JPH0695664B2 - High-speed optical pulse multiplexer / demultiplexer - Google Patents

High-speed optical pulse multiplexer / demultiplexer

Info

Publication number
JPH0695664B2
JPH0695664B2 JP59277478A JP27747884A JPH0695664B2 JP H0695664 B2 JPH0695664 B2 JP H0695664B2 JP 59277478 A JP59277478 A JP 59277478A JP 27747884 A JP27747884 A JP 27747884A JP H0695664 B2 JPH0695664 B2 JP H0695664B2
Authority
JP
Japan
Prior art keywords
optical
signal
crossover
input
pulse signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59277478A
Other languages
Japanese (ja)
Other versions
JPS61157128A (en
Inventor
秀徳 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59277478A priority Critical patent/JPH0695664B2/en
Publication of JPS61157128A publication Critical patent/JPS61157128A/en
Publication of JPH0695664B2 publication Critical patent/JPH0695664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高速信号伝送用に利用される高速光パルスの多
重ないし分離のための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for multiplexing or demultiplexing high-speed optical pulses used for high-speed signal transmission.

(従来技術とその問題点) 電流による直接変調が高効率で行なうことができる半導
体レーザが実用化されて以来、半導体レーザを光源とす
る光通信の応用分野が急速に広がっている。しかしなが
ら半導体レーザの直接変調では変調速度の上限が注入キ
ャリヤ寿命で制限され、現在4Gb/s程度までとなってい
る、狭い電流パルスで駆動することにより、50ps前後の
狭いパルス幅の光パルスを得ることも可能であるが、こ
の場合も大きな注入キャリヤ寿命の影響で、パルスパタ
ーンによる応答の変化、いわゆるパターン効果が生じる
ために最小パルス幅に対応する速度、例えば50ps幅に対
し20Gb/sでの光信号を行なうことは困難であった。一
方、高速な外部変調器を使用する方式も提案されている
が、高速なランダムパルス信号を増幅し変調器を駆動す
るためには広帯域なパルス増幅器に加え変調器の周波数
特性として広帯域な平坦性が要求され実用上、数Gb/s以
上での動作はほとんど困難であるという欠点が見られ
た。また他の従来例としては低速であるが狭いパルス幅
をもつ複数の独立した光信号源を並列的に光合波器によ
って結合し高速光パルス信号を得る方式も知られてい
た。しかしながらこの方式では光信号源間の同期ジッタ
を小さく抑えないと隣接パルス間の干渉を生じ高速化が
困難であるという欠点を有し、また信号速度の上限が、
光源のパルス幅で制限されるという欠点があった。更に
光導波路が単一モード系の場合には合波損失が大きくな
り易いという欠点があった。
(Prior art and its problems) Since the commercialization of a semiconductor laser capable of performing direct modulation with high efficiency with high efficiency, the field of application of optical communication using a semiconductor laser as a light source is rapidly expanding. However, in the direct modulation of a semiconductor laser, the upper limit of the modulation speed is limited by the injected carrier lifetime, and it is currently up to about 4 Gb / s. By driving with a narrow current pulse, an optical pulse with a narrow pulse width of about 50 ps can be obtained. However, in this case also, due to the influence of a large injected carrier lifetime, a change in response due to the pulse pattern, a so-called pattern effect occurs, so that the speed corresponding to the minimum pulse width, for example, at 20 Gb / s for a 50 ps width, It was difficult to carry optical signals. On the other hand, a method using a high-speed external modulator has also been proposed, but in order to drive a modulator by amplifying a high-speed random pulse signal, in addition to a wide-band pulse amplifier, the frequency characteristics of the modulator have wide-band flatness. However, there is a drawback that it is practically difficult to operate at several Gb / s or more. As another conventional example, there has been known a system in which a plurality of independent optical signal sources having a low pulse width but a narrow pulse width are coupled in parallel by an optical multiplexer to obtain a high-speed optical pulse signal. However, this method has a drawback that it is difficult to increase the speed by causing interference between adjacent pulses unless the synchronization jitter between the optical signal sources is suppressed small, and the upper limit of the signal speed is
There is a drawback that it is limited by the pulse width of the light source. Further, when the optical waveguide is a single mode system, there is a drawback that the multiplexing loss tends to increase.

(発明の目的) 本発明の目的は上述の欠点を除去し、超高速の光パルス
信号の多重ないし分離を可能とする高速光パルス多重・
分離装置を提供することにある。
(Object of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks, and to perform high-speed optical pulse multiplexing / demultiplexing that enables multiplexing or demultiplexing of ultra-high-speed optical pulse signals
To provide a separating device.

(発明の構成) 本発明によれば、直列接続された複数の交叉型光スイッ
チを含んで構成される高速光パルス多重・分離装置にお
いて、前記光スイッチの互いに隣接する光スイッチが該
光スイッチ間の光パルス伝ぱん時間と異なるパルス遅延
時間をもつ開閉制御パルス信号で制御されかつ該開閉制
御パルス信号の幅が前記光パルス伝ぱん時間とパルス遅
延時間の差よりも小さいことを特徴とする高速光パルス
多重・分離装置が得られる。
(Structure of the Invention) According to the present invention, in a high-speed optical pulse multiplexer / demultiplexer configured to include a plurality of cross-type optical switches connected in series, adjacent optical switches of the optical switches are arranged between the optical switches. Controlled by an opening / closing control pulse signal having a pulse delay time different from the optical pulse propagation time, and the width of the opening / closing control pulse signal is smaller than the difference between the optical pulse propagation time and the pulse delay time. An optical pulse multiplexer / demultiplexer can be obtained.

(実施例) 次に図面を参照して本発明を詳細に説明する。(Example) Next, this invention is demonstrated in detail with reference to drawings.

第1図は本発明に基づく第1の実施例の構成を表わす図
である。本実施例は直列接続された交叉型の光スイッチ
41,42,43、これらを接続する出力光導波路20、光スイッ
チ41,42,43にそれぞれ接続された入力光導波路11,12,1
3、光スイッチ41,42,43の開閉制御パルス信号を伝送す
る制御用線路30とから構成されている。光スイッチ41,4
2,43としてはLiNbO3電気光学結晶上に形成された方向性
結合形光スイッチ等が用いられる。電気信号によって入
力光導波路11,12,13と出力光導波路20の結合状態が制御
される。光スイッチ41,42間、及び光スイッチ42,43間を
接続する出力光導波路20はそれら光スイッチ間の光パル
ス伝ぱん時間が1nsとなるように長さが調整された光フ
ァイバで構成され、制御用線路30は電気信号に一定の遅
延を与えるための遅延線路31,32を含んで構成され隣接
する光スイッチ間でパルス遅延時間1.833nsを与えるよ
うに設計されている。開閉制御パルス信号の繰り返し周
期は2.5nsパルス幅0.4/nsである。入力光導波路11,12,1
3に与える光パルス信号(それぞれ入力信号#1,#2,#
3)は光スイッチ41,42,43の各部で開閉制御パルス信号
にほぼ同期しそのパルス幅は約0.5nsである。第3図は
本実施例の動作図である。各入力信号は光パルス伝ぱん
時間と開閉制御パルス信号の遅延時間との差を間隔とす
るように多重化される。
FIG. 1 is a diagram showing the configuration of a first embodiment according to the present invention. This embodiment is a cross-type optical switch connected in series.
41, 42, 43, output optical waveguide 20 connecting them, and input optical waveguides 11, 12, 1 respectively connected to optical switches 41, 42, 43
3. The control line 30 for transmitting the opening / closing control pulse signal of the optical switches 41, 42, 43. Optical switch 41,4
As 2,43, a directional coupling type optical switch or the like formed on a LiNbO 3 electro-optic crystal is used. The electrical signal controls the coupling state between the input optical waveguides 11, 12, 13 and the output optical waveguide 20. The optical switches 41, 42, and the output optical waveguide 20 connecting the optical switches 42, 43 is composed of an optical fiber whose length is adjusted so that the optical pulse propagation time between the optical switches is 1 ns. The control line 30 is configured to include delay lines 31 and 32 for giving a constant delay to an electric signal, and is designed to give a pulse delay time of 1.833 ns between adjacent optical switches. The repetition cycle of the open / close control pulse signal is 2.5 ns and the pulse width is 0.4 / ns. Input optical waveguide 11,12,1
Optical pulse signal given to 3 (input signal # 1, # 2, #
In 3), each part of the optical switches 41, 42 and 43 is almost synchronized with the opening / closing control pulse signal and the pulse width thereof is about 0.5 ns. FIG. 3 is an operation diagram of this embodiment. Each input signal is multiplexed so that the difference between the optical pulse propagation time and the delay time of the switching control pulse signal is an interval.

本実施例によれば各光スイッチ部において前段光スイッ
チで押入された光パルス信号が通過中はスイッチが開状
態となっており、出力光導波路20へそのまま出力され、
また通過光パルス信号とその光スイッチ部で挿入される
光パルス信号との相互干渉も生じない。隣接する光スイ
ッチ部で挿入多重化される光パルス信号の間隔は光パル
ス伝ぱん時間と開閉制御パルス信号のパルス遅延時間と
の差で決定されるため極めて安定であり多重化に伴う相
対的ジッタ量の増大を防止することができる。多重化後
の光パルス信号幅は開閉制御パルス信号によって決定さ
れるので、各入力信号の波形整形と同時に相互ジッタの
低減に寄与している。本実施例により400Mb/sのビット
速度の3入力信号が多重化され1.2Gb/sの信号が得られ
る。
According to this embodiment, in each optical switch unit, the switch is in the open state while the optical pulse signal pushed in by the preceding optical switch is passing, and is output to the output optical waveguide 20 as it is,
Further, mutual interference between the passing optical pulse signal and the optical pulse signal inserted by the optical switch section does not occur. The interval between the optical pulse signals inserted and multiplexed in the adjacent optical switch is very stable because it is determined by the difference between the optical pulse propagation time and the pulse delay time of the switching control pulse signal, and the relative jitter associated with multiplexing is It is possible to prevent an increase in the amount. Since the optical pulse signal width after multiplexing is determined by the switching control pulse signal, it contributes to the reduction of mutual jitter at the same time as the waveform shaping of each input signal. According to this embodiment, three input signals having a bit rate of 400 Mb / s are multiplexed and a 1.2 Gb / s signal is obtained.

なお、本実施例では光スイッチ間の光パルス伝ぱん時間
が開閉制御パルス信号のパルス遅延時間よりも小さいと
したが、これとは逆に、光スイッチ間の光パルス伝ぱん
時間が開閉制御パルス信号のパルス遅延時間よりも大き
くなる構成としても良い。但し、この場合においても、
開閉制御パルス信号の幅は光スイッチ間の光パルス伝ぱ
ん時間と開閉制御パルス信号のパルス遅延時間の差より
も小さく設定しなければならない。光スイッチ間の光パ
ルス伝ぱん時間が開閉制御パルス信号のパルス遅延時間
よりも大きくなる構成とした場合には、多重化された光
パルス信号上で入力信号#1、#2、#3は#3、#
2、#1の順で配置されることとなる。
Although the optical pulse propagation time between the optical switches is shorter than the pulse delay time of the opening / closing control pulse signal in this embodiment, on the contrary, the optical pulse propagation time between the optical switches is the opening / closing control pulse. It may be configured to be longer than the pulse delay time of the signal. However, even in this case,
The width of the switching control pulse signal must be set smaller than the difference between the optical pulse propagation time between the optical switches and the pulse delay time of the switching control pulse signal. When the optical pulse propagation time between the optical switches is set to be longer than the pulse delay time of the opening / closing control pulse signal, the input signals # 1, # 2, and # 3 on the multiplexed optical pulse signal are 3, #
2 and # 1 will be arranged in this order.

第2図は本発明に基づく第2の実施例を表わす図であ
る。
FIG. 2 is a diagram showing a second embodiment according to the present invention.

本実施例はGaAs半導体基板上に集積化された形で構成さ
れていることを除けば第1の実施例と同様である。面方
位(100)のn形GaAs基板上にn形のAl0.3Ga0.7As(1
×1017cm-3のSiドープ、厚さ2μm)、n形のGaAs(1
×1015cm-3のSiドープ、厚さ0.1μm)、p形のAl0.3Ga
0.7As(2×1015cm-3のBeドープ、厚さ1μm)を順次
エピタキシャル成長し、p形のAl0.3Ga0.7As層をリッジ
導波路形にパターン化することによって、入力光導波路
11,12,13、出力光導波路20、光スイッチ41,42,43が形成
されている。リッジ導波路幅は2μm、光スイッチ部に
おける導波路間隔は1μm、結合長は1mm、各光スイッ
チ41,42,43の間隔は10mm(光パルス伝ぱん時間約100p
s)である。制御用線路30はp形のAl0.3Ga0.7As層上、
光スイッチ部以外はSiO2を介してAu配線によって形成さ
れている。光スイッチ41と42、及び42と43の間に遅延線
路31,32を挿入することにより、前述の光パルス伝ぱん
時間より100ps大きなパルス遅延時間約200psを得てい
る。
This embodiment is the same as the first embodiment except that it is constructed in a form integrated on a GaAs semiconductor substrate. N-type Al 0.3 Ga 0.7 As (1
× 10 17 cm -3 Si-doped, thickness 2 μm, n-type GaAs (1
× 10 15 cm -3 Si-doped, thickness 0.1 μm), p-type Al 0.3 Ga
0.7 As (2 × 10 15 cm -3 Be-doped, thickness 1 μm) was sequentially epitaxially grown, and the p-type Al 0.3 Ga 0.7 As layer was patterned into a ridge waveguide type to form an input optical waveguide.
11, 12, 13, output optical waveguide 20, and optical switches 41, 42, 43 are formed. The width of the ridge waveguide is 2 μm, the waveguide spacing in the optical switch is 1 μm, the coupling length is 1 mm, the spacing between the optical switches 41, 42 and 43 is 10 mm (optical pulse propagation time about 100 p
s). The control line 30 is on the p-type Al 0.3 Ga 0.7 As layer,
Parts other than the optical switch section are formed of Au wiring via SiO 2 . By inserting the delay lines 31 and 32 between the optical switches 41 and 42 and between the optical switches 42 and 43, a pulse delay time of about 200 ps, which is 100 ps longer than the optical pulse propagation time, is obtained.

本実施例では入力信号#1,#2,#3として1.3μm波
長、ビット速度2Gb/s、の信号を入力し、開閉制御パル
ス信号として繰り返し500ps、幅50psのパルスを用い
た。これにより6Gb/sの多重化光パルス信号が得られ
る。本実施例の構成では入力端子数を増加することによ
り5多重、10Gb/sまで可能である。光パルス信号の挿入
点である光スイッチ部が直列接続されているために本実
施例のような集積化に際しては光導波路部の曲がりが少
なく、また多重数が多いときに光合波器使用で問題とな
る合波損失も少ないという利点が得られる。
In this embodiment, as the input signals # 1, # 2, and # 3, signals having a wavelength of 1.3 μm and a bit rate of 2 Gb / s were input, and a pulse having a repetition rate of 500 ps and a width of 50 ps was used as the opening / closing control pulse signal. As a result, a 6 Gb / s multiplexed optical pulse signal can be obtained. With the configuration of this embodiment, it is possible to increase the number of input terminals to 5 and up to 10 Gb / s. Since the optical switch parts, which are the insertion points of the optical pulse signals, are connected in series, there is little bending of the optical waveguide part during integration as in the present embodiment, and there is a problem in using an optical multiplexer when the number of multiplexing is large. The advantage is that there is little multiplexing loss.

ところで、上述の実施例ではいずれも光多重機能を有す
る構成について述べたが、入出力を逆転し入力光パルス
信号に同期した開閉制御パルス信号を用いるならば、各
光スイッチ部で分離された光パルス信号が得られること
は言うまでもないであろう。
By the way, in each of the above-described embodiments, the configuration having the optical multiplexing function is described. However, if the opening / closing control pulse signal having the inverted input / output and synchronized with the input optical pulse signal is used, the optical signals separated by each optical switch unit are used. It goes without saying that a pulse signal can be obtained.

即ち、第1実施例の構成に基づいて説明すると、第1実
施例における出力光導波路20を入力光導波路、入力光導
波路11、12、13を出力光導波路と読み替えた構成とし、
分離される光入力信号を光スイッチ(43)の入力光導波
路(20)へ入力し、開閉制御パルス信号を制御用線路
(30)上で光スイッチ(43)から光スイッチ(41)の方
向へ遅延させながらそれぞれの光スイッチへ印加するこ
とによって分離された光パルス信号を出力光導波路(1
3)、(12)、(11)から取り出すことができる。な
お、開閉制御パルス信号の各光スイッチ間での遅延時間
は分離される光入力信号のパルス時間間隔と各光スイッ
チ間の光パルス伝ぱん時間との和に等しい値とするのが
適当である。
That is, to explain based on the configuration of the first embodiment, the output optical waveguide 20 in the first embodiment is read as an input optical waveguide, and the input optical waveguides 11, 12, and 13 are read as output optical waveguides.
The separated optical input signal is input to the input optical waveguide (20) of the optical switch (43), and the switching control pulse signal is directed from the optical switch (43) to the optical switch (41) on the control line (30). The optical pulse signals separated by applying to each optical switch while delaying are output to the optical waveguide (1
It can be taken out from 3), (12) and (11). Incidentally, it is appropriate that the delay time between the optical switches of the opening / closing control pulse signal is equal to the sum of the pulse time interval of the separated optical input signal and the optical pulse propagation time between the optical switches. .

(発明の効果) 最後に本発明の効果をまとめれば、パルスジッタやパル
スパターン効果の少ない超高速の光パルス信号の多重な
いし分離が可能となることである。
(Effects of the Invention) Finally, to summarize the effects of the present invention, it is possible to multiplex or demultiplex ultrafast optical pulse signals with less pulse jitter and pulse pattern effects.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図はそれぞれ本発明に基づく第1及び第
2の実施例の構成を表わす図である。第3図は第1実施
例の動作図である。図中、11,12,13は入力光導波路、20
は出力光導波路、30は制御用線路、41,42,43は光スイッ
チである。
1 and 2 are diagrams showing the configurations of the first and second embodiments of the present invention, respectively. FIG. 3 is an operation diagram of the first embodiment. In the figure, 11, 12, 13 are input optical waveguides, 20
Is an output optical waveguide, 30 is a control line, and 41, 42, 43 are optical switches.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも第1と第2の交叉型光スイッチ
と、該交叉型光スイッチに対し開閉制御パルス信号を印
加する手段とを備え、前記交叉型光スイッチのそれぞれ
が少なくとも甲乙2つの光入力端子と少なくとも甲乙2
つの光出力端子と少なくとも1つの開閉制御パルス信号
入力端子を有しかつ該開閉制御パルス信号によって甲の
光入力端子の光入力信号を甲の光出力端子へ出力し乙の
光入力端子の光入力信号を乙の光出力端子へ出力する状
態と甲の光入力端子の光入力信号を乙の光出力端子へ出
力し乙の光入力端子の光入力信号を甲の光出力端子へ出
力する状態のいずれか1つへ切り替える機能を有し、前
記第1の交叉型光スイッチの前記光出力端子の1つが前
記第2の交叉型光スイッチの前記光入力端子の1つに接
続され、前記開閉制御パルス信号を印加する手段が電気
信号の遅延機能並びに前記第1及び第2の交叉型光スイ
ッチの開閉制御パルス信号入力端子へそれぞれ接続され
て開閉制御パルス信号を供給する第1及び第2の出力端
子を有し、前記開閉制御パルス信号の幅が前記第1と第
2の交叉型光スイッチ間の光信号の伝ぱん時間と前記第
1及び第2の交叉型光スイッチの前記開閉制御パルス信
号入力端子へそれぞれ供給される開閉制御パルス信号相
互の遅延時間との差よりも小さく、かつ前記第1の交叉
型光スイッチの一方の光入力端子及び前記第2の交叉型
光スイッチの光入力端子の内で前記第1の交叉型光スイ
ッチの光出力端子と接続されていない光入力端子を多重
化される光信号の入力端子とし、前記第2の交叉型光ス
イッチの出力端子の1つを多重化された光信号の出力端
子とすることを特徴とする高速光パルス多重装置。
1. A cross-type optical switch comprising at least a first and a second cross-type optical switch, and means for applying an opening / closing control pulse signal to the cross-type optical switch, wherein each of the cross-type optical switches has at least two light sources. Input terminal and at least Kotsu 2
One optical output terminal and at least one open / close control pulse signal input terminal, and the open / close control pulse signal outputs the optical input signal of the optical input terminal of A to the optical output terminal of A and the optical input of the optical input terminal of B The state of outputting the signal to the optical output terminal of B and the state of outputting the optical input signal of the optical input terminal of A to the optical output terminal of B and the optical input signal of the optical input terminal of A to the optical output terminal of A The switching control has a function of switching to any one, and one of the optical output terminals of the first crossover optical switch is connected to one of the optical input terminals of the second crossover optical switch, and the opening / closing control is performed. A means for applying a pulse signal is connected to the switching function of the electric signal and the switching control pulse signal input terminals of the first and second crossover optical switches respectively, and first and second outputs for supplying the switching control pulse signal. It has a terminal and The width of the control pulse signal is supplied to the propagation time of the optical signal between the first and second crossover optical switches and to the open / close control pulse signal input terminals of the first and second crossover optical switches, respectively. It is smaller than the difference between the delay times of the switching control pulse signals, and is the first of the optical input terminals of the first crossover optical switch and the optical input terminals of the second crossover optical switch. An optical input terminal that is not connected to the optical output terminal of the crossover optical switch is used as an input terminal for the multiplexed optical signal, and one of the output terminals of the second crossover optical switch is used for the multiplexed optical signal. A high-speed optical pulse multiplexer, which has an output terminal.
【請求項2】少なくとも第1と第2の交叉型光スイッチ
と、該交叉型光スイッチに対し開閉制御パルス信号を印
加する手段とを備え、前記交叉型光スイッチのそれぞれ
が少なくとも甲乙2つの光入力端子と少なくとも甲乙2
つの光出力端子と少なくとも1つの開閉制御パルス信号
入力端子を有しかつ該開閉制御パルス信号によって甲の
光入力端子の光入力信号を甲の光出力端子へ出力し乙の
光入力端子の光入力信号を乙の光出力端子へ出力する状
態と甲の光入力端子の光入力信号を乙の光出力端子へ出
力し乙の光入力端子の光入力信号を甲の光出力端子へ出
力する状態のいずれか1つへ切り替える機能を有し、前
記第1の交叉型光スイッチの前記光出力端子の1つが前
記第2の交叉型光スイッチの前記光入力端子の1つに接
続され、前記開閉制御パルス信号を印加する手段が電気
信号の遅延機能並びに前記第1及び第2の交叉型光スイ
ッチの開閉制御パルス信号入力端子へそれぞれ接続され
て開閉制御パルス信号を供給する第1及び第2の出力端
子を有し、前記開閉制御パルス信号の幅が前記第1と第
2の交叉型光スイッチ間の光信号の伝ぱん時間と前記第
1及び第2の交叉型光スイッチの前記開閉制御パルス信
号入力端子へそれぞれ供給される開閉制御パルス信号相
互の遅延時間との差よりも小さく、かつ前記第1の交叉
型光スイッチの光入力端子の1つを分離される光信号の
入力端子とし、前記第1の交叉型光スイッチの光出力端
子の内で前記第2の交叉型光スイッチの光入力端子と接
続されていない光出力端子及び前記第2の交叉型光スイ
ッチの一方の出力端子を分離された光信号の出力端子と
することを特徴とする高速光パルス分離装置。
2. An optical switch comprising at least first and second crossover optical switches and means for applying an opening / closing control pulse signal to the crossover optical switches, each of the crossover optical switches having at least two optical switches. Input terminal and at least Kotsu 2
One optical output terminal and at least one open / close control pulse signal input terminal, and the open / close control pulse signal outputs the optical input signal of the optical input terminal of A to the optical output terminal of A and the optical input of the optical input terminal of B The state of outputting the signal to the optical output terminal of B and the state of outputting the optical input signal of the optical input terminal of A to the optical output terminal of B and the optical input signal of the optical input terminal of A to the optical output terminal of A The switching control has a function of switching to any one, and one of the optical output terminals of the first crossover optical switch is connected to one of the optical input terminals of the second crossover optical switch, and the opening / closing control is performed. A means for applying a pulse signal is connected to the switching function of the electric signal and the switching control pulse signal input terminals of the first and second crossover optical switches respectively, and first and second outputs for supplying the switching control pulse signal. It has a terminal and The width of the control pulse signal is supplied to the propagation time of the optical signal between the first and second crossover optical switches and to the open / close control pulse signal input terminals of the first and second crossover optical switches, respectively. The first crossover optical switch is smaller than the delay time between the switching control pulse signals and one of the optical input terminals of the first crossover optical switch is the input terminal of the separated optical signal. Optical output terminal not connected to the optical input terminal of the second crossover optical switch, and one output terminal of the second crossover optical switch, the output terminal of the optical signal A high-speed optical pulse separation device characterized by the following.
JP59277478A 1984-12-28 1984-12-28 High-speed optical pulse multiplexer / demultiplexer Expired - Lifetime JPH0695664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277478A JPH0695664B2 (en) 1984-12-28 1984-12-28 High-speed optical pulse multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277478A JPH0695664B2 (en) 1984-12-28 1984-12-28 High-speed optical pulse multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JPS61157128A JPS61157128A (en) 1986-07-16
JPH0695664B2 true JPH0695664B2 (en) 1994-11-24

Family

ID=17584151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277478A Expired - Lifetime JPH0695664B2 (en) 1984-12-28 1984-12-28 High-speed optical pulse multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JPH0695664B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277022A (en) * 1988-06-10 1990-03-16 Fujitsu Ltd Optical switchboard
DE4122439A1 (en) * 1991-07-06 1993-01-07 Standard Elektrik Lorenz Ag OPTICAL TIME MULTIPLEXING

Also Published As

Publication number Publication date
JPS61157128A (en) 1986-07-16

Similar Documents

Publication Publication Date Title
US5786918A (en) Optical communication system and optical transmitting device
EP1298827B1 (en) Optical signal processing system
US6760524B2 (en) Optical signal processing device, optical demultiplexer, wavelength converting device, optical signal processing method, and wavelength converting method
JP4444689B2 (en) Optical device for optical communication
US7068936B2 (en) Methods and apparatus for optical switching
WO1996031029A1 (en) Dark pulse generation and transmission
US20230006760A1 (en) Method and apparatus for optical pulse sequence generation
JPH0695664B2 (en) High-speed optical pulse multiplexer / demultiplexer
EP0883942B1 (en) Channel selection in an optical tdma network
JPH1172757A (en) Optical pulse multiplexing apparatus
JP2002236271A (en) Optical time division multiplexer
US6930623B2 (en) Optical signal processing system
JP2002357855A (en) Optical pulse inserting device
JP2004080462A (en) Isolating apparatus for time-division multiplexed signal light, and optical receiving apparatus and optical transmission system using the same
AU732674B2 (en) Dark pulse TDMA optical network
EP1368913B1 (en) Optical data compression device and method
JPH01108530A (en) Optical driving type switch
JP3455723B2 (en) Optical time division multiplexing optical switch
JPH03103838A (en) Optical signal variable delaying device and delaying method for optical pulse and optical clock using the same
JPS60190038A (en) Optical signal multiplex transmitter
JP3699899B2 (en) Method of configuring integrated optical time division multiplexing apparatus
JP2002505548A (en) System and method for demultiplexing in an optical communication system
JPH0846597A (en) Time-division multiplex transmission method for optical solution
US7231109B1 (en) Ultrafast optical communications system with multiplexer and demultiplexer
KR100351502B1 (en) Device for converting all-optical serial-parallel data type using Mach-Zehnder Interferometer