JPH0695140B2 - Surface mapping radar device - Google Patents

Surface mapping radar device

Info

Publication number
JPH0695140B2
JPH0695140B2 JP25308488A JP25308488A JPH0695140B2 JP H0695140 B2 JPH0695140 B2 JP H0695140B2 JP 25308488 A JP25308488 A JP 25308488A JP 25308488 A JP25308488 A JP 25308488A JP H0695140 B2 JPH0695140 B2 JP H0695140B2
Authority
JP
Japan
Prior art keywords
signal
phase
frequency
output
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25308488A
Other languages
Japanese (ja)
Other versions
JPH0299881A (en
Inventor
賢一 武知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25308488A priority Critical patent/JPH0695140B2/en
Publication of JPH0299881A publication Critical patent/JPH0299881A/en
Publication of JPH0695140B2 publication Critical patent/JPH0695140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,例えば,レーダプラツトフオームの航空機
搭載用地表マツピングレーダ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to, for example, an airborne surface mapping radar device for mounting an aircraft of a radar platform.

〔従来の技術〕[Conventional technology]

第2図は従来の航空機搭載用地表マツピングレーダ装置
を示す図であり,図において(1)は特定方向の空間に送
信波を放射し,反射波を受信するフエイズドアレイアン
テナ,(2)はアレイアンテナモジユールの位相制御によ
り上記フエイズドアレイアンテナ(1)のビームの指向を
制御するビーム制御器,(4)上記フエイズドアレイアン
テナ(1)へ送信部から信号を供給し,受信信号を受信検
波部へ供給するサーキユレータ,(5)は高周波数(RF)
を発生する安定局部発振器(STALO),(6)は送信パルス
を形成するパルス変調器,(7)は上記安定局部発振器(S
TALO)(5)とパルス変調器(6)から送信波を発生するアツ
プコンバータ,(8)は送信パルス繰り返し周波数などの
レーダ装置の制御タイミングを発生するレーダタイミン
グ発生器,(9)は中間周波数(IF)を発振するコヒーレ
ント発振器(COHO),(10)は上記受信信号を上記安定局
部発振器(STALO)(5)の高周波(RF)信号と混合して中
心周波数に変換する混合器,(11)は中間周波数受信信号
を増幅するIFアンプ,(12)は上記コヒーレント発振器
(COHO)(9)の出力と中間周波数受信信号からビデオ受
信信号を出力する位相検波器,(13)はビデオ受信信号を
アナログからデイジタルに変換するA/D変換器,(14)は
レーダプラツトフオームの動揺を検出する慣性プラツト
フオームセンサ,(15)は上記慣性プラツトフオームセン
サ(14)からの動揺データとビームの指向方向から受信信
号の位相変化を算出する位相補償データ発生器,(16)は
上記位相補償データ発生器(15)からの位相補償データを
用いて受信信号の位相を補正する位相補償器,(17)はビ
ーム内の方位方向に対応したドツプラ周波数を検出する
FFT演算器,(20)はアンテナビームの指向方向の設定及
びレーダタイミングの設定を行うレーダ制御器,(21)は
上記FFT演算器(16)から出力される画像データを表示す
る表示器である。
Fig. 2 is a diagram showing a conventional airborne surface mapping radar device, in which (1) is a phased array antenna that radiates a transmitted wave in a space in a specific direction and receives a reflected wave, (2 ) Is a beam controller that controls the beam direction of the phased array antenna (1) by controlling the phase of the array antenna module, and (4) supplies a signal from the transmitter to the phased array antenna (1). , Circulator that supplies the received signal to the receiving detector, (5) High frequency (RF)
Stable local oscillator (STALO) that generates a pulse, a pulse modulator that forms a transmission pulse, and a stable local oscillator (S
TALO) (5) and an up converter that generates a transmission wave from a pulse modulator (6), (8) a radar timing generator that generates the control timing of the radar device such as the transmission pulse repetition frequency, and (9) an intermediate frequency A coherent oscillator (COHO) that oscillates (IF), (10) is a mixer that mixes the received signal with the high frequency (RF) signal of the stable local oscillator (STALO) (5) and converts it to a center frequency, (11 ) Is an IF amplifier that amplifies the intermediate frequency reception signal, (12) is a phase detector that outputs the video reception signal from the output of the coherent oscillator (COHO) (9) and the intermediate frequency reception signal, and (13) is the video reception signal Is an analog-to-digital A / D converter, (14) is an inertial plate-form sensor that detects the motion of the radar platform, and (15) is the motion data from the inertial plate-form sensor (14). Received from the beam direction A phase compensation data generator for calculating the phase change of the signal, (16) a phase compensator for correcting the phase of the received signal using the phase compensation data from the phase compensation data generator (15), and (17) a beam The Doppler frequency corresponding to the azimuth direction in
FFT calculator, (20) is a radar controller that sets the pointing direction of the antenna beam and radar timing, and (21) is a display that displays the image data output from the FFT calculator (16). .

従来の航空機搭載用地表マツピングレーダは以上のよう
に構成され,第3図においてレーダプラツトフオーム(2
2)からスクイント角A,仰角B方向にある目標(X,Y,Z)
とする地表面に向けてフエイズドアレイアンテナ(1)か
ら送信波を放射し,地表面からの反射波をフエイズドア
レイアンテナ(1)で受信して,サーキユレータ(4)を通
り,混合器(10)で安定局部発振器(STALO)(5)からの信
号で中間周波数に変換され,コヒーレント発振器(COH
O)(9)からの信号により位相検波器(12)でビデオ受信信
号に変換され,A/D変換器(13)でデイジタル化される。慣
性プラツトフオームセンサ(14)からのプラツトフオーム
の動揺データ(Vx,Vy,Vz)とビームの指向方向から,観
測開始時刻(t=0)のときのレーダと目標地点との距
離をRoとし,観測時刻tのときのレーダと目標地点との
距離をR(t)とすると,受信信号の位相変化dθは式
(1)で表わされる。
The conventional airborne surface mapping radar is constructed as described above, and the radar platform (2
Targets (X, Y, Z) in the direction of squint angle A and elevation angle B from 2)
The transmitted wave is radiated from the phased array antenna (1) toward the ground surface, and the reflected wave from the ground surface is received by the phased array antenna (1), passes through the circulator (4), and is mixed. The signal from the stable local oscillator (STALO) (5) is converted to an intermediate frequency by the device (10), and the coherent oscillator (COH
The signal from O) (9) is converted into a video reception signal by the phase detector (12) and digitized by the A / D converter (13). The distance between the radar and the target point at the observation start time (t = 0) is calculated from the motion data (Vx, Vy, Vz) of the platform from the inertial platform sensor (14) and the beam pointing direction. And the distance between the radar and the target point at the observation time t is R (t), the phase change dθ of the received signal is
It is represented by (1).

dθ=2π/λ(R(t)−Ro) ≒−4π/λ(VxtcosAcosB+VytsinAcosB+VztsinB)
……(1) メインビームの中心のドツプラ周波数がゼロとなるよう
に,式(1)で求められる位相変化量を位相補償データ発
生器(15)で発生し,位相補償器(16)で受信信号に位相補
償を行い,ドツプラ・ビーム・シヤープニングの原理か
ら,FFT演算器(17)でビーム内の方位方向に対応したドツ
プラ周波数を検出することにより方位方向の映像化を行
い,表示器(21)に高分解能な地表マツプ画像を表示する
ことができる。
dθ = 2π / λ (R (t) −Ro) ≈−4π / λ (VxtcosAcosB + VytsinAcosB + VztsinB)
...... (1) Generate the phase change amount calculated by equation (1) with the phase compensation data generator (15) and receive it with the phase compensator (16) so that the Doppler frequency at the center of the main beam becomes zero. Phase compensation is applied to the signal, and from the principle of Doppler beam shaping, the FFT calculator (17) detects the Doppler frequency corresponding to the azimuth direction in the beam to visualize the azimuth direction and display it. A high resolution surface map image can be displayed on 21).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のような従来の航空機搭載用地表マツピングレーダ
装置においては次のような問題点があつた。すなわち,
従来の航空機搭載用地表マツピングレーダでは,慣性プ
ラツトフオームセンサの精度があまり良くないため,実
際のプラツトフオームの動揺とセンサで検出されるデー
タにある程度の誤差が生じる。そのため,受信信号の位
相変化に対して,位相補償でメインビームの中心のドツ
プラ周波数をゼロに完全に補償されないため,FFT演算に
よる映像化において画像に焦点ずれを生じるという問題
点があつた。
The following problems have been encountered in the above-described conventional aircraft surface mounting mapping radar device. That is,
In the conventional airborne surface mapping radar, the accuracy of the inertial plate-form sensor is not so good, and there is some error in the actual motion of the plate-form and the data detected by the sensor. For this reason, there is a problem in that the Doppler frequency at the center of the main beam cannot be completely compensated to zero with respect to the phase change of the received signal, which causes the image to be defocused in the imaging by the FFT calculation.

この発明はかかる問題点を解決するためになされたもの
で,高品質の画像が得られる航空機搭載用地表マツピン
グレーダ装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a surface-mounted mapping radar device for an aircraft, which can obtain high-quality images.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係る航空機搭載用地表マツピングレーダ装置
は,モノパルス方式により和パターンとメインビームの
中心がヌル点となる方位方向の差パターンを用いて,和
パターンと差パターンの位相差から差パターンのヌル点
のドツプラ周波数を検出し,このメインビーム中心のド
ツプラ周波数から位相補償誤差を算出し,位相補償の補
正を行う装置を提案するものである。
The surface-mounted mapping radar device for mounting on an aircraft according to the present invention uses a sum pattern and a difference pattern in the azimuth direction in which the center of the main beam is a null point by the monopulse method, and calculates the difference pattern from the phase difference between the sum pattern and the difference pattern. We propose a device that detects the Doppler frequency at the null point, calculates the phase compensation error from the Doppler frequency at the center of the main beam, and corrects the phase compensation.

〔作用〕[Action]

この発明においては,実際のプラツトフオームの動揺と
慣性プラツトフオームセンサで検出されるデータの誤差
を検出し,その誤差成分を補正することにより高品質な
画像を得ることができる。
According to the present invention, a high quality image can be obtained by detecting an actual fluctuation of the plate worm and an error of data detected by the inertia plate ohm sensor and correcting the error component.

〔実施例〕 第1図はこの発明の一実施例を示す図であり,図におい
て,(3)はフエイズドアレイアンテナ(1)で受信された信
号からモノパルスの和パターンと差パターン信号を作る
モノパルスコンパレータ、(10a),(10b)は第1、第
2の混合器、(11a),(11b)は第1、第2のIFアン
プ、(12a),(12b)は第1、第2の位相検波器、(13
a),(13b)は第1、第2のA/D変換器、(16a),(16
b)は第1、第2の位相補償器、(17a),(17b)は第
1、第2のFFT演算器、(18)は第1、第2のFFT演算器
(17a),(17b)の出力信号を入力し、和パターンの共
役複素数と差パターンの位相差を検出するΔ・Σ演算
器,(19)はΔ・Σ演算器,(18)の出力からメインローブ
の中心となる差パターンのヌル点の周波数を検出する中
心周波数検出器である。
[Embodiment] FIG. 1 is a view showing an embodiment of the present invention, in which (3) represents a sum pattern of monopulses and a difference pattern signal from a signal received by a phased array antenna (1). Monopulse comparator to be made, (10a) and (10b) are the first and second mixers, (11a) and (11b) are the first and second IF amplifiers, and (12a) and (12b) are the first and second mixers. 2 phase detector, (13
a) and (13b) are first and second A / D converters, (16a) and (16
b) is the first and second phase compensators, (17a) and (17b) are the first and second FFT calculators, and (18) is the first and second FFT calculators (17a) and (17b). ) Input signal to detect the complex difference of the sum pattern and the phase difference of the difference pattern, (19) is the Δ ・ Σ calculator, and the output of (18) becomes the center of the main lobe. It is a center frequency detector that detects the frequency of the null point of the difference pattern.

第3図において,レーダプラツトフオーム(22)からスク
イント角A,仰角B方向にある目標(X,Y,Z)とする地表
面に向けてフエイズドアレイアンテナ(1)から送信波を
放射し,地表面からの反射波をフエイズドアレイアンテ
ナ(1)で受信して,モノパルスコンパレータ(3)で和パタ
ーンと差パターンの受信信号を作成し,和パターンの受
信信号はサーキユレータ(4)を通り,和パターンと差パ
ターンの受信信号はそれぞれ,第1,第2の混合器(10
a),(10b)で安定局部発振器(STALO)(5)からの信号
で中間周波数に変換され,コヒーレント発振器(COHO)
(9)からの信号により第1,第2の位相検波器(12a),
(12b)でビデオ受信信号に変換され,第1,第2のA/D変
換器(13a),(13b)でデイジタル化される。慣性プラ
ツトフオームセンサ(14)からのプラツトフオームの動揺
データ(Vx,Vy,Vz)とビームの指向方向から受信信号の
位相変化に対する位相補償量は,式(1)で表わされる
が,ここで慣性プラツトフオームセンサの誤差成分を
(Ex,Ey,Ez)とすると,観測時刻tにおける受信信号の
第1,第2の位相補償器(16a),(16b)の出力には式
(2)のように表わされる位相誤差成分が含まれている。
In Fig. 3, the transmitted wave is radiated from the phased array antenna (1) from the radar platform (22) toward the ground surface as the target (X, Y, Z) in the squint angle A and elevation angle B directions. Then, the reflected wave from the ground surface is received by the phased array antenna (1), and the received signals of the sum pattern and the difference pattern are created by the monopulse comparator (3), and the received signal of the sum pattern is the circulator (4). And the received signals of the sum pattern and the difference pattern pass through the first and second mixers (10
In a) and (10b), the signal from the stable local oscillator (STALO) (5) is converted to the intermediate frequency, and the coherent oscillator (COHO)
By the signal from (9), the first and second phase detectors (12a),
It is converted to a video reception signal at (12b) and is digitalized at the first and second A / D converters (13a) and (13b). The amount of phase compensation (Vx, Vy, Vz) of the platform from the inertia platform sensor (14) and the amount of phase compensation for the phase change of the received signal from the beam pointing direction are expressed by equation (1). And the error component of the inertial plate-form sensor is (Ex, Ey, Ez), the output of the first and second phase compensators (16a) and (16b) of the received signal at the observation time t is
The phase error component represented by (2) is included.

Eθ(t)≒−4π/λ(ExtcosAcosB+EytsinAcosB+
EztsinB) ……(2) 和パターンと差パターンの受信信号に対してFFT演算器
(17)でドツプラ周波数を検出し,Δ・Σ演算器(18)で第
1,第2のFFT演算器(17a),(17b)の出力の和パター
ンの共役複素数と差パターンの複素乗算を行い虚数部を
取り出すと第4図のような曲線(23)が得られ,中心周波
数検出器(19)でヌル点(24)の周波数を検出する。このヌ
ル点の周波数がメインローブのビーム中心の周波数であ
り,この周波数は式(2)の位相誤差成分から式(3)で表わ
される。
Eθ (t) ≈−4π / λ (ExtcosAcosB + EytsinAcosB +
EztsinB) …… (2) FFT calculator for received signals of sum pattern and difference pattern
The Doppler frequency is detected by (17) and the Δ ・ Σ calculator (18)
When the complex complex of the sum pattern of the outputs of the first and second FFT calculators (17a) and (17b) and the difference pattern are subjected to complex multiplication and the imaginary part is taken out, a curve (23) as shown in Fig. 4 is obtained, The center frequency detector (19) detects the frequency of the null point (24). The frequency of this null point is the frequency of the beam center of the main lobe, and this frequency is expressed by Eq. (3) from the phase error component of Eq. (2).

Efd=1/(2π)dEθ(t)/dt ≒−2/λ(ExtcosAcosB+EysinAcosB+EzsinB)……(3) この周波数を観測時刻で積分し,円周率2πを乗じるこ
とにより位相補償誤差Eθ(t)を求めることができ
る。この位相補償差を位相補償データ発生器(15)に与え
ることにより位相補償データを補正し,第1,第2の位相
補償器(16a),(16b)で再度位相補償を行うことによ
りメインビームの中心のドツプラ周波数をゼロにするこ
とができ,FFT演算による映像化において画像の焦点ずれ
をなくすことができる。
Efd = 1 / (2π) dEθ (t) / dt ≒ −2 / λ (ExtcosAcosB + EysinAcosB + EzsinB) …… (3) Phase compensation error Eθ (t) by integrating this frequency at the observation time and multiplying by the pi 2π Can be asked. By applying this phase compensation difference to the phase compensation data generator (15), the phase compensation data is corrected, and the phase compensation is performed again by the first and second phase compensators (16a) and (16b). The Doppler frequency at the center of can be made zero, and the defocus of the image can be eliminated in the visualization by FFT calculation.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり,実際のプラツトフオー
ムの動揺と慣性プラツトフオームセンサで検出されるデ
ータに誤差があつても,モノパルス方式による和パター
ンと差パターンの位相差から差パターンのヌル点のドツ
プラ周波数を検出し,このメインビーム中心のドツプラ
周波数から位相補償誤差を算出し,位相補償の補正を行
う手段を設けたことにより,焦点ずれのない高品質な画
像を得ることができるという効果がある。
As described above, the present invention, as described above, can detect the null point of the difference pattern from the phase difference between the sum pattern and the difference pattern by the monopulse method even if there is an error in the actual fluctuation of the plate ohm and the data detected by the inertia plate ohm sensor. By detecting the Doppler frequency of the main beam, calculating the phase compensation error from the Doppler frequency at the center of the main beam, and providing the means for correcting the phase compensation, it is possible to obtain a high-quality image without defocus. There is.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す航空機搭載用地表マ
ツピングレーダ装置の図,第2図は従来の航空機搭載用
地表マツピングレーダ装置を示す図,第3図はレーダプ
ラツトフオームとマツピングされる目標とする地表との
幾何学的関係を示す図,第4図はこの発明におけるΔ・
Σ演算器の出力信号を示す図である。 図において,(1)はフエイズドアレイアンテナ,(2)はビ
ーム制御器,(3)はモノパルスコンパレータ,(4)はサー
キユレータ,(5)は安定局部発振器(STALO),(6)はパ
ルス変調器,(7)はアツプコンバータ,(8)はレーダタイ
ミング発生器,(9)は中間周波数(IF)を発振するコヒ
ーレント発振器(COHO),(10)は混合器,(11)はIFアン
プ,(12)は位相検波器,(13)はA/D変換器,(14)は慣性
プラツトフオームセンサ,(15)は位相補償データ発生
器,(16)は位相補償器,(17)はFFT演算器,(18)はΔ・
Σ演算器,(19)は中心周波数検出器,(20)はレーダ制御
器,(21)は表示器,(22)はレーダプラツトフオームであ
る。 なお,図中,同一符号は同一または相当部分を示す。
FIG. 1 is a diagram of an aircraft-mounting surface mapping radar device showing an embodiment of the present invention, FIG. 2 is a diagram showing a conventional aircraft-mounting surface mapping radar device, and FIG. 3 is a radar platform. FIG. 4 is a diagram showing a geometrical relationship with a target ground surface to be mapped, and FIG.
It is a figure which shows the output signal of a (sigma) calculator. In the figure, (1) is a phased array antenna, (2) is a beam controller, (3) is a monopulse comparator, (4) is a circulator, (5) is a stable local oscillator (STALO), and (6) is a pulse. Modulator, (7) Upconverter, (8) Radar timing generator, (9) Coherent oscillator (COHO) that oscillates intermediate frequency (IF), (10) Mixer, (11) IF amplifier , (12) is a phase detector, (13) is an A / D converter, (14) is an inertial plate-form sensor, (15) is a phase compensation data generator, (16) is a phase compensator, (17). Is FFT calculator, (18) is Δ
Σ arithmetic unit, (19) is a center frequency detector, (20) is a radar controller, (21) is a display, and (22) is a radar platform. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】送信波を上空から地上方向へ所定の角度を
もって送信し、地上からの反射波を受信するアンテナ
と、上記アンテナのビームの指向を制御するビーム制御
器と、上記アンテナで受信された信号からモノパルスの
和パターン信号と差パターン信号を作るモノパルスコン
パレータと、高周波数信号を発生する局部発振器と、中
間周波数(IF)信号を発振するコヒーレント発振器と、
上記和パターン信号と上記差パターン信号をそれぞれ上
記局部発振器の高調波数信号と混合して中間周波数(I
F)に変換する第1、第2の混合器と、上記第1、第2
の混合記の出力信号をそれぞれ増幅する第1、第2のIF
アンプと、上記コヒーレント発振器の出力信号と上記第
1、第2のIFアンプの出力信号それぞれとからビデオ受
信信号を出力する第1、第2の位相検波器と、上記第
1、第2の位相検波器の出力信号をそれぞれディジタル
信号に変換する第1、第2のA/D変換器と、レーデプラ
ットフォームの動揺を検出する慣性プラットフォームセ
ンサと、上記慣性プラットフォームセンサからの動揺デ
ータとビームの指向方向から受信信号の位相変化を算出
する位相補償データ発生器と、上記第1、第2のA/D変
換器の出力信号の位相をそれぞれ上記位相補償データ発
生器の出力信号を用いて補償する第1、第2の位相補償
器と、上記第1、第2の位相補償器で位相補償された和
パターン信号と差パターン信号をそれぞれフーリエ変換
処理して方位方向に対応したドップラ周波数を検出する
第1、第2のFFT演算器と、上記第1、第2のFFT演算器
の出力信号を入力し、和パターンの共役複素数と差パタ
ーンの位相差を検出するΔ・Σ演算器と、上記Δ・Σ演
算器の出力からメインローブの中心となる差パターンの
ヌル点の周波数を検出する中心周波数検出器と、上記中
心周波数検出器で検出されたメインローブのビーム中心
の周波数を位相補償誤差成分として上記位相補償データ
発生器の位相補償データを補正するための制御、アンテ
ナビームの指向方向の設定及びレーダタイミングの設定
を行うレーダ制御部と上記第1のFFT演算から出力され
る画像データを表示する表示器とを備えたことを特徴と
する地表マッピングレーダ装置。
1. An antenna for transmitting a transmitted wave from the sky at a predetermined angle to the ground and receiving a reflected wave from the ground, a beam controller for controlling the direction of the beam of the antenna, and the antenna received by the antenna. A monopulse comparator that generates a sum pattern signal and a difference pattern signal of monopulses from the generated signal, a local oscillator that generates a high frequency signal, and a coherent oscillator that oscillates an intermediate frequency (IF) signal,
The sum pattern signal and the difference pattern signal are mixed with the harmonic frequency signal of the local oscillator, respectively, and the intermediate frequency (I
F), the first and second mixers, and the first and second mixers
1st and 2nd IF which respectively amplify the output signal of the mixed note of
An amplifier, first and second phase detectors for outputting a video reception signal from the output signal of the coherent oscillator and the output signals of the first and second IF amplifiers, respectively, and the first and second phases First and second A / D converters for converting the output signals of the detectors into digital signals, an inertial platform sensor for detecting fluctuations of the Rede platform, and fluctuation data and beam pointing from the inertial platform sensor The phase of the output signal of the phase compensation data generator that calculates the phase change of the received signal from the direction and the output signals of the first and second A / D converters are respectively compensated using the output signal of the phase compensation data generator. The first and second phase compensators and the sum pattern signal and the difference pattern signal phase-compensated by the first and second phase compensators are respectively Fourier-transformed to correspond to the azimuth direction. Inputting the output signals of the first and second FFT calculators for detecting the Doppler frequency and the first and second FFT calculators, and detecting the phase difference between the conjugate complex number of the sum pattern and the difference pattern Σ calculator, a center frequency detector that detects the frequency of the null point of the difference pattern that is the center of the main lobe from the output of the Δ / Σ calculator, and the beam center of the main lobe detected by the center frequency detector From the first FFT operation and the radar control section that performs control for correcting the phase compensation data of the phase compensation data generator, the antenna beam pointing direction and the radar timing using the frequency of A surface mapping radar device, comprising: a display for displaying output image data.
JP25308488A 1988-10-07 1988-10-07 Surface mapping radar device Expired - Lifetime JPH0695140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25308488A JPH0695140B2 (en) 1988-10-07 1988-10-07 Surface mapping radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25308488A JPH0695140B2 (en) 1988-10-07 1988-10-07 Surface mapping radar device

Publications (2)

Publication Number Publication Date
JPH0299881A JPH0299881A (en) 1990-04-11
JPH0695140B2 true JPH0695140B2 (en) 1994-11-24

Family

ID=17246267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25308488A Expired - Lifetime JPH0695140B2 (en) 1988-10-07 1988-10-07 Surface mapping radar device

Country Status (1)

Country Link
JP (1) JPH0695140B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821400B2 (en) * 1995-10-09 1998-11-05 防衛庁技術研究本部長 Navigation support equipment
JP4976968B2 (en) * 2007-09-20 2012-07-18 株式会社東芝 Radar equipment
JP5674698B2 (en) * 2012-03-19 2015-02-25 株式会社東芝 Target angle detection device, target angle detection method, and guidance device

Also Published As

Publication number Publication date
JPH0299881A (en) 1990-04-11

Similar Documents

Publication Publication Date Title
US4084158A (en) Method of operating synthetic aperture radar
EP1904870B1 (en) A method of generating accurate estimates of azimuth and elevation angles of a target for a phased-phased array rotating radar
US4134113A (en) Monopulse motion compensation for a synthetic aperture radar
US8207887B2 (en) Computationally efficent radar processing method and sytem for SAR and GMTI on a slow moving platform
US7978124B2 (en) Method and system for motion compensation for hand held MTI radar sensor
JP3121544B2 (en) Radar motion error compensator with synthetic aperture based on rotating antenna for helicopter
US20050179579A1 (en) Radar receiver motion compensation system and method
US4912474A (en) Radar apparatus for realizing a radio map of a site
US7167126B2 (en) Radar system and method for determining the height of an object
JPH045157B2 (en)
EP0614534B1 (en) Azimuth correction for radar antenna roll and pitch
JPH0130114B2 (en)
JPH1078481A (en) Aircraft loaded radar
JP2910464B2 (en) Radar equipment
JP2957090B2 (en) Radar equipment
JPH0695140B2 (en) Surface mapping radar device
JP2730296B2 (en) Ground mapping radar signal processing method and apparatus
US20220099794A1 (en) Method and apparatus for a chirp generator in a radar system
JP3041253B2 (en) Radar equipment
GB1568291A (en) Sidelooking radar systems
JP2569778B2 (en) Terrain avoidance radar method and device for aircraft
JP6989663B1 (en) Radar device
US12025693B2 (en) Method for correcting a synthetic aperture radar antenna beam image
JPH07134173A (en) Range finding device
JP3252514B2 (en) Airborne radar equipment