JPH0695486A - Developing method - Google Patents

Developing method

Info

Publication number
JPH0695486A
JPH0695486A JP24511492A JP24511492A JPH0695486A JP H0695486 A JPH0695486 A JP H0695486A JP 24511492 A JP24511492 A JP 24511492A JP 24511492 A JP24511492 A JP 24511492A JP H0695486 A JPH0695486 A JP H0695486A
Authority
JP
Japan
Prior art keywords
developing
roller
toner
layer
electrostatic latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24511492A
Other languages
Japanese (ja)
Other versions
JP3167446B2 (en
Inventor
Mitsunaga Saitou
三長 斉藤
Yukihiro Osugi
之弘 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba TEC Corp
Original Assignee
Toshiba Corp
Tokyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Co Ltd filed Critical Toshiba Corp
Priority to JP24511492A priority Critical patent/JP3167446B2/en
Publication of JPH0695486A publication Critical patent/JPH0695486A/en
Application granted granted Critical
Publication of JP3167446B2 publication Critical patent/JP3167446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a developing method to always obtain good visible images by one-component contact developing method using a monolayer developing roller. CONSTITUTION:The developing roller has a monolayer structure having an elastic layer with R1 (OMEGA.m<2>) resistance around a conductive shaft. A toner layer 2 of one-component having dt (m) thickness, q (C/kg) charge amt. and epsilont dielectric const. (C<2>/Nm<2>) is formed on the surface of the roller, and the developing roller 1 is rotated at the rotation speed k times as fast that of an electrostatic latent image holder having dp (m) thickness and c dielectric const. (C<2>/Nm<2>) to bring the toner layer 2 into contact with the electrostatic latent image holder. A developing bias voltage is applied to the conductive shaft of the developing roller 1. The surface voltage V0 (V) of the electrostatic latent image holder, thickness and dielectric const. are determined to satify the relation of formula, in formula Vmax and Vmin are the max. and min. surface voltage, respectively, and A=dp/epsilonp+dt/epsilont.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子写真装置や静電
記録装置において、静電潜像をトナーで可視像化する現
像方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a developing method for visualizing an electrostatic latent image with toner in an electrophotographic apparatus or an electrostatic recording apparatus.

【0002】[0002]

【従来の技術】従来から、電子写真装置や静電記録装置
における静電潜像を可視像化するため、各種の現像方法
が知られている。なかでも、導電性シャフトの周面に弾
性を有する導電層、もしくは半導電層を一体的に配設し
て成る現像ローラを使用し、この現像ローラ周面に一成
分トナーのトナー層を形成・担持させ、このトナー層を
静電潜像保持体に接触させることにより、静電潜像を可
視像化する一成分接触現像方式は、現像電極が静電潜像
面に著しく接近するため、光プリンタの高画質化を図り
得るので注目されている。
2. Description of the Related Art Conventionally, various developing methods have been known for visualizing an electrostatic latent image in an electrophotographic apparatus or an electrostatic recording apparatus. Among them, a developing roller is used which has an elastic conductive layer or a semi-conductive layer integrally arranged on the peripheral surface of a conductive shaft, and a toner layer of one-component toner is formed on the peripheral surface of the developing roller. In the one-component contact development method in which the electrostatic latent image is visualized by bringing the toner layer into contact with the electrostatic latent image holder, the developing electrode remarkably approaches the electrostatic latent image surface. It is attracting attention because it can improve the image quality of optical printers.

【0003】そして、前記一成分接触現像方式におい
て、良好な可視像を得るための条件、具体的には現像ロ
ーラの電気抵抗値,他の諸物理量と現像特性との関係な
どの解明も進められている。たとえば、導電性シャフト
の周面に半導電弾性層および導電層を積層配設した積層
型構成の現像ローラを使用した一成分接触現像方式にお
いて、最適な現像条件の検討、選択・設定につき、Japa
n Hardcopy´89 論文集p.25(1989) や特開平1-168605
号公報に開示されている。
In the above-mentioned one-component contact developing method, the conditions for obtaining a good visible image, specifically, the electric resistance value of the developing roller, the relationship between other physical quantities and the developing characteristics, etc. are also clarified. Has been. For example, in the one-component contact development method using a developing roller of a laminated type in which a semi-conductive elastic layer and a conductive layer are laminated on the peripheral surface of a conductive shaft, the optimum development conditions are examined, selected and set by Japa.
n Hardcopy'89 Proceedings p.25 (1989) and JP-A-1-168605
It is disclosed in the publication.

【0004】[0004]

【発明が解決しようとする課題】しかし、良好な可視像
を得るための条件としての、前記現像ローラの電気抵抗
値、他の諸物理量と現像特性との関係などに関する上述
のような開示は、導電性シャフトの周面に半導電弾性層
および導電層を順次配設した積層型構造の現像ローラを
使用した一成分接触現像方式の場合であり、単層型構造
の現像ローラを使用した現像方法にそのまま適応し得る
ものではない。つまり、現像ローラの構成の相違に基づ
き、電気的特性などを積層型構造の現像ローラの場合と
同一視し得ない。一方、単層型構造の現像ローラの場合
は、複層型構造の現像ローラの場合に比較して、構成が
簡略で、製造も容易であるばかりでなく、コスト面にお
いて有利であるなど、実用上多くの利点が期待される。
そして、この単層型構造の現像ローラを使用する現像方
法については、良好な可視像を得るための現像条件の検
討、選択・設定が新たな問題として提起される。すなわ
ち、単層型構造の現像ローラ自体の利点を活かしなが
ら、良好な可視像を得るための現像条件、たとえば現像
ローラの電気抵抗値、他の諸物理量と現像特性との関係
などの解明が望まれる。
However, the above disclosure regarding the electrical resistance value of the developing roller, the relationship between other physical quantities and the developing characteristics, etc. as conditions for obtaining a good visible image is not disclosed. In the case of the one-component contact developing method using a developing roller having a laminated structure in which a semi-conductive elastic layer and a conductive layer are sequentially arranged on the peripheral surface of a conductive shaft, the development using a developing roller having a single layer structure is performed. It cannot be directly adapted to the method. That is, due to the difference in the structure of the developing roller, the electrical characteristics and the like cannot be equated with those of the developing roller having a laminated structure. On the other hand, in the case of a single-layer type developing roller, compared with the case of a multi-layer type developing roller, the structure is simple, the manufacturing is easy, and the cost is advantageous. Many benefits are expected.
Then, regarding the developing method using the developing roller having the single-layer structure, the examination, selection and setting of the developing conditions for obtaining a good visible image are raised as new problems. That is, while taking advantage of the advantages of the single-layer type developing roller itself, it is possible to clarify the developing conditions for obtaining a good visible image, such as the electric resistance value of the developing roller and the relationship between other physical quantities and the developing characteristics. desired.

【0005】本発明はかかる従来技術の課題を解決すべ
くなされたもので、単層型構造の現像ローラを使用する
一成分接触現像方式によって、常に良好な可視像が得ら
れる現像方法の提供を目的とする。
The present invention has been made to solve the above problems of the prior art, and provides a developing method capable of always obtaining a good visible image by a one-component contact developing system using a developing roller having a single-layer structure. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明に係る現像方法
は、導電性シャフトの周面に抵抗R1 (Ω・m2 )の弾
性体層を配設して成る単層型構造の現像ローラの周面
に、厚さdt (m)、帯電量q(C/kg)、誘電率ε
t (C2 /Nm2 )の一成分トナーのトナー層を形成す
る工程と、前記現像ローラを厚さdp (m)、誘電率ε
p (C2 /Nm2 )の静電潜像保持体のk倍の周速度で
回転させながら、前記トナー層を静電潜像保持体面に接
触させるとともに、前記現像ローラの導電性シャフトに
現像バイアス電圧を印加する工程とを具備する現像方法
であって、前記静電潜像保持体の表面電位V0 (V)の
最大値をVmax 、最小値をVminとし、かつA=dp
εp +dt /εt としたとき、前記の諸物理量が次式
The developing method according to the present invention is a developing roller having a single-layer structure in which an elastic layer having a resistance R 1 (Ω · m 2 ) is provided on the peripheral surface of a conductive shaft. On the peripheral surface of, the thickness d t (m), the charge amount q (C / kg), the dielectric constant ε
a step of forming a toner layer of t (C 2 / Nm 2 ) one-component toner, the developing roller has a thickness d p (m), and a dielectric constant ε.
The toner layer is brought into contact with the surface of the electrostatic latent image carrier while being rotated at a peripheral speed of k times that of the electrostatic latent image carrier of p (C 2 / Nm 2 ), and development is performed on the conductive shaft of the developing roller. Applying a bias voltage, wherein the maximum value of the surface potential V 0 (V) of the electrostatic latent image carrier is V max , the minimum value is V min , and A = d p /
When ε p + d t / ε t , the above physical quantities are

【数2】 を満たすように設定されていることを特徴とする。[Equation 2] It is characterized in that it is set to satisfy.

【0007】そして、このような本発明は、単層型構造
の現像ローラを使用する現像方法において、現像ローラ
が具備する弾性体層の抵抗値、担持されるトナーの量お
よび電気的な特性、静電潜像保持体の厚さや表面電位な
どを一定の関係に選択設定した場合、良質な画像が出力
されることを鋭意検討・実験の結果確認して達成された
ものである。
According to the present invention, in the developing method using the developing roller having a single-layer structure, the resistance value of the elastic layer of the developing roller, the amount of toner carried and the electrical characteristics, This has been achieved by empirically confirming the results of experiments and experiments that a high-quality image is output when the thickness and surface potential of the electrostatic latent image carrier are selected and set in a certain relationship.

【0008】[0008]

【作用】上式中、前記諸物理量をもって表され、 0.7×
10-2〜 2.0×10-2の範囲内の値を有するとき、画像部と
非画像部(背景もしくは白地部)におけるトナー付着量
の差に相当し、上式が満されるときコントラストが高
く、解像度のすぐれた良質な可視像を得ることが可能と
なる。つまり、本発明によれば、単層型構造の現像ロー
ラの特性、トナーの特性、静電潜像保持体の特性などを
考慮して、良質な画像を出力する現像条件を選択・設定
し得るので、高品質の画像を安定して得ることが可能で
ある。
[Function] In the above formula, it is represented by the above physical quantities, 0.7 ×
When the value is in the range of 10 -2 to 2.0 x 10 -2 , it corresponds to the difference in toner adhesion amount between the image part and non-image part (background or white background part), and the contrast is high when the above formula is satisfied. It is possible to obtain a high-quality visible image with excellent resolution. That is, according to the present invention, it is possible to select and set the developing conditions for outputting a high-quality image in consideration of the characteristics of the developing roller having a single-layer structure, the characteristics of the toner, the characteristics of the electrostatic latent image holding member, and the like. Therefore, it is possible to stably obtain a high-quality image.

【0009】[0009]

【実施例】始めに、現像ローラの電気的構成を考慮した
現像モデルに基づいて現像方程式を解析的に導出し、現
像ローラの抵抗値と現像特性との相関を説明する。
EXAMPLE First, a developing equation is analytically derived based on a developing model in which the electrical configuration of the developing roller is taken into consideration, and the correlation between the resistance value of the developing roller and the developing characteristic will be described.

【0010】図1に模式的に示すごとく、弾性もしくは
可撓性を有する現像ローラ1の周面(表面)に、一成分
非磁性トナーのトナー層2を形成し、この一成分非磁性
トナーのトナー層2を静電潜像保持体3の静電潜像面に
接触させて反転現像を行い、このとき現像ローラ1の電
気抵抗値によって、下記のように分類し、図2(a) 〜
(d) および図3のモデルに基づいてそれぞれ解析する。
ただし、本解析においては、現像ローラの弾性は必須で
なく、たとえば硬質の現像ローラをフレキシブルな感光
体に接触させて現像を行う場合にも、ここでの議論は適
用し得る。なお、図1中の4は現像ローラ1の周面に形
成されたトナー層2の厚さを規制するトナー層厚規制フ
レードである。
As schematically shown in FIG. 1, a toner layer 2 of a one-component non-magnetic toner is formed on the peripheral surface (front surface) of a developing roller 1 having elasticity or flexibility. The toner layer 2 is brought into contact with the electrostatic latent image surface of the electrostatic latent image holder 3 to perform reversal development. At this time, the toner is classified into the following according to the electric resistance value of the developing roller 1, as shown in FIG.
Analysis is performed based on the model in (d) and FIG.
However, in this analysis, the elasticity of the developing roller is not essential, and the discussion here can be applied, for example, even when a hard developing roller is brought into contact with a flexible photoconductor to perform development. It should be noted that reference numeral 4 in FIG. 1 denotes a toner layer thickness regulation flade that regulates the thickness of the toner layer 2 formed on the peripheral surface of the developing roller 1.

【0011】導電性ローラ…図2(a) に示すごとく、
導電性シャフト11aの周面に弾性導体層11bを配設した
構成を成し、前記導電性シャフト11aから現像バイアス
電源11cを供給するようにした現像ローラ11 である。
ここで、表面にさらに導電層を被覆形成した積層型導電
性ローラや、表面層のみを導電性としこれに直接現像バ
イアス電圧を印加する構成のローラも、導電性ローラの
範疇にはいる。
Conductive roller: As shown in FIG. 2 (a),
It forms a structure which is disposed an elastic conductive layer 1 1b on the peripheral surface of the conductive shaft 1 1a, a developing roller 1 1 which is adapted to supply a developing bias power 1 1c from the conductive shaft 1 1a.
Here, a laminated conductive roller having a surface further coated with a conductive layer and a roller having a structure in which only the surface layer is made conductive and a developing bias voltage is directly applied thereto are also included in the category of the conductive roller.

【0012】半導電性ローラ…図2(b) に示すごと
く、導電性シャフト12aの周面に半導電性の弾性体層1
2bを配設した構成を成す単層型半導電性ローラ、または
図2(c) に示すごとく、さらに半導電性の弾性体層12b
の表面に導電層12dを設けた積層型半導電性ローラの2
通りの現像ローラが考えられる。なお、図中12cは現像
バイアス電源である。
Semi-conductive roller: As shown in FIG. 2 (b), the semi-conductive elastic layer 1 is formed on the peripheral surface of the conductive shaft 12a.
A single layer type semi-conductive roller having a structure in which 2b is arranged, or a semi-conductive elastic layer 1 2b as shown in FIG. 2 (c).
2 of laminated type semi-conductive roller having conductive layer 12d provided on the surface of
Any developing roller is conceivable. In the figure, reference numeral 12c is a developing bias power source.

【0013】誘電性ローラ…図2(d) に示すごとく、
導電性シャフト13aの周面に導電性の弾性体層13bを配
設し、さらにその表面に誘電体層13dを形成して、導電
性シャフト13aから現像バイアス電源13cを供給するよ
うにした積層型の現像ローラ13 である。
Dielectric roller: As shown in FIG. 2 (d),
A conductive elastic layer 1 3b is arranged on the peripheral surface of the conductive shaft 1 3a , and a dielectric layer 1 3d is further formed on the surface of the conductive elastic layer 1 3a to supply a developing bias power source 1 3c from the conductive shaft 1 3a. This is the laminated type developing roller 1 3 .

【0014】図3は、最も複雑な層構成となる誘電性ロ
ーラの場合について、現像位置における現像モデルを例
示したものである。導電性ローラの場合には、誘電体層
3dの厚さをゼロとし、また半導電性ローラの場合に
は、ローラ表面と現像バイアス電源との間に電気抵抗を
介在させることによって、このモデルを適用し得る。
FIG. 3 exemplifies a developing model at the developing position in the case of the dielectric roller having the most complicated layer structure. In the case of a conductive roller, the thickness of the dielectric layer 13d is set to zero, and in the case of a semi-conductive roller, an electric resistance is interposed between the surface of the roller and the developing bias power source. Can be applied.

【0015】ここで、静電潜像保持体3、たとえば感光
体ドラムの感光体層、トナー層2および誘電体層13d
厚さがいずれも50μm 以下であり、現像ニップが 2mm以
上であることを考慮すると、各層を平行平板と見做し、
これらに垂直な方向(図3でX方向)に作用する力のみ
を考えることで、良好な近似を得ることができる。ただ
し、静電潜像保持体3は負帯電型の積層有機感光体層、
トナーは負帯電型の絶縁性一成分非磁性トナーとする。
また、トナー層2は電荷が内部に均一に分布した均質な
誘電体層と見做し、静電潜像保持体(感光体層)3と誘
電体層13dの内部には電荷が存在せず、表面にのみ面密
度σp およびσi の電荷が存在するものと仮定する。そ
して、接触現像では、トナーに作用するファンデルワー
ルス力は、X軸の正負両方向に作用するため互いに相殺
されるものとし、考慮から外す。
Here, the electrostatic latent image carrier 3, for example, the photosensitive layer of the photosensitive drum, the toner layer 2 and the dielectric layer 13d each have a thickness of 50 μm or less and a developing nip of 2 mm or more. Considering that, each layer is regarded as a parallel plate,
A good approximation can be obtained by considering only the force acting in the direction perpendicular to these (the X direction in FIG. 3). However, the electrostatic latent image carrier 3 is a negative charging type laminated organic photoreceptor layer,
The toner is a negative charging type insulating one-component non-magnetic toner.
Further, the toner layer 2 is regarded as a homogeneous dielectric layer in which charges are uniformly distributed inside, and the charges are not present inside the electrostatic latent image holding member (photoreceptor layer) 3 and the dielectric layer 1 3d. However, it is assumed that electric charges of areal density σ p and σ i exist only on the surface. In contact development, the van der Waals forces acting on the toner act in both the positive and negative directions of the X axis, and therefore cancel each other out.

【0016】現像ローラ表面の単位面積に付着している
トナー量をm0 (kg/m2 )、現像ローラと感光体ドラム
(静電潜像保持体)の速度比をk(=現像ローラ周速度
/感光体ドラム周速度)としたとき、現像位置に存在す
るトナー量はkm0 (kg/m2)となるものとする。特
に、ソリッド潜像の現像を行う際には、この仮定がよい
近似を与えると考えられる。また、現像位置における、
トナー層の厚さdt は実測が困難であるが、現像ローラ
表面のトナー層が薄層であり、かつ現像ローラは感光体
ドラムへ押圧されていることから、前記トナー層の厚さ
t は現像ローラと感光体ドラムの速度比kによらず常
にトナーの平均粒径に等しいものと見做し得る。
The amount of toner adhering to a unit area on the surface of the developing roller is m 0 (kg / m 2 ), and the speed ratio between the developing roller and the photosensitive drum (electrostatic latent image holding member) is k (= developing roller circumference). Speed / peripheral speed of photoconductor drum), the amount of toner existing at the developing position is km 0 (kg / m 2 ). In particular, this assumption is considered to give a good approximation when developing a solid latent image. At the developing position,
Although it is difficult to actually measure the thickness d t of the toner layer, since the toner layer on the surface of the developing roller is a thin layer and the developing roller is pressed against the photosensitive drum, the thickness d t of the toner layer is Can be regarded as always equal to the average particle diameter of the toner regardless of the speed ratio k between the developing roller and the photosensitive drum.

【0017】以下、先ず、前記図2(d) に図示した誘電
性ローラの現像方程式を導出し、これを変形することに
より導電性ローラ、半導電性ローラの現像方程式を順次
導くことにする。
In the following, first, the development equations for the dielectric roller shown in FIG. 2 (d) are derived, and by deforming the equations, the development equations for the conductive roller and the semiconductive roller are sequentially derived.

【0018】1.誘電性ローラ 前記図3に図示した各層にポワッソン(Poisson) の方程
式を適用する、ここで静電潜像保持体(感光体層)3と
誘電体層13dの内部電荷が存在せず、トナー層2内部に
は体積電荷密度pt の電荷が存在することから、
1. Dielectric Roller The Poisson's equation is applied to each layer shown in FIG. 3, in which the electrostatic latent image carrier (photoreceptor layer) 3 and the dielectric layer 13d do not have internal charges, and the toner Since there is a charge having a volume charge density p t inside the layer 2,

【数3】 [Equation 3]

【数4】 [Equation 4]

【数5】 各層の界面における電界の境界条件は、[Equation 5] The boundary condition of the electric field at the interface of each layer is

【数6】 [Equation 6]

【数7】 [Equation 7]

【数8】 [Equation 8]

【数9】 電位の連続条件は、[Equation 9] The continuous condition of potential is

【数10】 [Equation 10]

【数11】 [Equation 11]

【数12】 [Equation 12]

【数13】 ただし、トナー層2の体積電荷密度ρt 、静電潜像保持
体3および誘電体層13dの表面電荷面密度σp ,σ
i は、それぞれ実測の容易なトナーの電荷/重量比
t 、静電潜像保持体3の表面電位V0 および誘電体層
3dの表面電位Vi を用いて次のように表される。
[Equation 13] However, the volume charge density ρ t of the toner layer 2 and the surface charge surface densities σ p and σ of the electrostatic latent image carrier 3 and the dielectric layer 13 d.
i is expressed as follows using the charge / weight ratio q t of the toner, the surface potential V 0 of the electrostatic latent image carrier 3 and the surface potential V i of the dielectric layer 13 d , which are easy to measure. .

【0019】[0019]

【数14】 [Equation 14]

【数15】 [Equation 15]

【数16】 上記により境界値問題を解き、トナー層2内部の電界を
求めると、
[Equation 16] Solving the boundary value problem from the above, and finding the electric field inside the toner layer 2,

【数17】 ただし、Aは次式の値とする。[Equation 17] However, A is the value of the following equation.

【0020】[0020]

【数18】 前記トナー層2内部の電界がゼロとなる面x=x0 でト
ナー層2が分断され、現像が行われるが、前記式(15)よ
り、
[Equation 18] The toner layer 2 is divided at the surface x = x 0 where the electric field inside the toner layer 2 is zero, and the development is performed.

【数19】 が導かれ、静電潜像保持体3表面の単位面積当たりに付
着するトナー量mi は、前記x0 を用いて次のように表
される。
[Formula 19] Is introduced, and the toner amount m i attached per unit area on the surface of the electrostatic latent image carrier 3 is expressed as follows using x 0 .

【0021】[0021]

【数20】 さらに、前記式(17)および(18)より、静電潜像保持体3
面に付着するトナー量mi を現像電位(V0 −Vb )の
関数として次式のごとく、誘電性ローラの現像特性を示
す現像方程式を表し得る。
[Equation 20] Further, according to the formulas (17) and (18), the electrostatic latent image holding member 3
As a function of the developing potential (V 0 −V b ) of the toner amount m i adhering to the surface, a developing equation showing the developing characteristic of the dielectric roller can be expressed as follows.

【0022】[0022]

【数21】 2.導電性ローラ 前記式(19)において、誘電体層の厚さdi および表面電
位Vi をゼロとすることによって、次式の導電性ローラ
の現像方程式が得られる。ただし、静電潜像保持体3表
面のトナー付着密度をmc とする。
[Equation 21] 2. Conductive Roller In the above equation (19), by setting the thickness d i of the dielectric layer and the surface potential V i to zero, the following development equation of the conductive roller is obtained. However, the toner adhesion density on the surface of the electrostatic latent image holder 3 is m c .

【0023】[0023]

【数22】 3.半導電性ローラ 前記導電性ローラの現像方程式を基に、これに抵抗を付
加する形で解析されるるが、先ず現像ローラの電気抵抗
値(ローラ抵抗)について定義し、その後単層型および
積層型の二通りの半導電性ローラの現像方程式を導くこ
とにする。
[Equation 22] 3. Semi-conductive roller Based on the development equation of the conductive roller, it is analyzed by adding resistance to it. First, the electric resistance value (roller resistance) of the development roller is defined, and then single layer type and laminated type The following two development equations of the semiconductive roller are derived.

【0024】弾性層を有する現像ローラに関する電気的
特性のうち、実用上最も重要なことは、弾性体層の体積
抵抗でも表面抵抗でもなく、導電性シャフトと現像ロー
ラ表面の間の抵抗である。ここで、面積Sの電極を表面
に張り付けて実測したシャフト・表面間の電気抵抗値を
0 とすると、SとR0 とは反比例の関係にあり、S×
0 = const.が成立し、この積をR1 (Ω・m2 )と
すると、SR0 =R1 となる。なお、 R1 (Ω・
2 )は、測定電極の面積に依存しない現像ローラに固
有な抵抗値、すなわちローラ抵抗を表す。換言すると、
1 は単位面積の電極を表面に密着させて測定されたシ
ャフト・表面間の抵抗ということができる。 一方、半
導電性の弾性体層の厚さをaとすると、体積抵抗ρ(Ω
・m)の定義式R0 =ρa/Sから、R1 =SR0 =ρ
a が成立し、上記の抵抗R1 は体積抵抗ρと厚さaの積に
等しい。つまり、体積抵抗ρは、半導電性層の厚さaに
関する情報を含んでおらず、実用上有用とはいえないた
め、体積抵抗ρ×半導電性の弾性体層の厚さaをローラ
抵抗R1 と定義し、解釈する。さらに、前記図2(c) に
図示した積層型半導電性ローラ12 では、半導電性の弾
性体層12bの表面に導電層12dが存在するため、前記R
1 =SR0=ρaにおいて、電極面積Sは常に導電層1
2dの表面積Sr に等しく、測定電極面積に依存しない。
したがって、この場合のローラ抵抗R2 は、実測値R0
を用いて、R2 =Sr 0 と定義する。
Of the electrical characteristics relating to the developing roller having the elastic layer, the most important practical point is not the volume resistance or surface resistance of the elastic layer, but the resistance between the conductive shaft and the developing roller surface. Here, assuming that an electric resistance value between the shaft and the surface measured by attaching an electrode having an area S to the surface is R 0 , S and R 0 are in an inversely proportional relationship, and S ×
R 0 = const. And the product is R 1 (Ω · m 2 ), then SR 0 = R 1 . R 1 (Ω ・
m 2 ) represents a resistance value specific to the developing roller that does not depend on the area of the measurement electrode, that is, a roller resistance. In other words,
It can be said that R 1 is the resistance between the shaft and the surface, which is measured by bringing an electrode having a unit area into close contact with the surface. On the other hand, if the thickness of the semiconductive elastic layer is a, the volume resistance ρ (Ω
From the definition formula R 0 = ρa / S of m), R 1 = SR 0 = ρ
a holds, and the resistance R 1 is equal to the product of the volume resistance ρ and the thickness a. That is, the volume resistance ρ does not include information about the thickness a of the semiconductive layer and is not practically useful. Therefore, the volume resistance ρ × the thickness a of the semiconductive elastic layer is defined as the roller resistance. Define and interpret as R 1 . Further, in the laminated type semi-conductive roller 1 2 shown in FIG. 2 (c), since the conductive layer 1 2d is present on the surface of the semi-conductive elastic layer 1 2b , the R
1 = SR 0 = ρa, the electrode area S is always the conductive layer 1
It is equal to the surface area S r of 2d and is independent of the measuring electrode area.
Therefore, the roller resistance R 2 in this case is the measured value R 0.
Is defined as R 2 = S r R 0 .

【0025】ここで、前記図2(c) に図示した積層型半
導電性ローラについて解折すると、図3のモデルにおい
て、di =0、およびVi =0とし、現像ローラ12
導電層12dに、図4に示すごとく、半導電性の弾性体層
2bで実測される等価抵抗R0 を付加する。この場合、
トナーの転移がもたらす現像電流によって、抵抗R0
両端に電位差が生じ、現像ローラ12 表面の電位、すな
わち実効現像バイアスが変動することを考慮しなければ
ならない。
When the laminated type semi-conductive roller shown in FIG. 2 (c) is unfolded, the conductivity of the developing roller 1 2 is set to d i = 0 and V i = 0 in the model of FIG. the layer 1 2d, as shown in FIG. 4, the addition of an equivalent resistance R 0 being measured in a semi-conductive elastic body layer 1 2b. in this case,
By developing a current transfer of the toner results, the potential difference across the resistor R 0 is generated, the potential of the developing roller 1 2 surface, i.e. the effective developing bias must be considered to vary.

【0026】一成分接触現像においては、トナー層厚規
制ブレードや現像ローラ1表面との接触によって、予め
摩擦帯電荷を保有しているトナー粒子が、現像位置で静
電潜像保持体3表面および現像ローラ12 表面と接触す
ることにより、さらに電荷を獲得する。ここで、現像ロ
ーラ12 表面のトナーが予め保持している電荷q0 、現
像位置における静電潜像保持体3との接触による摩擦帯
電荷qp 、現像ローラ12 表面との接触による摩擦帯電
荷qr とすると、現像位置を通過した後にトナーが保有
している総電荷量qは、 q=q0 +qp +qr (21) となる。なお、これらの電荷量は、一般に現像ローラ1
2 の回転速度に依存し、速度を増すと電荷量の絶対値が
大きくなる傾向を示す場合が多い。
In the one-component contact development, the toner particles having a frictional charge in advance are contacted with the toner layer thickness regulating blade and the surface of the developing roller 1 and the electrostatic latent image holding member 3 surface and the toner particles are held at the developing position. By contacting the surface of the developing roller 1 2 , further electric charge is acquired. Here, the electric charge q 0 previously held by the toner on the surface of the developing roller 1 2, the frictional band charge q p due to the contact with the electrostatic latent image holding member 3 at the developing position, and the friction due to the contact with the surface of the developing roller 1 2 If the electrostatic charge is q r , the total amount of charge q held by the toner after passing through the developing position is q = q 0 + q p + q r (21). Note that these charge amounts are generally the same as those of the developing roller 1.
2 depends on the rotation speed, and in many cases, the absolute value of the electric charge tends to increase as the speed increases.

【0027】現像によってトナーが静電潜像保持体3表
面に転移し、現像ローラ12 が遠ざかるときに観測され
る電流Ip には、前記トナーが予め保持している電荷q
0 、および現像ローラ12 表面との接触による摩擦帯電
荷qr のみが寄与し、静電潜像保持体3との接触による
摩擦帯電荷qp は関与しない。つまり、qp は静電潜像
保持体3とトナーとの摩擦帯電によ生じる電荷であり、
感光体3とトナーとの分離が生じない限り電流として観
測されないからである。
The developing toner is transferred to the electrostatic latent image holding member 3 surface by, the current I p which is observed when the developing roller 1 2 moves away, the charge the toner stored in advance q
0 , and the frictional band charge q r due to contact with the surface of the developing roller 1 2 contributes, but the frictional band charge q p due to contact with the electrostatic latent image carrier 3 does not participate. That is, q p is an electric charge generated by frictional charging between the electrostatic latent image holding member 3 and the toner,
This is because current is not observed unless the photoconductor 3 and the toner are separated.

【0028】前記図2(c) に図示した積層型半導電性ロ
ーラは、半導電性の弾性体層12bの表面に導電層12d
有するため、表面方向と半径方向とで抵抗値が異なると
いう電気的異方性を考慮しなければならない。すなわ
ち、現像電流として現像ローラ12 表面全体における1
秒当たりの電荷の流出入の総和を考え、この電流が表面
・シャフト間の抵抗の実測値R=R2 /Sr を介して現
像バイアス電源12cへ向かって流出すると考える。そし
て、トナーが静電潜像保持体3表面に転移し現像ローラ
2 から遠ざかるときに観測される電流Ip は、静電潜
像保持体3の単位面積に付着するトナー量ms2、単位時
間に現像ニップを通過する画像部面積(=静電潜像面の
トナー付着部面積)をSとすると、
Since the laminated semiconductive roller shown in FIG. 2 (c) has the conductive layer 1 2d on the surface of the semiconductive elastic layer 1 2b , the resistance value is different between the surface direction and the radial direction. The different electrical anisotropy must be considered. That is, the developing current is 1 on the entire surface of the developing roller 1 2.
Considering the total amount of charges flowing in and out per second, it is considered that this current flows toward the developing bias power source 1 2c via the measured value R = R 2 / S r of the resistance between the surface and the shaft. The current I p observed when the toner is transferred to the surface of the electrostatic latent image holding member 3 and moves away from the developing roller 1 2 is the toner amount m s2 attached to the unit area of the electrostatic latent image holding member 3 in units. Let S be the area of the image portion that passes through the developing nip in time (= area of the toner adhering portion on the electrostatic latent image surface).

【数23】 ただし、トナーおよび感光体はいずれも負帯電型とし、
静電潜像保持体3から現像ローラ12 へ向かう電流を正
とする。
[Equation 23] However, both toner and photoconductor are negatively charged,
The current flowing from the electrostatic latent image holder 3 to the developing roller 1 2 is positive.

【0029】一方、静電潜像保持体表面との接触によっ
て負電荷qp を得た後、静電潜像保持体表面に転移せず
現像ローラ表面にとどまって静電潜像保持体から遠ざか
るトナー(以後残留トナーと呼ぶ)は、結果的に静電潜
像保持体表面から負電荷を奪ったことになる。したがっ
て、残留トナーによる現像電流Ir は、単位時間に現像
ニップを通過する全静電潜像面積をS0 とすると、
On the other hand, after the negative charge q p is obtained by the contact with the surface of the electrostatic latent image carrier, it does not transfer to the surface of the electrostatic latent image carrier but remains on the surface of the developing roller and moves away from the electrostatic latent image carrier. The toner (hereinafter, referred to as residual toner) consequently takes a negative charge from the surface of the electrostatic latent image holding member. Therefore, the developing current I r due to the residual toner is S 0 , where the total electrostatic latent image area passing through the developing nip per unit time is

【数24】 となり、全現像電流Iは次式で与えられる。[Equation 24] And the total developing current I is given by the following equation.

【0030】[0030]

【数25】 この現像電流Iによって、現像ローラの抵抗R2 /Sr
の両端に電位差が生じ、実効現像バイアスVe は、
[Equation 25] Due to this developing current I, the resistance of the developing roller R 2 / S r
Potential difference occurs at both ends of the effective developing bias V e

【数26】 となる。そして、実効現像バイアスVe が与えられたと
き、静電潜像保持体に転移するトナー量ms2は、導電性
ローラの現像方程式(20)によって決定される。すなわ
ち、前記式(20)でVb をVe に置き換える。
[Equation 26] Becomes Then, when the effective developing bias V e is applied, the toner amount m s2 transferred to the electrostatic latent image holding member is determined by the developing equation (20) of the conductive roller. That is, V b is replaced with V e in the equation (20).

【0031】[0031]

【数27】 直観的には、現像による実効現像バイアスVe の変動が
現像トナー量ms2の変化をもたらし、その結果再び実効
現像バイアスVe が変動するというプロセスの繰り返し
によって、最終的に収束した値を真の現像トナー量ms2
とする描像が理解される。実際、静電潜像面と現像ロー
ラ表面とが離れる瞬間にこのプロセスにしたがってトナ
ーの転移量が決定されていると考えられるが、解析的に
は、前記式(25),(26)を連立方程式として、ms2につい
て解くという操作により、等価な現像トナー量の算出が
可能で、次式のような積層型半導電性ローラの現像方程
式が得られる。
[Equation 27] Intuitively, the fluctuation of the effective developing bias V e due to the development causes a change of the developing toner amount m s2 , and as a result, the effective developing bias V e changes again. Development toner amount m s2
Is understood. Actually, it is considered that the transfer amount of toner is determined according to this process at the moment when the electrostatic latent image surface and the developing roller surface are separated, but analytically, the above equations (25) and (26) are simultaneous equations. As an equation, an equivalent developing toner amount can be calculated by solving for m s2 , and a developing equation for the laminated semiconductive roller as shown in the following equation can be obtained.

【0032】[0032]

【数28】 一方、単層型半導電性ローラの場合は、電気抵抗が等方
的であるため、単位面積当たりの電荷の流出入を考え
る。静電潜像保持体表面の単位面積に付着するトナー量
s2、静電潜像保持体表面と現像ローラ表面の移動速度
をそれぞれVp ,Vr 、速度比k(=Vr /Vp )とす
ると、現像ローラ表面の単位面積当たりの現像トナーお
よび残留トナーによる電流Ip ,Ir は次式で与えられ
る。
[Equation 28] On the other hand, in the case of the single-layer type semi-conductive roller, since the electric resistance is isotropic, the inflow and outflow of charges per unit area will be considered. The amount of toner m s2 adhering to a unit area of the electrostatic latent image carrier surface, the moving speeds of the electrostatic latent image carrier surface and the developing roller surface are V p and V r , respectively, and the speed ratio k (= V r / V p ), The currents I p and I r due to the developing toner and the residual toner per unit area on the surface of the developing roller are given by the following equations.

【0033】[0033]

【数29】 [Equation 29]

【数30】 そして、単位面積当たりの全現像電流Iは、[Equation 30] Then, the total developing current I per unit area is

【数31】 で示され、実効現像バイアスVe ,Ve の下で静電潜像
保持体に転移するトナー量ms1は、次のように表され
る。
[Equation 31] And the toner amount m s1 transferred to the electrostatic latent image carrier under the effective developing biases V e and V e is expressed as follows.

【0034】[0034]

【数32】 [Equation 32]

【数33】 ここで、連立方程式(31),(32)を解くことにより、次式
の単層型半導電性現像ローラの現像方程式が得られる。
[Expression 33] Here, by solving the simultaneous equations (31) and (32), the development equation of the single-layer semiconductive developing roller of the following equation can be obtained.

【0035】[0035]

【数34】 なお、前記現像モデルでは、導電性ローラに抵抗を付加
する形で、半導電性ローラの現像方程式を導き出した
が、厳密には静電潜像保持体(感光体層)およびトナー
層の合成静電容量と、ローラ抵抗が形成するCR回路に
よる緩和現象を考慮に入れなければならない。つまり、
現像ニップに現像ローラ表面が進入するとき、上記の容
量を充電もしくは放電すべく抵抗を介して現像ローラ表
面に電荷が誘導される。この電荷の誘導に要する時間
が、現像時間に比べて十分短いという条件、すなわち時
定数が現像時間よりも十分短いという条件を満たすこと
が必要となる。なお、ここでは、現像ローラ上の1点が
現像ニップを通過するのに要する時間を現像時間と定義
する。
[Equation 34] In the development model, the development equation of the semi-conductive roller was derived by adding resistance to the conductive roller. Strictly speaking, however, the combined static of the electrostatic latent image holding member (photoreceptor layer) and the toner layer is stricter. The relaxation phenomenon due to the capacitance and the CR circuit formed by the roller resistance must be taken into consideration. That is,
When the surface of the developing roller enters the developing nip, an electric charge is induced on the surface of the developing roller through a resistor to charge or discharge the above capacity. It is necessary to satisfy the condition that the time required for inducing the charge is sufficiently shorter than the developing time, that is, the condition that the time constant is sufficiently shorter than the developing time. Here, the time required for one point on the developing roller to pass through the developing nip is defined as the developing time.

【0036】この単層型半導電性ローラの場合には、現
像ニップにおける単位面積当たりの静電容量C1 とロー
ラ抵抗R1 との積C1 1 を考える。感光体層(静電潜
像保持体)およびトナー層の静電容量をそれぞれCp
t 、現像時間をTd 、現像ニップ幅をN、長さをLと
すると、
In the case of this single-layer type semiconductive roller, consider the product C 1 R 1 of the electrostatic capacity C 1 per unit area in the developing nip and the roller resistance R 1 . The electrostatic capacities of the photoconductor layer (electrostatic latent image carrier) and the toner layer are respectively C p ,
If C t , developing time is T d , developing nip width is N, and length is L,

【数35】 ここで、C1 1 <Td より(C1 1 に対してTd
非常に大きい)
[Equation 35] Where C 1 R 1 <T d (T d is much larger than C 1 R 1 )

【数36】 となり、ローラ抵抗R1 がこの条件を満たすときに、上
記のモデルが厳密に解を与えることになる。
[Equation 36] Therefore, when the roller resistance R 1 satisfies this condition, the above model gives a solution exactly.

【0037】一方、積層型半導電性ローラの場合は、表
面が導電層で被覆されているため、現像ローラ全体の静
電容量を考慮しなければならないが、静電潜像保持体と
の接触位置以外の領域における静電容量は極めて小さい
と考えられるので、現像ニップにおける静電容量C2
これを近似する。
On the other hand, in the case of the laminated type semi-conductive roller, since the surface is covered with the conductive layer, the electrostatic capacity of the entire developing roller must be taken into consideration. Since the electrostatic capacity in the area other than the position is considered to be extremely small, this is approximated by the electrostatic capacity C 2 in the developing nip.

【0038】[0038]

【数37】 また、C2 2 /Sr <Td より[Equation 37] Also, from C 2 R 2 / S r <T d

【数38】 したがって、積層型半導電性ローラでは、単層型半導電
性ローラに比べてより広い抵抗範囲において、上記の現
像モデルを適用し得る。たとえば静電潜像の移動方向に
亘って十分長い長方形のソリッド画像を出力するような
場合、上記の緩和時間の後には、現像ローラ表面の電気
的状態が平衡状態に達し、現像方程式が厳密に正しい現
像トナー量を与える。
[Equation 38] Therefore, the development model described above can be applied to the laminated semiconductive roller in a wider resistance range than that of the single layer semiconductive roller. For example, in the case of outputting a rectangular solid image that is long enough in the moving direction of the electrostatic latent image, after the relaxation time described above, the electrical state of the developing roller surface reaches an equilibrium state, and the developing equation is strictly Gives the correct amount of developing toner.

【0039】上記のごとく、導電性現像ローラの現像方
程式を基本式とすると、各種の現像ローラの現像方程式
は、それぞれ下記に示すごとくなり、現像ローラの構成
・種類によって現像条件が相違し、良好な可視像を得る
ためにはそれぞれ適正な条件の選択・設定が重要であ
る。
As described above, assuming that the developing equation of the conductive developing roller is the basic equation, the developing equations of various developing rollers are as follows, and the developing conditions are different depending on the constitution and type of the developing roller, and are good. It is important to select and set appropriate conditions in order to obtain various visible images.

【0040】導電性ローラの場合In case of conductive roller

【数39】 単層型半導電性ローラの場合[Formula 39] For single-layer semi-conductive roller

【数40】 積層型半導電性ローラの場合[Formula 40] For laminated semi-conductive roller

【数41】 誘電性ローラの場合[Formula 41] In case of dielectric roller

【数42】 ただし、現像トナー量mc ,mi が負になることやkm
0 を超えることはあり得ないという物理的制約から、こ
れらの場合には、現像トナー量はそれぞれ0,km0
なる。また、計算には次の数値を用いた。
[Equation 42] However, the developing toner amounts m c and m i become negative and km
Due to the physical restriction that it cannot exceed 0 , the developing toner amounts are 0 and km 0 , respectively in these cases. The following numerical values were used for the calculation.

【0041】m0 =0.48×10-2(kg/m2 )、k=2.36、
p ,dt ,di =20,11,50(μm)、εp ,εt ,ε
i = 3.4ε0 , 1.1ε0 , 6.5ε0 、ε0 =8.85×10
-12 、q=-11.0mC/kg(K=1.30)、q=-14.3mC/kg(K=
2.36)、q=-15.5mC/kg(K=3.32)、qp =2mC/kg、V
p =39.3(mm/sec.) 、Sr =1.13×10-2(m2 )、So
0.79×10-2(m2 )、N= 2mm、l=0.2m 前記現像方程式に基づき、具体的に単層型半導電性ロー
ラについて、現像特性を理論的に予測し、実験結果と比
較したところ、次のごとくであった。
M 0 = 0.48 × 10 -2 (kg / m 2 ), k = 2.36,
d p , d t , d i = 20, 11, 50 (μm), ε p , ε t , ε
i = 3.4ε 0 , 1.1ε 0 , 6.5ε 0 , ε 0 = 8.85 × 10
-12 , q = -11.0 mC / kg (K = 1.30), q = -14.3 mC / kg (K =
2.36), q = -15.5mC / kg (K = 3.32), q p = 2mC / kg, V
p = 39.3 (mm / sec.), S r = 1.13 × 10 -2 (m 2 ), S o =
0.79 × 10 -2 (m 2 ), N = 2 mm, l = 0.2 m Based on the above development equation, the developing characteristics of a single layer type semiconductive roller were theoretically predicted and compared with the experimental results. However, it was as follows.

【0042】図5は単層型半導電性ローラの現像特性を
示したもので、横軸は現像電位、すなわち静電潜像電位
0 と現像バイアス電位Vb との差、縦軸は静電潜像面
の単位面積当たりに付着するトナー量ms1、実線は前記
現像方程式(39) による計算値を、破線は実験結果をそ
れぞれ示す。
FIG. 5 shows the developing characteristics of the single-layer type semiconductive roller. The abscissa shows the developing potential, that is, the difference between the electrostatic latent image potential V 0 and the developing bias potential V b, and the ordinate shows the static. The toner amount m s1 adhered per unit area of the electrostatic latent image surface, the solid line shows the calculated value by the development equation (39), and the broken line shows the experimental result.

【0043】ローラ抵抗R1 が 0から 1.1×105 Ω・m
2 の範囲では、理論と実験の双方において、抵抗値によ
る現像特性の違いはほとんど認められないが、R1 がこ
の値を超えると、特性曲線の直線部分の傾きが緩やかに
なる傾向が認められる。したがって、急峻な特性カーブ
が要求される場合、すなわち2値的な現像特性ないし低
電位現像が必要とされる場合には、より低抵抗の現像ロ
ーラが適しており、逆に緩やかな特性曲線によって滑ら
かな中間出力を得たい場合には、より高抵抗の現像ロー
ラが適していることになる。
The roller resistance R 1 is 0 to 1.1 × 10 5 Ω · m
In the range of 2 , in both theory and experiment, there is almost no difference in the developing characteristics due to the resistance value, but when R 1 exceeds this value, the inclination of the linear portion of the characteristic curve tends to become gentle. . Therefore, when a steep characteristic curve is required, that is, when a binary development characteristic or low-potential development is required, a developing roller having a lower resistance is suitable. When it is desired to obtain a smooth intermediate output, a developing roller having a higher resistance is suitable.

【0044】図6はローラ抵抗R1 による現像トナー量
の変化を示したもので、 1×105 Ω・m2 以下の領域で
は、現像トナー量はローラ抵抗にほとんど依存しない
が、この値を超えると画像部ではトナー付着量が減少
し、背景では増加する傾向が明確に示されている。理論
的には、 1×109 Ω・m2 に至って画像部と背景のトナ
ー付着量が同一の値に収束し、画像が消滅すると考えら
れる。そして、前記時定数の考察から、R1 が104 Ω・
2 を超える領域では、理論値が必ずしも正しい結果を
与えない場合もあり、また画像のエッジ部では電界のフ
リンジ効果により、理論値とは異なったトナー付着が生
じるため、必ずしも画像が消滅しないこともあるが、実
験結果との比較から、定性的には理論通りの描画を与え
ているといえる。
FIG. 6 shows the change in the amount of developing toner due to the roller resistance R 1. In the region of 1 × 10 5 Ω · m 2 or less, the amount of developing toner hardly depends on the roller resistance. It is clearly shown that the amount of toner adhered decreases in the image area and exceeds the amount in the background when it exceeds. Theoretically, it is considered that the amount of adhered toner on the image portion and the background converges to the same value at 1 × 10 9 Ω · m 2 and the image disappears. From the consideration of the time constant, R 1 is 10 4 Ω ・
In a region exceeding m 2 , the theoretical value may not always give a correct result, and the fringe effect of the electric field causes toner adhesion different from the theoretical value at the edge portion of the image, so that the image does not always disappear. However, from the comparison with the experimental results, it can be said that the drawing is qualitatively the theoretical drawing.

【0045】図7(a) は、前記現像特性に基づいて、適
正な現像条件で得た画像を例示したもので、不要なエッ
ジ強調のない、均一濃度のソリッド画像と静電潜像電荷
分布に忠実な画像の出力であった。なお、同図には、導
電性ローラや、誘電性ローラを用い、前記式(38),(41)
にそれぞれ示した現像方程式に基づき、適正な現像条件
で得た画像(b) 導電性ローラによる場合、(c) 誘電性ロ
ーラによる場合を参考例としてそれぞれ例示した。
FIG. 7 (a) shows an example of an image obtained under appropriate developing conditions based on the above-mentioned developing characteristics. A solid image of uniform density and an electrostatic latent image charge distribution without unnecessary edge enhancement are shown. The output of the image was true to. In the figure, a conductive roller and a dielectric roller are used, and the formulas (38) and (41) are used.
Images obtained under appropriate developing conditions based on the development equations shown in (b) using a conductive roller and (c) using a dielectric roller are illustrated as reference examples.

【0046】ここで、前記単層型半導電性ローラにつ
き、さらに指摘すると、ローラ抵抗R1 とトナー付着量
s1の関係は、R1 が105 Ω・m2 を超えると画像部の
トナー付着量が減少し、背景のトナー付着量が増加し
て、画像の濃度コントラストが低下する。実用上十分な
コントラストを得るためには、画像部と非画像部とのト
ナー付着量の差を 0.7×10-2kg/m2 以上とする。また、
この差が大き過ぎると、画像部に付着するトナー量が過
剰になり記録用紙へのトナーの転写、および定着プロセ
スでライン画像が潰れ解像度の低下を引き起こすので、
画像部と非画像部とのトナー付着量の差は、 2.0×10-2
kg/m2 以下に設定する。換言すれば、式[16]di =0
として、静電潜像保持体の表面電位Vo (V)の最大値
および最小値、すなわち静電潜像保持体の未露光部およ
び露光部での表面電位を、それぞれVmax 、Vmin とし
たとき、前記式 [1],[2]で表されるところの、諸物理
量を算出すればよい。なお、上記では単層型半導電性ロ
ーラを用いた現像方法について説明したが、単層型構造
の導電性ローラなどの場合でも、上記関係式をみたすこ
とにより、同様に最適化を達成し得る。
Here, regarding the single-layer type semi-conductive roller, it is further pointed out that the relationship between the roller resistance R 1 and the toner adhesion amount m s1 is that when R 1 exceeds 10 5 Ω · m 2 , the toner in the image area is The adhesion amount decreases, the background toner adhesion amount increases, and the image density contrast decreases. To obtain a practically sufficient contrast, the difference in toner adhesion amount between the image area and the non-image area should be 0.7 × 10 -2 kg / m 2 or more. Also,
If this difference is too large, the amount of toner adhering to the image portion becomes excessive, and the line image is crushed in the transfer process of the toner onto the recording paper and the fixing process, causing a reduction in resolution.
The difference in toner adhesion amount between the image area and non-image area is 2.0 × 10 -2
Set to less than kg / m 2 . In other words, the equation [16] d i = 0
As the maximum and minimum values of the surface potential V o (V) of the electrostatic latent image holding member, that is, the surface potentials of the unexposed portion and the exposed portion of the electrostatic latent image holding member are V max and V min , respectively. Then, various physical quantities expressed by the above equations [1] and [2] may be calculated. Although the developing method using the single-layer type semi-conductive roller has been described above, even in the case of a single-layer type conductive roller or the like, optimization can be similarly achieved by satisfying the above relational expression. .

【0047】[0047]

【発明の効果】上記説明したように、本発明によれば構
造の簡略性やコストなどの面で多くの利点を有する単層
型構造の現像ローラによる静電潜像の現像において、そ
の現像に係る主要な物理量相互の関係(現像条件)を容
易、かつ確実に最適化し得る。つまり、現像ローラの特
性、トナーの特性、静電潜像保持体の特性などに応じ
て、プロセス条件を適切に設定して、高い画像コントラ
ストと解像度を有する高品質の画像を安定的に出力する
ことができる。
As described above, according to the present invention, in developing an electrostatic latent image by a developing roller having a single-layer structure, which has many advantages in terms of simplicity of structure and cost, it is possible to develop the electrostatic latent image. It is possible to easily and surely optimize the relationship (developing condition) among the main physical quantities. That is, the process conditions are appropriately set according to the characteristics of the developing roller, the characteristics of the toner, the characteristics of the electrostatic latent image holder, etc., and a high-quality image having high image contrast and resolution is stably output. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】現像方法の実施態様の要部を示す模式図。FIG. 1 is a schematic diagram showing a main part of an embodiment of a developing method.

【図2】(a),(b),(c),(d) は現像方法の実施にそれぞれ
用いる互いに異なる現像ローラの構造例を示す模式図。
2A, 2B, 2C, and 2D are schematic views showing structural examples of different developing rollers used for carrying out the developing method.

【図3】現像位置の態様を模式的に示すモデル図。FIG. 3 is a model diagram schematically showing an aspect of a developing position.

【図4】積層型構造の現像ローラによる現像態様を示す
模式図。
FIG. 4 is a schematic diagram showing a developing mode by a developing roller having a laminated structure.

【図5】単層型構造の現像ローラによる現像特性図。FIG. 5 is a development characteristic diagram of a developing roller having a single-layer structure.

【図6】単層型構造の現像ローラのローラ抵抗とトナー
付着量の関係を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between a roller resistance and a toner adhesion amount of a developing roller having a single-layer structure.

【図7】現像ローラの構造と得られる可視画像の関係例
を示す画像図。
FIG. 7 is an image diagram showing an example of the relationship between the structure of the developing roller and the obtained visible image.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性シャフトの周面に抵抗R1 (Ω・
2 )の弾性体層を配設して成る単層型構造の現像ロー
ラの周面に、厚さdt (m)、帯電量q(C/kg)、
誘電率εt (C2 /Nm2 )の一成分トナーのトナー層
を形成する工程と、 前記現像ローラを厚さdp (m)、誘電率εp (C2
Nm2 )の静電潜像保持体のk倍の周速度で回転させな
がら、前記トナー層を静電潜像保持体面に接触させると
ともに、前記現像ローラの導電性シャフトに現像バイア
ス電圧を印加する工程とを具備する現像方法であって、 前記静電潜像保持体の表面電位V0 (V)の最大値をV
max 、最小値をVminとし、かつA=dp /εp +dt
/εt としたとき、前記の諸物理量が次式 【数1】 を満たすように設定されていることを特徴とする現像方
法。
1. A resistance R 1 (Ω ·
m 2 ), a developing roller having a single-layer structure having an elastic layer disposed thereon has a thickness d t (m), a charge amount q (C / kg),
A step of forming a toner layer of a one-component toner having a dielectric constant ε t (C 2 / Nm 2 ), a developing roller having a thickness d p (m), and a dielectric constant ε p (C 2 / C 2 / Nm 2 ).
The toner layer is brought into contact with the surface of the electrostatic latent image holding member while being rotated at a peripheral speed of Nm 2 ) of the electrostatic latent image holding member, and a developing bias voltage is applied to the conductive shaft of the developing roller. And a maximum value of the surface potential V 0 (V) of the electrostatic latent image holding member is V
max , the minimum value is V min , and A = d p / ε p + d t
/ Ε t , the above physical quantities are expressed by the following equation: A developing method characterized by being set so as to satisfy the following.
JP24511492A 1992-09-14 1992-09-14 Development method Expired - Fee Related JP3167446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24511492A JP3167446B2 (en) 1992-09-14 1992-09-14 Development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24511492A JP3167446B2 (en) 1992-09-14 1992-09-14 Development method

Publications (2)

Publication Number Publication Date
JPH0695486A true JPH0695486A (en) 1994-04-08
JP3167446B2 JP3167446B2 (en) 2001-05-21

Family

ID=17128833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24511492A Expired - Fee Related JP3167446B2 (en) 1992-09-14 1992-09-14 Development method

Country Status (1)

Country Link
JP (1) JP3167446B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339687B1 (en) 1999-10-22 2002-01-15 Sharp Kabushiki Kaisha Developing method
JP2008281853A (en) * 2007-05-11 2008-11-20 Ricoh Co Ltd Image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339687B1 (en) 1999-10-22 2002-01-15 Sharp Kabushiki Kaisha Developing method
JP2008281853A (en) * 2007-05-11 2008-11-20 Ricoh Co Ltd Image forming apparatus

Also Published As

Publication number Publication date
JP3167446B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US6947682B2 (en) Image forming apparatus for reducing toner scatter
JPH06194933A (en) Electrifier and image forming device
JPH04145460A (en) Image forming device
US6868240B2 (en) Method for developing in hybrid developing apparatus
JPH0695486A (en) Developing method
US6327451B1 (en) Development device for use with an electrophotographic image-forming device
JPH05241428A (en) Electrophotographic device
US7260350B2 (en) Image forming apparatus
JP2001117353A (en) Developing method
JPH0410635B2 (en)
JPH08190258A (en) Image forming device
JP3730136B2 (en) Image forming apparatus
JP2002123087A (en) Image forming device and method
JP4713857B2 (en) Development device
JP3961758B2 (en) Image forming method
JPS5948383B2 (en) developing device
JPH02214874A (en) Developing device
JPH05281277A (en) Method for measuring specific charge distribution of toner
JPH10133449A (en) Image forming method
JPH0398068A (en) Developing device
JPH0766216B2 (en) Development device
JPH01230078A (en) Developer evaluating device
JP2002244410A (en) Image forming device
JPS63231376A (en) Developing device
JPS6111757A (en) Developing method using nonmagnetic one-component developer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees