JPH0695174A - Fiber type optical switch - Google Patents

Fiber type optical switch

Info

Publication number
JPH0695174A
JPH0695174A JP19853191A JP19853191A JPH0695174A JP H0695174 A JPH0695174 A JP H0695174A JP 19853191 A JP19853191 A JP 19853191A JP 19853191 A JP19853191 A JP 19853191A JP H0695174 A JPH0695174 A JP H0695174A
Authority
JP
Japan
Prior art keywords
core
optical
fiber
phase difference
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19853191A
Other languages
Japanese (ja)
Inventor
Yoshikazu Matsuda
美一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP19853191A priority Critical patent/JPH0695174A/en
Publication of JPH0695174A publication Critical patent/JPH0695174A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fiber type optical switch capable of switching a fiber optical path by moving it not mechanically but optically and having high performance and high reliability. CONSTITUTION:Optical coupling parts 1, 2 where both cores 3a, 3b separated by a proper interval are capable of coupling optically with each other are provided on two positions in the longitudinal direction of a two optical fibers 5 in which a first core 3a and a second core 3b are provided in the common cladding 4 so as not to couple optically with each other, and the interval between both optical coupling parts 1, 2 is made a phase difference control area 6. In the phase difference control area 6, when it is impressed by mechanical external force, or physical external force of heat, electricity, magnetism, etc., a difference in a phase shift amt. in light waves propagated through the first core 3a and the second core 3b is controlled, and the core through which a light beam is transmitted between both cores 3a, 3b is made switchable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバ通信、光ファ
イバ計測および光情報処理などの分野において、光路の
切替えに使用されるファイバ型光スイッチに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber type optical switch used for switching optical paths in the fields of optical fiber communication, optical fiber measurement and optical information processing.

【0002】[0002]

【従来の技術】ファイバ型光スイッチの主なものとして
従来のは図5に示すものがあった。これは二本の光ファ
イバ16、17のうち一方の光ファイバ16に対向させ
て光ファイバ15を配置し、同光ファイバ15を同図に
鎖線で示すように他方の光ファイバ17と対向するよう
に移動可能とし、この移動によって同ファイバ15をフ
ァイバ16又は17に切替え接続可能としたものであ
る。この場合、光ファイバ15を移動させるには、例え
ば同図に示すように光ファイバ15の先端に磁性材料1
8を被覆し、その近くに設けた電磁石(図示されていな
い)のオン、オフにより同磁性材料18を吸着してファ
イバ15を移動させる。
2. Description of the Related Art As a main type of fiber type optical switch, a conventional type is shown in FIG. The optical fiber 15 is arranged so as to face one of the two optical fibers 16 and 17, and the optical fiber 15 faces the other optical fiber 17 as shown by a chain line in the figure. The fiber 15 can be switched and connected to the fiber 16 or 17 by this movement. In this case, in order to move the optical fiber 15, for example, as shown in FIG.
8 is covered, and the magnetic material 18 is attracted to move the fiber 15 by turning on and off an electromagnet (not shown) provided near it.

【0003】[0003]

【発明が解決しようとする課題】しかし従来のファイバ
型光スイッチでは以下のような問題があるため、数万或
は数十万回以上に及ぶ切替え動作を安定且つ確実に行な
うことは事実上困難であった。 、光ファイバ15が移動するため光結合の信頼性に欠
ける。即ち、シングルモードファイバのようにコア径が
およそ10μm以下の細い光ファイバを、低損失で突合
わせ接続するには、接続する光ファイバ同士の光軸を正
確に合わせ、しかも光ファイバの端面間隔も出来る限り
狭くし、その上、この状態を保持する必要があるが、こ
れを機械的な機構で実現することは困難である。 、高速切替えの場合は光ファイバを高速移動する必要
があるが、ある程度以上の高速になるとそれも困難にな
る。 、ファイバ型スイッチを構成する機構部品に高精度で
高信頼性が要求されるが、それにも限度がある。 、ファイバが移動するため、光ファイバに強度疲労が
発生し、甚だしい場合には光ファイバが破断することも
ある。
However, since the conventional fiber type optical switch has the following problems, it is practically difficult to stably and reliably perform the switching operation of tens of thousands or hundreds of thousands or more times. Met. Since the optical fiber 15 moves, the reliability of optical coupling is low. That is, in order to butt-connect a thin optical fiber having a core diameter of about 10 μm or less, such as a single mode fiber, with a low loss, the optical axes of the optical fibers to be connected are accurately aligned, and the distance between the end faces of the optical fibers is also small. It is necessary to make it as narrow as possible and to maintain this state, but it is difficult to realize this with a mechanical mechanism. In the case of high-speed switching, it is necessary to move the optical fiber at high speed, but at high speeds above a certain level, it becomes difficult. The mechanical parts that make up a fiber type switch are required to have high accuracy and high reliability, but there is a limit to that. As the fiber moves, strength fatigue occurs in the optical fiber, and in extreme cases, the optical fiber may break.

【0004】[0004]

【発明の目的】本発明の目的は、光ファイバを機械的に
移動させることなくファイバ光路を切り替えることがで
き、しかも高性能で、信頼性の高いファイバ型光スイッ
チを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fiber type optical switch which can switch the optical path of a fiber without mechanically moving the optical fiber and has high performance and high reliability.

【0005】[0005]

【問題点を解決するための手段】本発明のファイバ型光
スイッチの基本は、図2に示すように光結合部1、2及
び位相差制御領域6で構成されるマハツェンダー型干渉
系を構成することにある。そのため本発明のファイバ型
光スイッチは図1に示すように、第1のコア3aと第2
のコア3bとが共通のクラッド4内に互いに光結合しな
いように設けられた光ファイバ5の長手方向二箇所に、
適宜間隔離して両コア3a、3bが互いに光結合可能な
光結合部1、2を設け、両光結合部1、2の間を位相差
制御領域6とし、同位相差制御領域6はそれに機械的外
力、或は熱、電気、磁気等の物理的外力を加えることに
より、第1のコア3aと第2のコア3bを伝搬する光波
の位相シフト量の差を制御して、前記両コア3a、3b
のうち光が伝搬するコアを切替え可能としたものであ
る。前記位相差制御領域6は、光結合部1および光結合
部2の間のコア3aおよび3bの位相シフト量の差を制
御するものである。図2のA、Bは入力端子、C、Dは
出力端子で、夫々、他のファイバに接続される。
The basis of the fiber type optical switch of the present invention is, as shown in FIG. 2, a Maha-Zehnder type interference system composed of optical coupling portions 1 and 2 and a phase difference control region 6. To do. Therefore, as shown in FIG. 1, the fiber type optical switch of the present invention includes a first core 3a and a second core 3a.
The core 3b of the optical fiber 5 provided in the common clad 4 so as not to be optically coupled to each other, at two positions in the longitudinal direction,
Optical coupling portions 1 and 2 capable of optically coupling the two cores 3a and 3b to each other are provided by appropriately separating them, and a phase difference control region 6 is provided between the both optical coupling portions 1 and 2, and the phase difference control region 6 is mechanically connected thereto. By applying an external force or a physical external force such as heat, electricity, magnetism, etc., the difference in the phase shift amount of the light wave propagating through the first core 3a and the second core 3b is controlled, and the two cores 3a, 3b
Among them, the core through which light propagates can be switched. The phase difference control region 6 controls the difference in the amount of phase shift of the cores 3a and 3b between the optical coupling section 1 and the optical coupling section 2. 2A and 2B are input terminals, and C and D are output terminals, which are respectively connected to other fibers.

【0006】[0006]

【作用】図2に示す本発明のファイバ型光スイッチにお
いて、入力端子Aに入射された光波は、以下の4つの系
路を通って出力端子CあるいはDに出射される。 光波A1:入力端子A→光結合部1→光路3a→光結合
部2→出力端子C 光波A2:入力端子A→光結合部1→光路3b→光結合
部2→出力端子C 光波B1:入力端子A→光結合部1→光路3a→光結合
部2→出力端子D 光波B2:入力端子A→光結合部1→光路3b→光結合
部2→出力端子D
In the fiber type optical switch of the present invention shown in FIG. 2, the light wave incident on the input terminal A is emitted to the output terminal C or D through the following four paths. Light wave A1: input terminal A → optical coupling section 1 → optical path 3a → optical coupling section 2 → output terminal C optical wave A2: input terminal A → optical coupling section 1 → optical path 3b → optical coupling section 2 → output terminal C optical wave B1: input Terminal A → optical coupling section 1 → optical path 3a → optical coupling section 2 → output terminal D light wave B2: input terminal A → optical coupling section 1 → optical path 3b → optical coupling section 2 → output terminal D

【0007】光波A1と光波A2は出力端子Cで再び重
ね合わされて干渉する。光波B1と光波B2は出力端子
Dで再び重ね合わされて干渉する。その結果、出力端子
Cにおける干渉強度Icおよび出力端子Dにおける干渉
強度Idは次式のように求められる。 Ic=Io sin(φ/2) (1) Id=Io cos(φ/2) (2) 但し、Ioは入力端子Aに入射された光強度、φは位相
差制御領域6を通過したことによるコア3aと3bとの
位相シフトの差である。この式から分かるように、光は
位相シフトがφ=π/2のときは出力端子Cのみから出
射され、位相シフトがφ=0のとき出力端子Dのみから
出射される。従って、位相シフトφを制御することによ
り光路の切り替えが行なわれる。即ち、位相差制御領域
6で位相シフトφの大きさを制御することにより、入力
端子A、Bと出力端子C、Dとの間で2×2の光出力の
切り替えが行なわれる。なお、本説明では光結合部1、
2を3dBカプラとしたが、同光結合部1、2の結合比
の大きさは光路の切り替え動作に本質的には関係なく、
光路を切り替えるために必要な位相シフトの大きさが前
述のものと異なるだけである。
The light waves A1 and A2 are superimposed on each other at the output terminal C and interfere with each other. The light waves B1 and B2 are overlapped and interfere with each other at the output terminal D. As a result, the interference intensity Ic at the output terminal C and the interference intensity Id at the output terminal D are obtained by the following equations. Ic = Io sin 2 (φ / 2) (1) Id = Io cos 2 (φ / 2) (2) where Io is the light intensity incident on the input terminal A, and φ is the phase difference control region 6. This is the difference in phase shift between the cores 3a and 3b. As can be seen from this expression, light is emitted only from the output terminal C when the phase shift is φ = π / 2, and is emitted only from the output terminal D when the phase shift is φ = 0. Therefore, the optical path is switched by controlling the phase shift φ. That is, by controlling the magnitude of the phase shift φ in the phase difference control region 6, 2 × 2 light output is switched between the input terminals A and B and the output terminals C and D. In this description, the optical coupling unit 1,
Although 2 is a 3 dB coupler, the magnitude of the coupling ratio of the optical coupling sections 1 and 2 is essentially unrelated to the optical path switching operation.
Only the magnitude of the phase shift required to switch the optical path differs from that described above.

【0008】[0008]

【実施例1】本発明のファイバ型光スイッチの第1の実
施例を示す図1(a)において、5は光ファイバあるい
はロッドであり、それは二つのコア3aおよび3bと、
それらを取り囲む共通のクラッド4とから構成されてい
る。第1のコア3aと第2のコア3b(二つの導波路)
の伝搬定数βaとβbは同じである。光ファイバ5に何
の加工も加えないときは、第1のコア3aと第2のコア
3bとは光結合しない。この光ファイバ5を、例えば加
熱軟化の状態で延伸して図1(a)に示すようにテーパ
にして、その部分を第1のコア3aと第2のコア3bと
の間で光結合可能な光結合部(光カプラの機能を果た
す)を形成してある。また、この両光結合部1、2の間
に位相差制御領域6を形成してある。
First Embodiment In FIG. 1 (a) showing a first embodiment of the fiber type optical switch of the present invention, 5 is an optical fiber or a rod, which comprises two cores 3a and 3b,
It is composed of a common clad 4 surrounding them. First core 3a and second core 3b (two waveguides)
The propagation constants βa and βb of are the same. When no processing is applied to the optical fiber 5, the first core 3a and the second core 3b are not optically coupled. This optical fiber 5 is stretched, for example, in a heated and softened state to be tapered as shown in FIG. 1A, and that portion can be optically coupled between the first core 3a and the second core 3b. An optical coupling portion (which functions as an optical coupler) is formed. Further, a phase difference control region 6 is formed between the both optical coupling portions 1 and 2.

【0009】位相差制御領域6は第1のコア3aと第2
のコア3bを伝送される光が結合しない領域であり、第
1のコア3aと第2のコア3bを導波される光波の位相
差を制御する領域である。この位相差制御領域6におい
て位相差を制御するには、例えば図1(b)に示すよう
に、光ファイバ5の外周に設けた金属板7に電流を流し
て同金属板7熱膨張させ、それにより光ファイバ5を同
図に示すようにz−x面内で曲げる。このとき二つのコ
ア3aと3bの間隔を2S、位相差制御領域6、即ち曲
げが与えられる部分の長さをL、その曲率半径をRとす
ると、コア3aと3bが同一の構造で作製されているの
で、二つの導波路の位相差φは次式であたえられる。 φ=β・2S・(L/R) βは伝搬定数で、β=βa=βbである。通常のコア/
クラッドの屈折率差Δn=0.3%程度のファイバで
は、β=(2π/γ)n1と近似される。n1はコアの
屈折率で、石英系ガラスではn1=1.46程度であ
る。S=125μmとすると、L/R=0.01程度の
わずかな曲がりで、数radという十分な大きさの範囲
で位相差を制御することが出来る。実際にコア/クラッ
ド屈折率差Δn=0.3%、n1≒1.46、コア径9
μm、クラッド外径250μmの石英ファイバを作製
し、同ファイバで図1(a)に示すファイバ型スイッチ
を作製した。その位相差制御領域6の長さをL≒10m
mとして、この部分に図1(b)のように金属板7を張
り付け、同金属板7に電流を流して光スイッチの機能を
確認した。
The phase difference control region 6 includes the first core 3a and the second core 3a.
Is a region where light transmitted through the core 3b is not coupled, and is a region for controlling the phase difference between the light waves guided through the first core 3a and the second core 3b. To control the phase difference in the phase difference control region 6, for example, as shown in FIG. 1B, an electric current is applied to the metal plate 7 provided on the outer circumference of the optical fiber 5 to thermally expand the metal plate 7, Thereby, the optical fiber 5 is bent in the zx plane as shown in FIG. At this time, when the distance between the two cores 3a and 3b is 2S, the length of the phase difference control region 6, that is, the portion where bending is applied is L, and the radius of curvature thereof is R, the cores 3a and 3b are manufactured with the same structure. Therefore, the phase difference φ between the two waveguides is given by the following equation. φ = β · 2S · (L / R) β is a propagation constant, and β = βa = βb. Normal core /
In the case of a fiber having a refractive index difference Δn = 0.3% of the clad, it is approximated as β = (2π / γ) n1. n1 is the refractive index of the core, which is about n1 = 1.46 for silica-based glass. If S = 125 μm, the phase difference can be controlled within a sufficiently large range of several rads with a slight bend of about L / R = 0.01. Actual core / clad refractive index difference Δn = 0.3%, n1≈1.46, core diameter 9
A quartz fiber having a diameter of μm and a cladding outer diameter of 250 μm was produced, and the fiber type switch shown in FIG. The length of the phase difference control region 6 is L≈10 m
As m, a metal plate 7 was attached to this portion as shown in FIG. 1B, and a current was passed through the metal plate 7 to confirm the function of the optical switch.

【0010】[0010]

【実施例2】本発明のファイバ型光スイッチの第2の実
施例のファイバ構造を図3に示す。図3の5は光ファイ
バであり、これはコア3aとコア3b、およびそれらを
取り囲む共通のクラッド4からなる。コア3aとコア3
bはコア径あるいは屈折率の大きさが異なるものであ
る。この場合はコア3aとコア3b(二つの導波路)を
伝搬する光波の伝搬定数βaとβbは異なる。このよう
な光ファイバ5を用いて図1(a)に示すファイバ型光
スイッチと同じ構成のファイバ型光スイッチを作製した
場合は、位相差制御領域6における位相差を制御すると
き、実施例1の場合のように光ファイバ5を曲げる必要
はない。位相差は次式、 φ=(βa−βb)・L で与えられるので、βa−βbを変化させるか或はLを
変化させる手段が利用出来る。βa−βbを変化させる
手段としては圧力による光弾性効果があり、Lを変える
手段としては張力、熱膨張などを利用することが出来
る。実際に、図3に示すファイバを用いて図1(a)に
示すファイバと同様のファイバ型光スイッチを構成し、
位相差制御領域6に圧電材料を被覆し、この圧電材料に
電圧を印加し、そのとき圧電材料に生ずる圧力による光
弾性効果を利用して光スイッチの機能を確認した。
[Second Embodiment] FIG. 3 shows a fiber structure of a second embodiment of the fiber type optical switch of the present invention. Reference numeral 5 in FIG. 3 denotes an optical fiber, which comprises a core 3a and a core 3b, and a common cladding 4 surrounding them. Core 3a and core 3
b has a different core diameter or refractive index. In this case, the propagation constants βa and βb of the light waves propagating through the core 3a and the core 3b (two waveguides) are different. When a fiber type optical switch having the same configuration as the fiber type optical switch shown in FIG. 1A is manufactured using such an optical fiber 5, when controlling the phase difference in the phase difference control region 6, It is not necessary to bend the optical fiber 5 as in the case. Since the phase difference is given by the following equation, φ = (βa−βb) · L, means for changing βa−βb or changing L can be used. As a means for changing βa-βb, there is a photoelastic effect by pressure, and as a means for changing L, tension, thermal expansion, etc. can be used. Actually, a fiber type optical switch similar to the fiber shown in FIG. 1A is configured by using the fiber shown in FIG.
The phase difference control region 6 was coated with a piezoelectric material, a voltage was applied to the piezoelectric material, and the function of the optical switch was confirmed by utilizing the photoelastic effect due to the pressure generated in the piezoelectric material at that time.

【0011】[0011]

【実施例3】本発明のファイバ型光スイッチの第3の実
施例のファイバ構造を図4に示す。図4の5は光ファイ
バで、コア3aとコア3b、およびそれらを取り囲む共
通のクラッド4からなる。コア3aとコア3bは同一の
構造であるが、コア3bはクラッド4の中心に、他のコ
ア3aはクラッド4の中心から偏心した位置に設けられ
ている。この場合はβa=βbであるが、両コア3a、
3bの位置が異なるので外部から力を加えた時両コア3
a、3bに加わる力の程度が異なる。即ち、両コア3
a、3bが圧力による光弾性効果を受ける程度が異なる
ので、外力が加わとβa≠βbとなり、位相差φ=(β
a−βb)・Lを制御することが出来る。
Third Embodiment FIG. 4 shows the fiber structure of a third embodiment of the fiber type optical switch of the present invention. Reference numeral 5 in FIG. 4 denotes an optical fiber, which comprises a core 3a and a core 3b, and a common clad 4 surrounding them. The cores 3a and 3b have the same structure, but the core 3b is provided at the center of the clad 4, and the other cores 3a are provided at positions eccentric from the center of the clad 4. In this case, βa = βb, but both cores 3a,
Since the position of 3b is different, both cores 3 when external force is applied.
The degree of force applied to a and 3b is different. That is, both cores 3
Since a and 3b differ in the degree to which they receive the photoelastic effect due to pressure, when an external force is applied, βa ≠ βb and the phase difference φ = (β
a-βb) · L can be controlled.

【0012】[0012]

【発明の効果】本発明のファイバ型光スイッチは次のよ
うな効果がある。 .ファイバを機械的に動かすものでないため構造が簡
潔であり、ファイバの損傷や疲労による故障が起きにく
く、信頼性が高い。またコストも安い。 .光学的切替えであるため機械的切替えに比して、切
替え時の光軸合わせの精度が高く、それに伴う接続損失
が起こらない。 .光学的切替えであるため高速応答が可能となる。
The fiber type optical switch of the present invention has the following effects. . Since the fiber is not mechanically moved, the structure is simple, the damage and fatigue of the fiber do not easily occur, and the reliability is high. The cost is also low. . Since it is optical switching, the precision of optical axis alignment at the time of switching is higher than that of mechanical switching, and connection loss associated therewith does not occur. . Optical switching enables high-speed response.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明のファイバ型光スイッチの一実
施例を示す斜視図、(b)は同スイッチの位相差制御領
域を湾曲させた状態の部分説明図。
FIG. 1A is a perspective view showing an embodiment of a fiber type optical switch of the present invention, and FIG. 1B is a partial explanatory view showing a state where a phase difference control region of the switch is curved.

【図2】本発明のファイバ型光スイッチの原理図。FIG. 2 is a principle diagram of a fiber type optical switch of the present invention.

【図3】本発明のファイバ型光スイッチにおけるファイ
バの第2の例を示す斜視図。
FIG. 3 is a perspective view showing a second example of a fiber in the fiber type optical switch of the present invention.

【図4】本発明のファイバ型光スイッチにおけるファイ
バの第3の例を示す斜視図。
FIG. 4 is a perspective view showing a third example of a fiber in the fiber type optical switch of the present invention.

【図5】従来のファイバ型光スイッチの一例を示す概略
図。
FIG. 5 is a schematic view showing an example of a conventional fiber type optical switch.

【符号の説明】 1 光結合部 2 光結合部 3a 第1のコア 3b 第2のコア 4 クラッド 5 光ファイバ 6 位相差制御領域[Description of Reference Signs] 1 optical coupling section 2 optical coupling section 3a first core 3b second core 4 clad 5 optical fiber 6 phase difference control region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1のコア3aと第2のコア3bとが共
通のクラッド4内に互いに光結合しないように設けられ
た光ファイバ5の長手方向二箇所に、適宜間隔離して両
コア3a、3bが互いに光結合可能な光結合部1、2を
設け、両光結合部1、2の間を位相差制御領域6とし、
同位相差制御領域6はそれに機械的外力、或は熱、電
気、磁気等の物理的外力を加えることにより、第1のコ
ア3aと第2のコア3bを伝搬する光波の位相シフト量
の差を制御して、前記両コア3a、3bのうち光が伝搬
するコアを切替え可能としたことを特徴とするファイバ
型光スイッチ。
1. A first core 3a and a second core 3b are provided in a common clad 4 at two positions in a longitudinal direction of an optical fiber 5 provided so as not to be optically coupled to each other, and both cores 3a are appropriately separated from each other. 3b is provided with optical coupling portions 1 and 2 capable of optically coupling with each other, and a phase difference control region 6 is provided between both optical coupling portions 1 and 2.
The phase difference control region 6 applies a mechanical external force or a physical external force such as heat, electricity, and magnetism to the difference between the phase shift amounts of the light waves propagating through the first core 3a and the second core 3b. A fiber type optical switch characterized in that the core through which light propagates among the two cores 3a and 3b can be controlled to be switched.
JP19853191A 1991-07-12 1991-07-12 Fiber type optical switch Pending JPH0695174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19853191A JPH0695174A (en) 1991-07-12 1991-07-12 Fiber type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19853191A JPH0695174A (en) 1991-07-12 1991-07-12 Fiber type optical switch

Publications (1)

Publication Number Publication Date
JPH0695174A true JPH0695174A (en) 1994-04-08

Family

ID=16392699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19853191A Pending JPH0695174A (en) 1991-07-12 1991-07-12 Fiber type optical switch

Country Status (1)

Country Link
JP (1) JPH0695174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140021178A1 (en) * 2011-02-07 2014-01-23 Trumpf Laser- Und Systemtechnik Gmbh Laser machining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140021178A1 (en) * 2011-02-07 2014-01-23 Trumpf Laser- Und Systemtechnik Gmbh Laser machining device
US9492890B2 (en) * 2011-02-07 2016-11-15 Trumpf Laser-Und Systemtechnik Gmbh Laser machining device

Similar Documents

Publication Publication Date Title
US4991926A (en) Integrated optics decorrelator
US5353363A (en) Optical fiber bendable coupler/switch device
JP3538432B2 (en) Optical fiber polarization controller
US4668264A (en) Method for making self-aligning optical fiber with accessible guiding region
US5479546A (en) Optimized non-linear effect tapered optical fiber interferometer/switch device
US11092748B2 (en) Method and apparatus for self-alignment connection of optical fiber to waveguide of photonic integrated circuit
JP3294105B2 (en) Silica optical circuit switch and method
JP6678510B2 (en) Optical waveguide device
US4725141A (en) Interferometers
JPH0695174A (en) Fiber type optical switch
JPH09159865A (en) Connection structure of optical waveguide
GB2163549A (en) Mach Zehnder interferometer
JP3661036B2 (en) Waveguide type optical functional element
Jaccard et al. A new technique for low cost all-fiber device fabrication
JPS59142521A (en) Optical branch element and its manufacture
JP2000137128A (en) Optical branch waveguide and optical modulator
JPS60113214A (en) Fiber type optical switch
JP3803776B2 (en) Waveguide type optical functional device
JPS6341831A (en) Optical fiber type non-linear directional coupler
Kim et al. Lens-free optical fiber connector having a long working distance assisted by matched long-period fiber gratings
JP2001235691A (en) Optical switch
JPS63309906A (en) Optical waveguide coupler
JPH02300726A (en) Light switching parts
WO2020255379A1 (en) Optical connection structure
JPH0519307A (en) Optical fiber switch