JP2002213959A (en) Angular velocity detector and navigation device for vehicle
JP2878498B2 (en) Angular acceleration detector
JP2006189450A (en) Navigation system
JP3557508B2 (en) Direction detection device
JP6632727B2 (en) Angle measuring device
JP2021142969A (en) Sensor error correction device
JP2020080743A (en) Vehicular posture estimation device
JPH08268257A (en) Actual speed estimator
US20240043018A1 (en) Method and electronic control system for ascertaining a distance travelled by a vehicle
JP2983527B1 (en) Vehicle measuring device
JP6056142B2 (en) Vehicle attitude determination device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees