JPH0695586B2 - Light source for WDM optical communication - Google Patents

Light source for WDM optical communication

Info

Publication number
JPH0695586B2
JPH0695586B2 JP60293809A JP29380985A JPH0695586B2 JP H0695586 B2 JPH0695586 B2 JP H0695586B2 JP 60293809 A JP60293809 A JP 60293809A JP 29380985 A JP29380985 A JP 29380985A JP H0695586 B2 JPH0695586 B2 JP H0695586B2
Authority
JP
Japan
Prior art keywords
light
optical
diffraction grating
light source
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60293809A
Other languages
Japanese (ja)
Other versions
JPS62154684A (en
Inventor
宏之 朝倉
清和 萩原
稔 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60293809A priority Critical patent/JPH0695586B2/en
Publication of JPS62154684A publication Critical patent/JPS62154684A/en
Publication of JPH0695586B2 publication Critical patent/JPH0695586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光通信に用いる波長多重光通信用光源に関す
る。
TECHNICAL FIELD The present invention relates to a light source for wavelength division multiplexing optical communication used for optical communication.

従来の技術 波長多重光通信においては、多重度の数だけの波長の異
なる光源が必要になる。波長多重光通信用光源としては
0.8−1.3μmの発振波長を有する発光ダイオードや半導
体レーザ(以下LD)の中から、各チャンネル間隔に相当
する波長のものを選別して用いていた。
2. Description of the Related Art In wavelength division multiplexed optical communication, light sources having different wavelengths are required as many as the number of multiplicities. As a light source for WDM optical communication
A light emitting diode or a semiconductor laser (hereinafter, LD) having an oscillation wavelength of 0.8 to 1.3 μm has a wavelength corresponding to each channel interval and is used.

これまでに実用化している波長多重光通信システムにお
いては、多重度は2から4波長程度のものであり、光源
の波長間隔も0.1−0.2μm間隔に設定し、光源となる発
光ダイオードやLDの組成材料比を変化させたり、材料自
体をかえることによって希望の波長をえている。
In wavelength-multiplexed optical communication systems that have been put to practical use so far, the multiplicity is about 2 to 4 wavelengths, the wavelength interval of the light source is set to 0.1-0.2 μm interval, and the light-emitting diode or LD that becomes the light source is The desired wavelength is obtained by changing the composition / material ratio or changing the material itself.

発光ダイオードを光源とした場合、発光ダイオードのス
ペクトル幅が約30nmと広いために隣接チャンネル間のク
ロストークを考慮した場合、発光波長間隔をせまくする
ことが困難である。また、光源に単一モード波長のLDを
用いた場合、そのスペクトル幅は数10MHz以下であるた
めにチャンネル間がせばめられ、多重度も飛躍的に高め
ることが可能となる。
When a light emitting diode is used as the light source, it is difficult to narrow the emission wavelength interval when the crosstalk between adjacent channels is taken into consideration because the light emitting diode has a wide spectral width of about 30 nm. In addition, when an LD with a single mode wavelength is used as a light source, the spectral width is several tens of MHz or less, so that the channels are interleaved and the multiplicity can be dramatically increased.

他方、わずかに異なる周期構造を有するDist−ributed
Feedbackレーザ(以下DFBレーザ)を1つのチップに集
積し、アレイ化したものがある。
On the other hand, Dist-ributed with a slightly different periodic structure
In some cases, a feedback laser (hereinafter referred to as a DFB laser) is integrated on one chip to form an array.

第7図にその実施例をしめす。周期の差によって波長の
異なる5つの光をえることが出来る。
An embodiment is shown in FIG. Five lights having different wavelengths can be obtained by the difference in the period.

発明が解決しようとする問題点 しかし現在最も多く使用されているファブリ−ペロ−型
の構造を有するLDでは同一プロセスで作成しても、その
発振波長はバラツキを生じる。このため、多重度の高い
波長多重光通信システムを構成するためには多くのLDの
サンプルの中から必要とする波長のものを選別するか、
設計値に近い波長を有するLDを温度制御して設定値の波
長にしている。このためLDの歩留りが悪くなってしま
う。また波長間隔を広くするとLDの歩留りは良くなる
が、各チャンネルにおいて光ファイバーの伝送損失が異
なるためにシステムとしてのパワーマージンが最悪のチ
ャンネルによって決定されてしまう。他の光学部品にお
いても特性の変化が生ずる。このため部品によってはチ
ャンネルで材料や構成を変える必要が生じ、コストアッ
プとなってしまう。
Problems to be Solved by the Invention However, in the LD having the Fabry-Perot type structure which is most frequently used nowadays, even if the LDs are manufactured by the same process, the oscillation wavelength thereof varies. For this reason, in order to configure a wavelength division multiplexing optical communication system with high multiplicity, one with a required wavelength is selected from many LD samples, or
The LD having a wavelength close to the designed value is temperature-controlled to the set wavelength. For this reason, the yield of LD will be deteriorated. In addition, if the wavelength spacing is widened, the yield of LDs improves, but the power margin of the system is determined by the worst channel because the transmission loss of the optical fiber is different in each channel. The characteristics of other optical components also change. For this reason, it is necessary to change the material and structure of the channel depending on the component, which increases the cost.

第7図に示したDFBレーザアレイではその作成プロセス
が複雑であり、導波路部に構成する溝のピッチをきわめ
て精密に制御しなければならず、素子の再現性や歩留り
に大きな問題がある。また素子がアレイ状になっている
ためにLDを同時駆動した場合、発熱しLDの温度上昇をま
ねく。従って波長変化や出力レベルの低下を召く。
In the DFB laser array shown in FIG. 7, the fabrication process is complicated, and the pitch of the grooves formed in the waveguide section must be controlled extremely precisely, which poses a serious problem in reproducibility and yield of the device. Moreover, when the LDs are driven simultaneously because the elements are arrayed, heat is generated and the temperature of the LDs rises. Therefore, the wavelength change and the output level decrease are desired.

本発明は上記問題に鑑み、LDの発振周波数を安定化し、
多重度の高い波長多重光通信用光源をするものである。
In view of the above problems, the present invention stabilizes the oscillation frequency of LD,
A light source for wavelength division multiplexing optical communication with high multiplicity.

問題点を解決するための手段 上記問題点を解決するために本発明の波長多重光通信用
光源は複数個のLDも外部に複数本の光ファイバーと1枚
の平面回折格子と3つの集束ロッドレンズと複数枚の反
射鏡並びに受光素子アレイを具備し各LDに対して特定波
長の外部光共振器を形成し光学ガラスブロックをもちい
て光学系を一体化し平面回折格子で0次回折光のパワー
変動を検出し、LDの駆動回路へ負帰還をかけたものであ
る。
Means for Solving the Problems To solve the above problems, the light source for wavelength division multiplexing optical communication of the present invention includes a plurality of LDs, a plurality of LDs, a plurality of optical fibers, a plane diffraction grating, and three focusing rod lenses. And a plurality of reflecting mirrors and a light receiving element array, an external optical resonator of a specific wavelength is formed for each LD, an optical system is integrated using an optical glass block, and the power fluctuation of the 0th order diffracted light is controlled by a plane diffraction grating. It is detected and negative feedback is applied to the drive circuit of LD.

作用 本発明は上記した構成によって、複数個のLDの発振周波
数を同時に独立に安定化制御することによって上記に説
明した問題点を解決しようとするものである。
Action The present invention is intended to solve the above-mentioned problems by stabilizing the oscillation frequencies of a plurality of LDs simultaneously and independently with the above configuration.

実施例 以下、本発明の1実施例における波長多重光通信用光源
について図面を参照しながら説明する。第2図は本発明
の1実施例における波長多重光通信用光源の構成図を示
すものである。複数個のLD1からの出力光は各おの光フ
ァイバー2に入力される。光ファイバーの各出射端はコ
リメートレンズ3の焦点面(x−y平面)上に配置す
る。4は平面回折格子で溝はY方向に切られている。こ
のため光ファイバー2の配列はLD間のクロストークをさ
けるために、y方向では重ならないようにしなければな
らない。第2図における実施例では、光ファイバー2は
すべてy軸方向に配列してあるが必ずしも同一x座標上
に配列する必要はなく、斜め方向に配列してもよい。光
ファイバー2よりでた光は、コリメートレンズ3により
平行光となって平面回折格子4に入射される。いま、平
面回折格子4の溝に対に対して垂直な平面(X−N面)
での光の入射角、回折角をα、βとし、またオフプレイ
ン角をφとすると波長λの光は、 d・cosφ・(sinα+sinβ)=mλ …(1) を満たす。但し、dは溝間隔、mは次数である。もし、
入射角とオフプレイン角が一定ならば、入射光の波長λ
が変化すると回折角βが変化する。Δβ変化すると集光
レンズ5の焦点面ではΔx′=Δβ・fに対応する。
Embodiment Hereinafter, a light source for wavelength division multiplexing optical communication in one embodiment of the present invention will be described with reference to the drawings. FIG. 2 shows a block diagram of a light source for wavelength division multiplexing optical communication in one embodiment of the present invention. Output light from the plurality of LDs 1 is input to each optical fiber 2. Each exit end of the optical fiber is arranged on the focal plane (xy plane) of the collimator lens 3. Reference numeral 4 is a plane diffraction grating having grooves cut in the Y direction. For this reason, the arrays of the optical fibers 2 must be arranged so as not to overlap in the y direction in order to avoid crosstalk between LDs. In the embodiment shown in FIG. 2, all the optical fibers 2 are arranged in the y-axis direction, but it is not always necessary to arrange them on the same x coordinate, and they may be arranged obliquely. The light emitted from the optical fiber 2 is collimated by the collimator lens 3 and is incident on the plane diffraction grating 4. Now, the plane perpendicular to the groove of the plane diffraction grating 4 (X-N plane)
When the incident angle and the diffraction angle of the light at are α and β, and the off-plane angle is φ, the light having the wavelength λ satisfies d · cosφ · (sinα + sinβ) = mλ (1). However, d is a groove interval and m is an order. if,
If the incident angle and the off-plane angle are constant, the wavelength λ of the incident light
The diffraction angle β changes as is changed. When Δβ changes, Δx ′ = Δβ · f on the focal plane of the condenser lens 5.

fは集光レンズ5の焦点距離である。第3図はφ=0の
場合の光学系をしめす。LD1の出力光は光ファイバー2
を通りレンズ3で平行光となって平面回折格子4で回折
される。回折された光は、集光レンズ5の焦点面上で波
長に対応した位置に集光される。FP型LDにおいては、発
振可能な縦モードが複数本存在するので、特定波長に対
応する、レンズ5の焦点面上の位置に反射鏡6を配置す
ると、LD1においてその特定波長に対してだけ外部光共
振器が形成される。従ってLD1の発振波長は(1)式に
よって幾何学的に決定される。また、レンズ5の焦点面
の反射鏡6の(x′−y′)面内の位置を変えることに
よって、共振周波数が変化し、LD1の発振周波数も利得
の範囲内で変化させることができる。従って、波長多重
光通信用光源としてある一定の波長間隔で発振するLD光
源が必要な場合、第2図に示されるように反射鏡6を複
数個を必要な波長位置に配列し、しかも光ファイバーの
出射端をy軸方向に分散して配置することにより各LD1
の回折光を集光レンズ5の焦点面上においてy′軸方向
に分散して結像させ、各LD1の利得の広がりによって生
ずるスペクトルの裾の重りをレンズ5の焦点面上で回避
しながら、前記反射鏡6をx′−y′面において2次元
的に配列し、外部光共振器を形成してやればよい。第4
図にレンズ5の焦点面での各LD1の結像スペクトルを示
す。各LDが縦マルチモードで発振していると1つのLD1
の発振スペクトルはx′方向に分散して結像される。特
定の縦モードスペクトルの結像点に反射鏡6配置する
と、反射鏡6上に結像された発振スペクトル像7を光源
として再び元の光路を通りLDへ帰還される。第4図のa,
b,c,d,eのスペクトルは、第2図のLD1a,b,c,d,eの発光
スペクトルに対応している。
f is the focal length of the condenser lens 5. FIG. 3 shows the optical system when φ = 0. Output light of LD1 is optical fiber 2
After passing through the lens 3, the light is collimated by the lens 3 and diffracted by the plane diffraction grating 4. The diffracted light is condensed on the focal plane of the condenser lens 5 at a position corresponding to the wavelength. Since there are a plurality of longitudinal modes capable of oscillating in the FP type LD, if the reflecting mirror 6 is arranged at a position on the focal plane of the lens 5 corresponding to a specific wavelength, the LD 1 is externally exposed only to the specific wavelength. An optical resonator is formed. Therefore, the oscillation wavelength of LD1 is geometrically determined by the equation (1). Further, by changing the position of the focal plane of the lens 5 in the (x'-y ') plane of the reflecting mirror 6, the resonance frequency changes and the oscillation frequency of the LD1 can also be changed within the gain range. Therefore, when an LD light source that oscillates at a certain wavelength interval is required as a wavelength multiplexing optical communication light source, a plurality of reflecting mirrors 6 are arranged at required wavelength positions as shown in FIG. By arranging the emitting ends in a distributed manner in the y-axis direction, each LD1
Diffracted light of is dispersed in the y′-axis direction on the focal plane of the condenser lens 5 to form an image, and while avoiding the skirt weight of the spectrum caused by the spread of the gain of each LD 1 on the focal plane of the lens 5, The reflection mirrors 6 may be arranged two-dimensionally in the x'-y 'plane to form an external optical resonator. Fourth
The figure shows the image formation spectrum of each LD1 on the focal plane of the lens 5. One LD1 when each LD oscillates in vertical multimode
The oscillating spectrum of is dispersed and imaged in the x'direction. When the reflecting mirror 6 is arranged at the image forming point of the specific longitudinal mode spectrum, the oscillation spectrum image 7 formed on the reflecting mirror 6 is used as a light source and is returned to the LD through the original optical path again. Figure 4a,
The spectra of b, c, d, and e correspond to the emission spectra of LD1a, b, c, d, and e of FIG.

なお、本実施例では、平面回折格子4での1次の回折光
の帰還にはレンズ5と反射鏡6によって構成されたキャ
ッツアイ光学系を用いているために安定した光帰還が行
なえる。
In the present embodiment, since the cat's eye optical system including the lens 5 and the reflecting mirror 6 is used for returning the first-order diffracted light at the plane diffraction grating 4, stable optical feedback can be performed.

また、LD1の出力光は光ファイバー2によって外部光共
振器に導かれているために、LDアレイとは異なり、各LD
1を独立に温度制御することが可能となる。
Also, since the output light of LD1 is guided to the external optical resonator by the optical fiber 2, unlike the LD array, each LD
It becomes possible to control the temperature of 1 independently.

また、第5図においては平面回折格子4で生じた0次の
回折光を用いて、LD1の出力強度変化を受光素子10によ
って検出しLD1の駆動回路12へ負帰還をかけ、出力レベ
ルを一定にたもつシステムを示す。
Further, in FIG. 5, the 0th-order diffracted light generated in the plane diffraction grating 4 is used to detect a change in the output intensity of LD1 by the light receiving element 10, and negative feedback is applied to the drive circuit 12 of LD1 to keep the output level constant. The system that has

また複数個のLDの発振光強度を0次回折光を利用して制
御した場合を第2図に示す。この光学系においては0次
の回折光は平面回折格子4を鏡とした反射光と等しく、
光ファイバー2の入射位置に対応した集光レンズ8の焦
点面に各LD1の出力光の一部が結像する。よってこの結
像点に対応した位置に受光面を持つ受光素子アレイを配
置しておけばよい。第6図は受光素子アレイの1例をし
めしたものである。
Further, FIG. 2 shows a case where the oscillating light intensity of a plurality of LDs is controlled by using 0th-order diffracted light. In this optical system, the 0th-order diffracted light is equal to the reflected light with the plane diffraction grating 4 as a mirror,
A part of the output light of each LD 1 is imaged on the focal plane of the condenser lens 8 corresponding to the incident position of the optical fiber 2. Therefore, a light receiving element array having a light receiving surface may be arranged at a position corresponding to this image forming point. FIG. 6 shows an example of the light receiving element array.

第1図は光学ガラスブロックをもちいて帰還光学系を一
体化したものである。各コリメートレンズ及び集光レン
ズに集光ロッドレンズを使用することで光学ガラスブロ
ック20の端面に、紫外線硬化樹脂等の接着剤をもちいて
接着する。また回折格子4も同様にして光学ガラスブロ
ック20に接着しておく。LD1の各出力光を導く光ファイ
バー2の出力端を集束ロッドレンズ15の焦点面上の所定
の位置に配列、接着し、また発振波長選択用光帰還鏡6
を集束ロッドレンズ16の焦点面上の所定の位置に配列、
接着することにより、各LD1の発振波長選択をおこな
う。平面回折格子4で分散された0次の回折光は集束ロ
ッドレンズ17の焦点面上に結像し、受光素子アレイ18で
光電変換され、各LD1の強度変動を検知し、LD駆動回路
に負帰還がかけられる。その結果LD1の光出力強度は一
定の値に保たれる。
FIG. 1 shows an integrated feedback optical system using an optical glass block. By using a condensing rod lens for each collimating lens and condensing lens, it is adhered to the end surface of the optical glass block 20 using an adhesive such as an ultraviolet curable resin. Similarly, the diffraction grating 4 is also adhered to the optical glass block 20. The output end of the optical fiber 2 that guides each output light of the LD1 is arranged and adhered to a predetermined position on the focal plane of the focusing rod lens 15, and the optical feedback mirror 6 for selecting the oscillation wavelength is used.
Arranged at a predetermined position on the focal plane of the focusing rod lens 16,
The lasing wavelength of each LD1 is selected by bonding. The 0th-order diffracted light dispersed by the plane diffraction grating 4 forms an image on the focal plane of the focusing rod lens 17, is photoelectrically converted by the light-receiving element array 18, detects the intensity fluctuation of each LD 1, and negatively affects the LD drive circuit. Return can be made. As a result, the light output intensity of LD1 is maintained at a constant value.

光学系を一体化することによって機械的安定性及び強度
を高めることができ、振動や衝撃による光学アライメン
トのずれや狂いを防止することができ、全体を小型かつ
軽量にすることができる。
By integrating the optical system, mechanical stability and strength can be increased, deviation and deviation of the optical alignment due to vibration or shock can be prevented, and the overall size and weight can be reduced.

発明の効果 以上のように本発明は複数個のLDの外部に、3つの集束
ロッドレンズと一枚の平面回折格子と、前記LDからの出
力光を導く光ファイバーと、複数個の反射鏡及び受光素
子アレイを具備し、LD外部に周波数選択性のある光共振
器を構成し、また平面回折格子で生ずる各LD0次回折光
を受光素子アレイを用いてその強度変化を検出し、LD駆
動回路へ負帰還することで複数のLDの発振周波数及び出
力パワーを安定にかつ独立に制御することのできる多重
度の高い波長多重光通信用の光源を提供することができ
うる。
As described above, according to the present invention, three focusing rod lenses, one plane diffraction grating, an optical fiber for guiding the output light from the LD, a plurality of reflecting mirrors and a light receiving device are provided outside the plurality of LDs. It is equipped with an element array, constitutes an optical resonator with frequency selectivity outside the LD, detects the intensity change of each LD 0th order diffracted light generated by the plane diffraction grating by using the light receiving element array, and outputs it to the LD drive circuit. By feeding back, it is possible to provide a light source for wavelength division multiplexed optical communication with a high degree of multiplexing, which can stably and independently control the oscillation frequencies and output powers of a plurality of LDs.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における波長多重光通信用光源
の構成図、第2図、第3図は本発明におけるLDの発振制
御光学系の構成図、第4図は集光レンズの焦点面上のLD
の発光スペクトル図、第5図は本実施例における電気
的、光学的帰還制御用ブロック図、第6図は本発明にお
ける受光素子の構成図、第7図は従来の実施例の光源の
斜視図である。 1……半導体レーザ、2……光ファイバー、3……コリ
メートレンズ、4……平面回折格子、5……集光レン
ズ、6……反射鏡、7……受光素子アレイ、8……集光
レンズ、12……半導体レーザ駆動回路。
FIG. 1 is a configuration diagram of a light source for wavelength division multiplexing optical communication in an embodiment of the present invention, FIGS. 2 and 3 are configuration diagrams of an LD oscillation control optical system in the present invention, and FIG. 4 is a focus of a condenser lens. LD on the surface
FIG. 5 is a block diagram for electrical and optical feedback control in the present embodiment, FIG. 6 is a configuration diagram of a light receiving element in the present invention, and FIG. 7 is a perspective view of a light source in a conventional embodiment. Is. 1 ... Semiconductor laser, 2 ... Optical fiber, 3 ... Collimating lens, 4 ... Planar diffraction grating, 5 ... Condensing lens, 6 ... Reflecting mirror, 7 ... Light receiving element array, 8 ... Condensing lens , 12 ... Semiconductor laser drive circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数個の半導体レーザ素子と前記半導体レ
ーザ素子の出力光を導波する複数本の光ファイバーと前
記複数本の光ファイバーからの出力光を平行光にする集
束ロッドレンズと前記集束ロッドレンズによって、コリ
メートされた前記複数本の光ファイバからの出力光を、
発振波長に応じた方向へ分散させる平面回折格子と、前
記平面回折格子で分散された光を選択的に前記光ファイ
バーの出射部へ帰還させる反射鏡及び前記平面回折格子
からの0次回折光の強度を検知する光検出器を備え、前
記集束ロッドレンズ、前記平面回折格子、前記光ファイ
バー、前記反射鏡及び光検出素子を光学ガラスブロック
に張りつけて光学系を一体化し、前記光検出器の電気出
力を負帰還し半導体レーザの出力を一定に保つことを特
徴とする波長多重光通信用光源。
1. A plurality of semiconductor laser devices, a plurality of optical fibers for guiding the output light of the semiconductor laser devices, a focusing rod lens for collimating the output lights from the plurality of optical fibers, and the focusing rod lens. The collimated output light from the plurality of optical fibers,
The intensity of zero-order diffracted light from the plane diffraction grating that disperses in the direction according to the oscillation wavelength, the reflecting mirror that selectively returns the light dispersed by the plane diffraction grating to the emission part of the optical fiber, and the plane diffraction grating A photodetector for detection is provided, and the focusing rod lens, the plane diffraction grating, the optical fiber, the reflecting mirror, and the photodetection element are attached to an optical glass block to integrate an optical system, and the electric output of the photodetector is negative. A light source for wavelength division multiplexing optical communication characterized by returning and maintaining the output of a semiconductor laser constant.
【請求項2】光ファイバーからの出射光が平面回折格子
の溝に対する法線に対して斜めに入射するように光ファ
イバーをコリメートレンズの焦点面に配列した特許請求
の範囲第(1)項記載の波長多重光通信用光源。
2. The wavelength according to claim 1, wherein the optical fibers are arranged on the focal plane of the collimating lens so that the light emitted from the optical fibers enters obliquely with respect to the normal to the groove of the plane diffraction grating. Light source for multiplex optical communication.
【請求項3】平面回折格子からの分散光を集光する集光
レンズと、前記集光レンズの焦点面上に配置されたスリ
ット状の平面鏡とを用いて前記分散光を選択的に入射方
向へ帰還させることを特徴とする特許請求の範囲第
(1)または第(2)項記載の波長多重光通信用光源。
3. An incident direction of the dispersed light selectively by using a condenser lens for condensing the dispersed light from the plane diffraction grating and a slit-shaped plane mirror arranged on the focal plane of the condenser lens. The light source for wavelength division multiplexing optical communication according to claim (1) or (2), characterized in that the light source is returned to.
JP60293809A 1985-12-26 1985-12-26 Light source for WDM optical communication Expired - Fee Related JPH0695586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60293809A JPH0695586B2 (en) 1985-12-26 1985-12-26 Light source for WDM optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293809A JPH0695586B2 (en) 1985-12-26 1985-12-26 Light source for WDM optical communication

Publications (2)

Publication Number Publication Date
JPS62154684A JPS62154684A (en) 1987-07-09
JPH0695586B2 true JPH0695586B2 (en) 1994-11-24

Family

ID=17799429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293809A Expired - Fee Related JPH0695586B2 (en) 1985-12-26 1985-12-26 Light source for WDM optical communication

Country Status (1)

Country Link
JP (1) JPH0695586B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298182B1 (en) * 1997-12-13 2001-10-02 Light Chip, Inc. Wavelength division multiplexing/demultiplexing devices using polymer lenses

Also Published As

Publication number Publication date
JPS62154684A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
US8395765B2 (en) Wavelength monitor
US4923270A (en) Apparatus for optical wavelength division multiplexing
US4993032A (en) Monolithic temperature stabilized optical tuning circuit for channel separation in WDM systems utilizing tunable lasers
US6678432B2 (en) Optical integrated device, semiconductor laser module and optical transmitter
JP2002050778A (en) Light-receiving element array, and optical communication monitor module using the same
US7009716B2 (en) System for monitoring optical output/wavelength
US6865037B2 (en) System and method for adjusting the optical path length of an optical path
JPH067613B2 (en) Frequency stabilized semiconductor laser device
US6038242A (en) Multiwavelength light source
KR100424471B1 (en) Wavelength locker intrgrated optical source structure using multiple microcavity
KR100485212B1 (en) Tunable Wavelength Semiconductor Laser Diode
JPH06101607B2 (en) Light source for WDM optical communication
JPH0638595B2 (en) Light source for WDM optical communication
JPH0695586B2 (en) Light source for WDM optical communication
JPH06101606B2 (en) Light source for WDM optical communication
US6934086B2 (en) Optical component and compact wavelength locking arrangement including such a component
JPS62134987A (en) Light source for wavelength multiplex optical communication
KR20010073962A (en) Monitoring method and light source module for wavelength locking
US20030063635A1 (en) Optical module
KR100341388B1 (en) Intergrated optic wavelength monitoring device
JP4239507B2 (en) Light emitting module
JPS59205784A (en) Optical feedback type semiconductor laser device
KR100349661B1 (en) structure of microcavity filter integrated laser diodes for wavelength locking
KR20040074006A (en) Unit for stabilizing wavelength of laser beams and module for stabilizing wavelength of optical signal in optical communication
JP2000337963A (en) Optical wavelength-measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees