JPH0694980A - Camera provided with device for detecting line of sight - Google Patents

Camera provided with device for detecting line of sight

Info

Publication number
JPH0694980A
JPH0694980A JP4245196A JP24519692A JPH0694980A JP H0694980 A JPH0694980 A JP H0694980A JP 4245196 A JP4245196 A JP 4245196A JP 24519692 A JP24519692 A JP 24519692A JP H0694980 A JPH0694980 A JP H0694980A
Authority
JP
Japan
Prior art keywords
light source
line
eye
sight
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4245196A
Other languages
Japanese (ja)
Inventor
Shigemasa Sato
重正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4245196A priority Critical patent/JPH0694980A/en
Publication of JPH0694980A publication Critical patent/JPH0694980A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2213/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B2213/02Viewfinders
    • G03B2213/025Sightline detection

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Eye Examination Apparatus (AREA)
  • Focusing (AREA)
  • Viewfinders (AREA)

Abstract

PURPOSE:To easily and surely calculate the direction of a line of sight by constituting plural light sources of a 1st light source arranged on an optical axis equivalent to the optical axis of a finder for a camera and a 2nd light source arranged on the axis having a prescribed inclination with reference to the optical axis of the finder. CONSTITUTION:A light source switching part 2 functions as a light switching part for switching the light sources which are installed for detecting the line of sight in order to detect the line of sight by use of at least either of two light sources for illuminating photographer's eye, and the switching control is performed by a control part 1 based on the output of a photometry part 6. And the ambient brightness of the eye is measured by the photometry part 6, and when the brightness is equal to or exceeding a prescribed value, a light source for detecting the line of sight which is arranged on the axis having the prescribed inclination with reference to an observation optical axis (optical axis of finder for camera) is used. Meanwhile, when the ambient brightness of the eye is equal to or below the prescribed value, the light source for detecting the line of sight which is arranged on the axis equivalent to the observation optical axis is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮影者の視線を検知し
て撮影対象となる被写体を検出する機能を備えた視線検
出装置付きカメラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera with a line-of-sight detecting device having a function of detecting the line of sight of a photographer and detecting a subject to be photographed.

【0002】[0002]

【従来の技術】従来、撮影者の視線を検出する方法とし
て特開平2−5等で述べられているように、撮影者の目
をファインダー光軸上と等価な軸上に配置された照明手
段で照明し、その照明光による角膜での反射像(以後プ
ルキンエ1像と称する)位置と瞳孔の中心位置との相対
位置から撮影者の視線位置を検出するもの等が知られて
いる。また、ファインダー光軸に対して所定の傾きを有
する光軸上に配置された照明手段で照明し、その照明光
によるプルキンエ1像位置と瞳孔の中心位置との相対位
置から撮影者の視線位置を検出するものとして特開昭6
3−194237等が知られている。
2. Description of the Related Art Conventionally, as described in Japanese Patent Laid-Open No. 2-5, etc., as a method for detecting the line of sight of a photographer, the illumination means is arranged with the photographer's eyes on an axis equivalent to the optical axis of the finder. It is known that the photographer's line-of-sight position is detected from the relative position between the position of the reflected image (hereinafter referred to as Purkinje 1 image) on the cornea and the center position of the pupil due to the illumination light. Further, the illuminating means arranged on the optical axis having a predetermined inclination with respect to the optical axis of the viewfinder illuminates, and the line-of-sight position of the photographer is determined from the relative position between the Purkinje 1 image position and the center position of the pupil by the illuminating light. Japanese Patent Application Laid-Open No. Sho 6
3-194237 etc. are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ファイ
ンダー光軸上から照明してプルキンエ1像と瞳孔の像を
得る場合、眼の周囲が暗いときは網膜の反射により瞳孔
部と虹彩および白目の部分を弁別できるが、眼の周囲が
明るいときは瞳孔が縮んでしまい、網膜からの反射光を
ほとんど検出できず瞳孔部と虹彩および白目部分とが弁
別できなくなる。また、ファインダー光軸に対して所定
の傾きを有する光軸上から照明してプルキンエ1像と瞳
孔の像を得る場合、照明手段がファインダー光軸からず
れているため、網膜からの反射がほとんど無く瞳孔部が
黒く見える。そのため、眼の周囲の明るさが明るい場合
は、瞳孔部と虹彩および白目の部分を弁別できるが、眼
の周囲が暗いときは眼全体が暗くなるため、瞳孔部と虹
彩および白目部分とが弁別しにくくなるといった問題点
があった。
However, when the Purkinje 1 image and the image of the pupil are obtained by illuminating from the optical axis of the finder, the pupil part, the iris and the white part of the eye are reflected by the retina when the surroundings of the eye are dark. Although it is possible to discriminate, when the surroundings of the eye are bright, the pupil shrinks, and the reflected light from the retina cannot be detected so that the pupil part cannot be discriminated from the iris and the white eye part. Further, when the Purkinje 1 image and the pupil image are obtained by illuminating from the optical axis having a predetermined inclination with respect to the finder optical axis, there is almost no reflection from the retina because the illuminating means is displaced from the finder optical axis. The pupil part looks black. Therefore, when the brightness around the eyes is bright, the pupil part can be discriminated from the iris and the white part of the eye, but when the surroundings of the eye are dark, the entire eye becomes dark, so the pupil part can be distinguished from the iris and the white part of the eye. There was a problem that it became difficult to do.

【0004】[0004]

【課題を解決するための手段】そこで請求項1の発明の
視線検出装置付きカメラは、撮影者の眼を照明する複数
の光源からなる照明手段3と、前記照明手段3により照
明される前記眼からの反射光を受光する受光手段5と、
撮影者の眼の周囲の明るさを測定するための測光手段6
と、前記複数の光源を切り換えるための光源切り換え手
段2と、前記照明手段3と前記受光手段5と前記測光手
段6と前記光源切り換え手段2の動作を制御するととも
に前記受光手段5からの出力に基づき視線方向を算出す
る制御手段1とを備えたものである。
Therefore, a camera with a line-of-sight detecting device according to a first aspect of the present invention includes an illuminating means 3 composed of a plurality of light sources for illuminating an eye of a photographer, and the eye illuminated by the illuminating means 3. A light receiving means 5 for receiving the reflected light from
Photometric means 6 for measuring the brightness around the eyes of the photographer
A light source switching means 2 for switching the plurality of light sources, an operation of the illuminating means 3, the light receiving means 5, the photometric means 6, and the light source switching means 2 and an output from the light receiving means 5. The control means 1 for calculating the line-of-sight direction based on the above.

【0005】請求項2の発明は、請求項1の視線検出装
置付きカメラにおいて、前記複数の光源がカメラのファ
インダー光軸と等価な光軸上に配置された第1光源30
3と、前記ファインダー光軸に対して所定の傾きを有す
る軸上に配置された第2光源304とから成るものであ
る。請求項3の発明は、請求項1の視線検出装置付きカ
メラにおいて、前記眼の周囲の明るさを測定するための
測光手段6はカメラの測光手段を兼用したものである。
According to a second aspect of the present invention, in the camera with the line-of-sight detection device according to the first aspect, the plurality of light sources are arranged on an optical axis equivalent to a finder optical axis of the camera.
3 and a second light source 304 arranged on an axis having a predetermined inclination with respect to the finder optical axis. According to a third aspect of the present invention, in the camera with a line-of-sight detection device according to the first aspect, the photometric means 6 for measuring the brightness around the eye also serves as the photometric means of the camera.

【0006】[0006]

【作用】本発明では、眼の周囲の明るさを測定し、その
明るさが所定値以上の時は観察光軸(カメラのファイン
ダー光軸)に対して、所定の傾きを有する軸上に配置さ
れた視線検出用光源を用いているので、網膜からの反射
がほとんど無く、瞳孔部が黒く見え、瞳孔部からの反射
光による光電変換素子の出力が虹彩部および白目部分か
らの反射光による光電変換素子の出力より低くなり、瞳
孔部と虹彩部および白目部分とが明確に弁別され、視線
方向の算出が容易にしかも確実に行えるようになる。ま
た、眼の周囲の明るさが所定値以下の時は、観察光軸
(カメラのファインダー光軸)と等価な軸上に配置され
た視線検出用光源を用いているので、網膜からの反射に
より瞳孔部が赤目状態となり、明るく見え、瞳孔部から
の反射光による光電変換素子の出力が虹彩部および白目
部分からの反射光による光電変換素子の出力より高くな
り、瞳孔部と虹彩部および白目部分とが明確に弁別され
視線方向の算出が容易にしかも確実に行えるようにな
る。
In the present invention, the brightness around the eye is measured, and when the brightness is above a predetermined value, it is placed on an axis having a predetermined inclination with respect to the observation optical axis (camera finder optical axis). Since the light source for line-of-sight detection is used, there is almost no reflection from the retina, the pupil part appears black, and the output of the photoelectric conversion element due to the reflected light from the pupil part is reflected by the reflected light from the iris part and the white eye part. The output is lower than the output of the conversion element, the pupil part is clearly discriminated from the iris part, and the white part of the eye, and the line-of-sight direction can be calculated easily and surely. Also, when the brightness around the eyes is less than a predetermined value, the line-of-sight detection light source placed on the axis equivalent to the observation optical axis (camera finder optical axis) is used, The pupil part becomes red-eyed and looks bright, and the output of the photoelectric conversion element due to the reflected light from the pupil part becomes higher than the output of the photoelectric conversion element due to the reflected light from the iris part and the white eye part, and the pupil part, the iris part and the white eye part Can be clearly discriminated from each other, and the line-of-sight direction can be calculated easily and surely.

【0007】[0007]

【実施例】以下、本発明の実施例を説明する。図1は、
本発明の第1実施例による視線検出装置の構成を示すブ
ロック図である。図2は、本発明の第1実施例による視
線検出装置付きカメラの光学系を含めた構成図である。
EXAMPLES Examples of the present invention will be described below. Figure 1
1 is a block diagram showing a configuration of a visual line detection device according to a first exemplary embodiment of the present invention. FIG. 2 is a configuration diagram including an optical system of a camera with a visual axis detection device according to the first embodiment of the present invention.

【0008】図1、図2において、制御部1は、本実施
例の視線位置検出装置全体的な制御を行う制御部(CP
U)である。光源切換部2は、視線検出用に設けられた
撮影者の眼を照明するための2つの光源のうち少なくと
もどちらか一方を用いて視線検出を行うために光源を切
り換える光源切り換え部であり、測光部6の出力に基づ
いて制御部1によって切り換え制御が行われる。詳細は
後述する。
In FIG. 1 and FIG. 2, a control unit 1 is a control unit (CP) which controls the entire line-of-sight position detecting apparatus of this embodiment.
U). The light source switching unit 2 is a light source switching unit that switches the light source for detecting the line of sight using at least one of the two light sources for illuminating the eye of the photographer, which is provided for detecting the line of sight. Switching control is performed by the control unit 1 based on the output of the unit 6. Details will be described later.

【0009】照明部3は、視線検出用の照明部であり、
図2で示すように、光源212と光学系210とから構
成されており、光源212からの光は、光学系210を
通り接眼レンズ207内の光路分割部209で反射され
て、撮影者の眼に略平行光として照射される。光源21
2は、視線検出用の光源であり、図3に示すように、第
1光源303と第2光源304の2つの光源を有する。
この光源は光源切り換え部2に接続されており、測光部
214の出力に基づいて制御部1によって第1光源30
3と第2光源304の切り換え制御が行われるととも
に、制御部1によって点灯制御される。ここで光源21
2は赤外発光LEDであり、光学系210を通り、接眼
レンズ207の中のハーフミラー209で撮影者の眼2
08に向けて曲げられ、略平行光として眼208に照射
される。なお、ハーフミラー209には赤外光を反射す
るダイクロイックミラーが用いられている。光源212
の眼208での反射光は接眼レンズ207内のハーフミ
ラー209で光源212側へ曲げられ、光学系210を
通過し、更に光源212からの光と眼からの反射光とを
分離するハーフミラー211で曲げられ、光電変換素子
213に到達する。ここで光電変換素子213上には撮
影者の眼208の像が結像されている。光電変換素子2
13は制御部1に接続されており、光電変換素子213
の出力信号が制御部1に送られる。
The illumination unit 3 is an illumination unit for detecting the line of sight,
As shown in FIG. 2, it is composed of a light source 212 and an optical system 210. Light from the light source 212 passes through the optical system 210 and is reflected by the optical path splitting unit 209 in the eyepiece 207, and the eyes of the photographer. Is emitted as substantially parallel light. Light source 21
Reference numeral 2 is a light source for detecting the line of sight, and as shown in FIG. 3, has two light sources, a first light source 303 and a second light source 304.
This light source is connected to the light source switching unit 2, and the control unit 1 controls the first light source 30 based on the output of the photometric unit 214.
The switching of the light source 3 and the second light source 304 is controlled, and the control unit 1 controls the lighting. Here the light source 21
Reference numeral 2 denotes an infrared light emitting LED, which passes through the optical system 210 and is reflected by the half mirror 209 in the eyepiece 207 to the eye 2 of the photographer.
It is bent toward 08 and is irradiated on the eye 208 as substantially parallel light. A dichroic mirror that reflects infrared light is used as the half mirror 209. Light source 212
The light reflected by the eye 208 is bent by the half mirror 209 in the eyepiece 207 toward the light source 212 side, passes through the optical system 210, and further separates the light from the light source 212 and the reflected light from the eye 211. It is bent at and reaches the photoelectric conversion element 213. Here, an image of the photographer's eye 208 is formed on the photoelectric conversion element 213. Photoelectric conversion element 2
The photoelectric conversion element 213 is connected to the control unit 1.
Is sent to the control unit 1.

【0010】測距部4は、図8に示すようにファインダ
ー801内の複数の測距エリアA1,A2,A3にて、
それぞれの測距エリアに対して測距が行なわれる。な
お、この実施例では離散的な測距エリアであるが、連続
的な測距エリアであっても良い。受光部5は、視線検出
用の受光部であり、図2における光学系210と光電変
換素子213から構成され(光学系210は照明部3の
構成に共用される)、光電変換素子213には一次元ま
たは二次元のCCDの様な光電変換素子が用いられてい
る。受光部5から出力された信号は制御部1に送られ、
プルキンエ1像位置と瞳孔中心位置とが検出され、この
プルキンエ1像位置と瞳孔中心位置とに基づいて制御部
1で視線方向が演算される。
The distance measuring unit 4 has a plurality of distance measuring areas A1, A2, A3 in the finder 801 as shown in FIG.
Distance measurement is performed for each distance measurement area. Although the distance measuring area is discrete in this embodiment, it may be a continuous distance measuring area. The light receiving unit 5 is a light receiving unit for detecting the line of sight, and includes the optical system 210 and the photoelectric conversion element 213 in FIG. 2 (the optical system 210 is shared by the configuration of the illumination unit 3), and the photoelectric conversion element 213 includes A photoelectric conversion element such as a one-dimensional or two-dimensional CCD is used. The signal output from the light receiving unit 5 is sent to the control unit 1,
The Purkinje 1 image position and the pupil center position are detected, and the control unit 1 calculates the line-of-sight direction based on the Purkinje 1 image position and the pupil center position.

【0011】測光部6は、撮影者の眼に照射してくる外
光の明るさを測定する。なお、本発明の実施例において
測光部6は、図2で示す視線検出装置付きカメラにおけ
る、カメラの測光部と兼用される。カメラの測光部は、
ファインダー206の接眼レンズ207側の面の上方に
配置され、撮影画面の測光を行う。この測光部は撮影画
面を複数に分割した測光領域を有し、ここで検出された
複数の測光信号と後述する視線信号とに基づいて制御部
1で露出信号が生成され、露光部8の駆動が制御され
る。そして、前述したように眼の周囲の明るさの測光に
も兼用され、その測光値は視線検出用光源の選択制御の
情報としても用いられる。
The photometric section 6 measures the brightness of external light applied to the photographer's eyes. In the embodiment of the present invention, the photometric unit 6 also serves as the photometric unit of the camera in the camera with the visual axis detection device shown in FIG. The metering section of the camera
It is arranged above the surface of the finder 206 on the side of the eyepiece 207, and performs photometry of the photographing screen. This photometric unit has a photometric area obtained by dividing the photographic screen into a plurality of areas, and an exposure signal is generated by the control unit 1 based on a plurality of photometric signals detected here and a line-of-sight signal, which will be described later, and the exposure unit 8 is driven. Is controlled. Then, as described above, it is also used for photometry of the brightness around the eye, and the photometric value is also used as information for the selection control of the light source for sight line detection.

【0012】レンズ駆動部7は、制御部1によって演算
された焦点整合用レンズの移動量に応じて撮影レンズ2
01を駆動制御する。露光部8は、制御部1によって演
算された露出値に基づいて、シャッタースピードや絞り
値を制御する。半押しスイッチSW1は、制御部1に接
続され、レリーズ釦の半押しでONする。
The lens driving section 7 is provided with a photographing lens 2 according to the amount of movement of the focus matching lens calculated by the control section 1.
01 is drive-controlled. The exposure unit 8 controls the shutter speed and the aperture value based on the exposure value calculated by the control unit 1. The half-push switch SW1 is connected to the control unit 1 and is turned on by half-pushing the release button.

【0013】全押しスイッチSW2は、制御部1に接続
され、レリーズ釦の全押しでONする。表示部217
は、求められた視線位置に最も近い測距領域を選択表示
したり、測距,測光等の制御モードの表示を行う。図2
において、撮影レンズ201を通った被写体光は、メイ
ンミラー202でファインダースクリーン205側と測
距部4側に分割され、測距部4への光はサブミラー20
3で更に光路を曲げられ、測距部4へ導かれる。
The full-press switch SW2 is connected to the controller 1 and is turned on by full-pressing the release button. Display unit 217
Selects and displays the range-finding area closest to the obtained line-of-sight position, and displays the control modes such as range-finding and photometry. Figure 2
In, the subject light that has passed through the taking lens 201 is split by the main mirror 202 into the finder screen 205 side and the distance measuring unit 4 side, and the light to the distance measuring unit 4 is sub mirror 20.
The optical path is further bent at 3 and is guided to the distance measuring unit 4.

【0014】一方、メインミラー202でファインダー
スクリーン205側に導かれた光はファインダースクリ
ーン205上で被写体像を結像する。この被写体像はフ
ァインダー206を通過して撮影者の眼208に導かれ
る。図3は、視線検出装置部分を詳細に説明するための
図である。図3において、第1光源303は、図2で示
した光源212を構成する光源の1つであり、撮影者の
観察光軸218(カメラのファインダー光軸と一致)と
等価な軸219上に配置されている。
On the other hand, the light guided to the finder screen 205 side by the main mirror 202 forms a subject image on the finder screen 205. The subject image passes through the viewfinder 206 and is guided to the photographer's eye 208. FIG. 3 is a diagram for explaining the line-of-sight detection device portion in detail. In FIG. 3, the first light source 303 is one of the light sources constituting the light source 212 shown in FIG. 2, and is placed on an axis 219 equivalent to the observation optical axis 218 of the photographer (coincident with the finder optical axis of the camera). It is arranged.

【0015】第2光源304は、図2で示した光源21
2を構成する光源の1つであり、撮影者の観察光軸21
8(カメラのファインダー光軸と一致)に対して所定の
傾きを有する軸301上に配置されている。光源切換部
2は、撮影者の眼を照明するための2つの光源303と
304のうち少なくともどちらか一方を用いて視線検出
を行うために光源を切り換えるものであり、図1に示し
た測光部6の出力に基づいて制御部1の制御信号によっ
て切り換え制御が行われる。
The second light source 304 is the light source 21 shown in FIG.
2, which is one of the light sources constituting the observation light source 21 and is the observation optical axis 21 of the photographer.
8 (corresponding to the finder optical axis of the camera) is arranged on an axis 301 having a predetermined inclination. The light source switching unit 2 switches the light source to detect the line of sight by using at least one of the two light sources 303 and 304 for illuminating the eyes of the photographer, and the photometric unit shown in FIG. Switching control is performed by the control signal of the control unit 1 based on the output of 6.

【0016】制御部1によって点灯制御された第1光源
303あるいは第2光源304は赤外発光LEDであ
り、光学系210を通り、接眼レンズ207の中のハー
フミラー209で撮影者の眼208に向けて曲げられ、
略平行光として眼208に照射される。なお、ハーフミ
ラー209には赤外光を反射するダイクロイックミラー
が用いられている。
The first light source 303 or the second light source 304 whose lighting is controlled by the control unit 1 is an infrared light emitting LED, passes through the optical system 210, and reaches the photographer's eye 208 by the half mirror 209 in the eyepiece 207. Bent towards
The eye 208 is irradiated with substantially parallel light. A dichroic mirror that reflects infrared light is used as the half mirror 209.

【0017】第1光源303あるいは第2光源304の
眼208での反射光は接眼レンズ207内のハーフミラ
ー209で光源側へ曲げられ、光学系210を通過し、
更に光源からの光と眼からの反射光とを分離するハーフ
ミラー211で曲げられ、光電変換素子213に到達す
る。ここで光電変換素子213上には撮影者の眼208
の像が結像されている。光電変換素子213は制御部1
に接続されており、光電変換素子213の出力信号が図
示しないA/D変換器によりA/D変換され、制御部1
に光電変換素子213上に結像した眼の像の強度分布が
入力される。そして制御部1で光電変換素子213から
の信号を演算処理して視線方向が算出される。なお、本
実施例における接眼レンズ207では、その底面302
が光軸219に対して所定角度の傾きを有している。こ
れは第1光源303あるいは第2光源304の光が接眼
レンズ内に入りハーフミラー209で反射されるが、こ
こで反射せずに透過してしまった光が底面302で反射
し光電変換素子213へゴースト光として入射するのを
防止している。
The reflected light from the eye 208 of the first light source 303 or the second light source 304 is bent toward the light source side by the half mirror 209 in the eyepiece lens 207 and passes through the optical system 210.
Further, it is bent by the half mirror 211 that separates the light from the light source and the reflected light from the eye, and reaches the photoelectric conversion element 213. The photoelectric conversion element 213 has an eye 208 of the photographer.
Image is formed. The photoelectric conversion element 213 is the control unit 1
The output signal of the photoelectric conversion element 213 is A / D converted by an A / D converter (not shown).
The intensity distribution of the eye image formed on the photoelectric conversion element 213 is input to. Then, the control unit 1 calculates the signal from the photoelectric conversion element 213 to calculate the line-of-sight direction. In the eyepiece 207 of this embodiment, the bottom surface 302
Has an inclination of a predetermined angle with respect to the optical axis 219. This is because the light from the first light source 303 or the second light source 304 enters the eyepiece lens and is reflected by the half mirror 209, but the light that passes through without being reflected here is reflected by the bottom surface 302 and is reflected by the photoelectric conversion element 213. It prevents the light from entering as a ghost light.

【0018】図4から図6は、眼208の像の光電変換
素子213による出力信号例を示しており、縦軸は光電
変換素子213の出力を、横軸は光電変換素子213上
の位置を示している。それぞれの図においてP1像と示
されているピーク出力は、公知技術に述べられているよ
うに眼208の角膜で反射された光で、プルキンエ1像
と呼ばれ(以後、P1像と称す)、光電変換素子213
上に輝点を結像する。P1像の両側は瞳孔部41の反射
光による出力が得られ、瞳孔部41の両側には虹彩部4
2および白目部分43の反射光による出力が得られる。
FIGS. 4 to 6 show examples of output signals of the image of the eye 208 by the photoelectric conversion element 213. The vertical axis represents the output of the photoelectric conversion element 213 and the horizontal axis represents the position on the photoelectric conversion element 213. Shows. The peak output shown as P1 image in each figure is the light reflected by the cornea of the eye 208 as described in the prior art, and is called Purkinje 1 image (hereinafter referred to as P1 image). Photoelectric conversion element 213
Image a bright spot on top. On both sides of the P1 image, an output by the reflected light of the pupil part 41 is obtained, and on both sides of the pupil part 41, the iris part 4 is formed.
The output by the reflected light of 2 and the white part 43 is obtained.

【0019】図4において、図4(a)および図4
(b)は光軸301上に配置された第2光源304によ
るもので、図4(c)は光軸218と等価な軸219上
に配置された第1光源303によるものである。ここ
で、第1光源303による光電変換素子213の出力信
号は、瞳孔部41が網膜からの反射により赤目状態とな
り明るく反射して凸状に示されており、第2光源304
による光電変換素子213の出力信号は、網膜からの反
射がほとんど無く、瞳孔部41が黒く見えるため虹彩部
42および白目部分43よりも出力が低く、凹状に示さ
れる。図5は、図4(c)で示した、光軸218と等価
な軸上に配置された第1光源303による出力例であ
る。
In FIG. 4, FIG. 4 (a) and FIG.
FIG. 4 (b) is based on the second light source 304 arranged on the optical axis 301, and FIG. 4 (c) is based on the first light source 303 arranged on the axis 219 equivalent to the optical axis 218. Here, the output signal of the photoelectric conversion element 213 from the first light source 303 is shown in a convex shape in which the pupil part 41 is in a red-eye state due to reflection from the retina and is brightly reflected, and the second light source 304
The output signal of the photoelectric conversion element 213 by is almost concave from the iris portion 42 and the white eye portion 43 because the pupil portion 41 looks black because there is almost no reflection from the retina. FIG. 5 shows an output example by the first light source 303 arranged on the axis equivalent to the optical axis 218 shown in FIG. 4C.

【0020】図5(a)は、眼の周囲の明るさが暗い場
合で、瞳孔部41の赤目状態の反射光が比較的強く検出
されているときの光電変換素子213の出力例である。
この場合、P1像の出力と瞳孔部41の出力と虹彩部4
2および白目部分43の出力が明確に弁別でき、P1像
位置と瞳孔中心位置とから従来技術で述べられているよ
うに視線を検出し視線方向が求められる。なお、これら
の出力の弁別方法については従来行われている方法が適
用できるのでここではその説明を省略する。また、図中
Dで示したのは信号から得られる瞳孔部41の大きさで
ある。眼の周囲の明るさが暗い場合は瞳孔径Dが大きい
ので網膜での反射による赤目状態が生じ易く瞳孔部41
の出力が得易い。
FIG. 5A shows an output example of the photoelectric conversion element 213 when the brightness around the eyes is dark and the reflected light in the red-eye state of the pupil portion 41 is detected relatively strongly.
In this case, the output of the P1 image, the output of the pupil portion 41, and the iris portion 4
The outputs of 2 and the white-eye portion 43 can be clearly discriminated, and the line-of-sight direction is obtained by detecting the line-of-sight from the P1 image position and the pupil center position as described in the prior art. As a method of discriminating these outputs, a conventionally used method can be applied, and therefore the description thereof will be omitted here. Also, D in the drawing indicates the size of the pupil portion 41 obtained from the signal. When the brightness around the eyes is dark, the pupil diameter D is large, so that a red-eye state is likely to occur due to reflection on the retina and the pupil portion 41.
Is easy to obtain.

【0021】図5(b)は、図5(a)の時に対して、
眼の周囲の明るさが明るい場合で、瞳孔径Dが小さく縮
んでいて瞳孔部41の赤目状態の反射光がほとんど得ら
れず、虹彩部42や白目部分43の出力とほとんど弁別
できない状態である。このような出力状態の時は瞳孔中
心位置が特定できないので視線方向が算出できない。図
6は、図4(a)および図4(b)で示した、光軸30
1上に配置された第2光源304による出力例である。
FIG. 5B is different from that of FIG.
In the case where the brightness around the eyes is bright, the pupil diameter D is shrunk to a small extent, reflected light in the red-eye state of the pupil part 41 is hardly obtained, and it is almost indistinguishable from the output of the iris part 42 and the white-eye part 43. . In such an output state, since the pupil center position cannot be specified, the line-of-sight direction cannot be calculated. FIG. 6 shows the optical axis 30 shown in FIGS. 4 (a) and 4 (b).
3 is an output example by the second light source 304 arranged on the first position.

【0022】図6(a)は、眼の周囲の明るさが暗い場
合であり瞳孔径Dが大きく、しかも網膜での反射による
赤目状態が生じない、あるいは生じていても非常に弱い
ので凹状の出力が示される。しかし、眼の周囲が暗いた
め瞳孔部41の凹状の出力と虹彩部42および白目部分
43の出力とがあまり明確に弁別できない。図6(b)
は眼の周囲の明るさが明るい場合であり瞳孔が縮んでい
るため瞳孔径Dが小さく、凹部の範囲が図6(a)の場
合に比べて狭い。しかし、網膜での反射による赤目状態
が生じない、あるいは生じていても非常に弱く、しかも
眼の周囲の明るさが明るいので虹彩部42および白目部
分43の出力に対して瞳孔部41の凹状の出力が明確に
得られる。したがって、視線方向の算出が容易に行え
る。図7は、上述した視線検知装置付きカメラによる撮
影時の電源ONから露光動作(レリーズ動作)までの動
作を示すフローチャートであり、電源のONによりフロ
ーが実行される。
FIG. 6A shows the case where the brightness around the eye is dark, the pupil diameter D is large, and the red-eye state due to reflection on the retina does not occur, or even if it occurs, it is very weak, so that it has a concave shape. The output is shown. However, since the periphery of the eye is dark, the concave output of the pupil portion 41 and the output of the iris portion 42 and the white eye portion 43 cannot be discriminated very clearly. Figure 6 (b)
In the case where the brightness around the eyes is bright, the pupil diameter is small because the pupil is contracted, and the range of the concave portion is narrower than in the case of FIG. 6A. However, the red-eye state due to reflection on the retina does not occur, or even if it occurs, it is very weak, and the brightness around the eye is bright, so that the pupil part 41 has a concave shape with respect to the output of the iris part 42 and the white-eye part 43. The output is clearly obtained. Therefore, the line-of-sight direction can be easily calculated. FIG. 7 is a flowchart showing an operation from power-on to exposure operation (release operation) at the time of photographing by the camera with a visual axis detection device described above, and the flow is executed by turning on the power.

【0023】STEP701:半押しスイッチSW1が
ONしているかどうかを判定し、ONのときはSTEP
702へ進み、ONでないときはSTEP701を繰り
返す。 STEP702:ここでは測光部6により測光が行われ
る。その一例として、複数に分割された撮影画面のそれ
ぞれの領域についての測光が行われ、それぞれの測光値
は制御部1内の記憶部に記憶される。
STEP 701: It is judged whether or not the half-push switch SW1 is ON, and when it is ON, STEP
If it is not turned on, STEP 701 is repeated. STEP 702: Here, photometry is performed by the photometry unit 6. As an example thereof, photometry is performed for each area of the photographic screen divided into a plurality of areas, and each photometric value is stored in the storage unit in the control unit 1.

【0024】STEP703:ここでは測距部4により
測距演算が行われる。その一例として、図8に示すよう
にファインダー801内のA1,A2,A3の測距エリ
アそれぞれに対する測距が行われ、それぞれの測距値は
制御部1内の記憶部に記憶される。 STEP704:ここでは視線検出動作を行う視線検出
サブルーチンを行う。詳細は後述するが、この実施例で
は従来技術で述べたプルキンエ1像位置と瞳孔中心位置
とから視線方向を算出する。
STEP 703: Here, the distance measuring unit 4 performs distance measurement calculation. As an example, as shown in FIG. 8, distance measurement is performed for each of the distance measurement areas A1, A2, and A3 in the finder 801, and each distance measurement value is stored in the storage unit in the control unit 1. STEP 704: Here, a visual axis detection subroutine for performing the visual axis detection operation is performed. Although details will be described later, in this embodiment, the line-of-sight direction is calculated from the Purkinje 1 image position and the pupil center position described in the related art.

【0025】STEP705:ここではSTEP704
で算出された視線方向に基づき、STEP702,ST
EP703で得た情報を用いて測光,測距の制御が行わ
れる。一例として、測距制御は、×印で示された視線位
置に対応する測距エリアA1の測距情報に基づいて演算
する。そして、測光制御は、×印で示された視線位置に
対応する領域を重心とする加重加算平均で演算を行う。
STEP 705: Here, STEP 704
Based on the line-of-sight direction calculated in
Control of photometry and distance measurement is performed using the information obtained in EP703. As an example, the distance measurement control is calculated based on the distance measurement information of the distance measurement area A1 corresponding to the line-of-sight position indicated by the cross mark. Then, the photometric control performs a calculation by a weighted addition average having the area corresponding to the line-of-sight position indicated by the cross as the center of gravity.

【0026】STEP706:ここではSTEP705
で決定された測距情報に基づいて、撮影レンズ201の
駆動を行い、合焦させる。 STEP707:全押しスイッチSW2がONしている
かどうかを判定し、ONのときはSTEP708に進
み、ONでないときはSTEP707を繰り返す。
STEP 706: Here, STEP 705
The photographing lens 201 is driven and focused based on the distance measurement information determined in. STEP 707: It is determined whether or not the full-push switch SW2 is ON, and when it is ON, the process proceeds to STEP 708, and when it is not ON, STEP 707 is repeated.

【0027】STEP708:ここではSTEP705
で決定された測光情報に基づいて、露光部8によりミラ
ーアップ、シャッター走行、ミラーダウン、フィルム給
送、シャッターチャージ等の一連の露光動作を行う。露
光動作が終了すると一連の動作を終了する。なお、ST
EP708が終了した後、STEP701へ戻り電源が
OFFするまでこのルーチンを実行し続けても良い。 次に、視線検出のサブルーチンについて図9のフローチ
ャートで説明する。
STEP 708: Here, STEP 705
Based on the photometric information determined in step 1, the exposure unit 8 performs a series of exposure operations such as mirror up, shutter running, mirror down, film feeding, and shutter charging. When the exposure operation ends, a series of operations ends. In addition, ST
After EP708 ends, the routine may return to STEP701 and continue execution of this routine until the power is turned off. Next, the visual axis detection subroutine will be described with reference to the flowchart of FIG.

【0028】STEP901:ここでは眼の周囲の明る
さが所定値以上であるかどうかを判定し、所定値以上で
あればSTEP902へ進み、所定値以下であればST
EP903へ進む。明るさの測定は、本実施例ではカメ
ラの測光部214の出力を用いており、所定値として
は、例えば画面中央部の測光値がEV8程度の明るさが
設定されている。なお、所定値の設定はこの例に限定さ
れるものではなく、いろいろな設定が可能なことは言う
までもない。
STEP 901: Here, it is determined whether or not the brightness around the eyes is a predetermined value or more. If it is a predetermined value or more, the process proceeds to STEP 902.
Proceed to EP903. In the present embodiment, the brightness is measured by using the output of the photometric unit 214 of the camera, and the predetermined value is set such that the photometric value at the center of the screen is EV8. The setting of the predetermined value is not limited to this example, and it goes without saying that various settings can be made.

【0029】STEP902:ここではSTEP901
で眼の周囲の明るさが所定値以上であったので、前述し
たように図6(b)の様な光電変換素子213の出力信
号を得て、視線方向を容易に算出するために視線検出用
光源として第2光源304が選択され、視線検出が行わ
れ、STEP904で視線方向が算出される。なお、光
源の選択は、測光部214の出力に基づいて制御部1が
光源切換部2を制御することで行われる。
STEP 902: Here, STEP 901
Since the brightness around the eye is equal to or more than the predetermined value, the line-of-sight detection is performed in order to easily calculate the line-of-sight direction by obtaining the output signal of the photoelectric conversion element 213 as shown in FIG. 6B as described above. The second light source 304 is selected as the light source for use, the line-of-sight detection is performed, and the line-of-sight direction is calculated in STEP904. The light source is selected by the control unit 1 controlling the light source switching unit 2 based on the output of the photometric unit 214.

【0030】STEP903:ここではSTEP901
で眼の周囲の明るさが所定値以下であったので、前述し
たように図5(a)の様な光電変換素子213の出力信
号を得て、視線方向を容易に算出するために視線検出用
光源として第1光源303が選択され、視線検出が行わ
れ、STEP904で視線方向が算出される。 STEP904:ここではSTEP902あるいはST
EP903で得られた光電変換素子213の出力信号か
らP1像位置Pと瞳孔中心位置dを検出し、これを用い
て制御部1で視線方向の算出が行われる。視線方向θの
算出は
STEP 903: Here, STEP 901
Since the brightness around the eye is less than or equal to the predetermined value, the line-of-sight detection is performed in order to easily calculate the line-of-sight direction by obtaining the output signal of the photoelectric conversion element 213 as shown in FIG. The first light source 303 is selected as the light source for use, the line-of-sight detection is performed, and the line-of-sight direction is calculated in STEP904. STEP904: Here, STEP902 or ST
The P1 image position P and the pupil center position d are detected from the output signal of the photoelectric conversion element 213 obtained in EP903, and the control unit 1 calculates the line-of-sight direction using this. To calculate the line-of-sight direction θ

【0031】[0031]

【数1】θ=sinー1((d−P)/(A−ρ)) で行われる。ただし、A:眼球回転中心から瞳孔中心ま
での距離 ρ:眼球回転中心から角膜曲率中心までの距離 上式によって視線方向θが算出されて視線検出のサブル
ーチンが終了する。
## EQU00001 ## .theta. = Sin-1 ((d-P) / (A-.rho.)). However, A: the distance from the center of rotation of the eyeball to the center of the pupil, ρ: the distance from the center of rotation of the eyeball to the center of curvature of the cornea, the gaze direction θ is calculated by the above equation, and the gaze detection subroutine ends.

【0032】図10は、視線検出のサブルーチンにおけ
る光源の選択の別の実施例を示したもので、ここでは光
源切り換え部2で第1光源と第2光源を選択切り換える
代わりに光源切り換え部2に光源移動部(モータを用い
たもの、切り換えレバーを用いたものなど光源を移動で
きるものであれば良い)を備えさせ(光源切り換え部2
に含まれる)、1個の光源を第1の光源位置と第2の光
源位置に移動させることによって検出光源を切り換える
ようにしたものである。したがって、フローの説明は省
略する。
FIG. 10 shows another embodiment of light source selection in the line-of-sight detection subroutine. Here, instead of the light source switching unit 2 selectively switching between the first light source and the second light source, the light source switching unit 2 is used. A light source moving unit (a device using a motor, a device using a switching lever, or any other device capable of moving a light source) may be provided (the light source switching unit 2
(Included in 1)), the detection light source is switched by moving one light source to the first light source position and the second light source position. Therefore, the description of the flow is omitted.

【0033】なお、本実施例では眼の周囲の明るさを測
定する測光部6とカメラの測光部とを兼用しているが、
カメラの測光部とは別に眼の周囲の明るさを測定する測
光部が設けられていても良いことは言うまでもない。こ
の場合、明るさが測定できればどのような測光部でも良
い。
In the present embodiment, the photometry unit 6 for measuring the brightness around the eyes is also used as the photometry unit of the camera.
It goes without saying that a photometric unit for measuring the brightness around the eyes may be provided separately from the photometric unit of the camera. In this case, any photometric unit may be used as long as the brightness can be measured.

【0034】[0034]

【発明の効果】以上説明したように本発明では、眼の周
囲の明るさを測定し、その明るさが所定値以上の時は観
察光軸(カメラのファインダー光軸)に対して所定の傾
きを有する軸上に配置された視線検出用光源を用いてい
るので、網膜からの反射がほとんど無く瞳孔部が黒く見
え、瞳孔部からの反射光による光電変換素子の出力が虹
彩部および白目部分からの反射光による光電変換素子の
出力より低くなり、瞳孔部と虹彩部および白目部分とを
明確に弁別できるので視線方向の算出が容易にしかも確
実に行えるようになる。また、眼の周囲の明るさが所定
値以下の時は観察光軸(カメラのファインダー光軸)と
等価な軸上に配置された視線検出用光源を用いているの
で、網膜からの反射により瞳孔部が赤目状態となり明る
く見え、瞳孔部からの反射光による光電変換素子の出力
が虹彩部および白目部分からの反射光による光電変換素
子の出力より高くなり、瞳孔部と虹彩部および白目部分
とを明確に弁別できるので視線方向の算出が容易にしか
も確実に行えるようになる。
As described above, according to the present invention, the brightness around the eye is measured, and when the brightness is equal to or higher than a predetermined value, a predetermined tilt is obtained with respect to the observation optical axis (camera finder optical axis). Since it uses a line-of-sight detection light source arranged on the axis, the pupil part looks black with almost no reflection from the retina, and the output of the photoelectric conversion element due to the reflected light from the pupil part from the iris part and the white eye part. The output of the photoelectric conversion element due to the reflected light is lower than that of the photoelectric conversion element, and the pupil portion can be clearly discriminated from the iris portion and the white eye portion, so that the line-of-sight direction can be calculated easily and surely. In addition, when the brightness around the eyes is less than a predetermined value, a light source for line-of-sight detection arranged on an axis equivalent to the observation optical axis (camera finder optical axis) is used, so that the pupil is reflected by the retina. The area becomes red-eyed and appears bright, and the output of the photoelectric conversion element due to the reflected light from the pupil part becomes higher than the output of the photoelectric conversion element due to the reflected light from the iris part and the white eye part, and the pupil part and the iris part and the white eye part are separated. Since the distinction can be made clearly, the gaze direction can be calculated easily and surely.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による視線検出装置の実施
例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a visual axis detection device according to a first embodiment of the present invention.

【図2】本発明の第1実施例による視線検出装置付きカ
メラの構成を示す図である。
FIG. 2 is a diagram showing a configuration of a camera with a visual axis detection device according to a first embodiment of the present invention.

【図3】視線検出装置部の詳細を示す図である。FIG. 3 is a diagram showing details of a line-of-sight detection device unit.

【図4】光電変換素子の出力例を示す図である。FIG. 4 is a diagram showing an output example of a photoelectric conversion element.

【図5】光電変換素子の出力例を示す図である。FIG. 5 is a diagram showing an output example of a photoelectric conversion element.

【図6】光電変換素子の出力例を示す図である。FIG. 6 is a diagram showing an output example of a photoelectric conversion element.

【図7】図2の視線検出装置付きカメラのフローを示す
図である。
7 is a diagram showing a flow of the camera with the line-of-sight detection device of FIG.

【図8】ファインダーのAF領域を示す図である。FIG. 8 is a diagram showing an AF area of a finder.

【図9】図7の視線検出のサブルーチンを示す図であ
る。
9 is a diagram showing a subroutine of line-of-sight detection in FIG.

【図10】図7の視線検出の別のサブルーチンを示す図
である。
FIG. 10 is a diagram showing another subroutine for line-of-sight detection in FIG.

【符号の説明】[Explanation of symbols]

1・・・制御部 2・・・光源切換部 3・・・照明部 4・・・測距部 5・・・受光部 6・・・測光部 1 ... Control part 2 ... Light source switching part 3 ... Illumination part 4 ... Distance measuring part 5 ... Light receiving part 6 ... Photometric part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03B 13/02 7139−2K 7316−2K G03B 3/00 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03B 13/02 7139-2K 7316-2K G03B 3/00 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 撮影者の眼を照明する複数の光源からな
る照明手段と、 前記照明手段により照明される前記眼からの反射光を受
光する受光手段と、 撮影者の眼の周囲の明るさを測定するための測光手段
と、 前記複数の光源を切り換えるための光源切り換え手段
と、 前記照明手段と前記受光手段と前記測光手段と前記光源
切り換え手段との動作を制御するとともに前記受光手段
からの出力に基づき視線方向を算出する制御手段とを備
えたことを特徴とする視線検出装置付きカメラ。
1. An illuminating means comprising a plurality of light sources for illuminating the eye of the photographer, a light receiving means for receiving reflected light from the eye illuminated by the illuminating means, and a brightness around the eye of the photographer. For measuring the light source, a light source switching unit for switching the plurality of light sources, an operation of the illumination unit, the light receiving unit, the photometric unit, and the light source switching unit, and at the same time from the light receiving unit. A camera with a line-of-sight detection device, comprising: a control unit that calculates a line-of-sight direction based on an output.
【請求項2】 請求項1記載の視線検出装置付きカメラ
において、 前記複数の光源は、カメラのファインダー光軸と等価な
光軸上に配置された第1光源と、前記ファインダー光軸
に対して所定の傾きを有する軸上に配置された第2光源
とから成ることを特徴とする視線検出装置付きカメラ。
2. The camera with a line-of-sight detection device according to claim 1, wherein the plurality of light sources are a first light source arranged on an optical axis equivalent to a finder optical axis of the camera, and the finder optical axis. A camera with a line-of-sight detection device comprising a second light source arranged on an axis having a predetermined inclination.
【請求項3】 請求項1記載の視線検出装置付きカメラ
において、 前記眼の周囲の明るさを測定するための前記測光手段
は、カメラの測光手段を兼用したことを特徴とする視線
検出装置付きカメラ。
3. The camera with a line-of-sight detection device according to claim 1, wherein the photometric unit for measuring the brightness around the eye also serves as the photometric unit of the camera. camera.
JP4245196A 1992-09-14 1992-09-14 Camera provided with device for detecting line of sight Pending JPH0694980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245196A JPH0694980A (en) 1992-09-14 1992-09-14 Camera provided with device for detecting line of sight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245196A JPH0694980A (en) 1992-09-14 1992-09-14 Camera provided with device for detecting line of sight

Publications (1)

Publication Number Publication Date
JPH0694980A true JPH0694980A (en) 1994-04-08

Family

ID=17130056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245196A Pending JPH0694980A (en) 1992-09-14 1992-09-14 Camera provided with device for detecting line of sight

Country Status (1)

Country Link
JP (1) JPH0694980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105004A1 (en) * 2010-02-26 2011-09-01 パナソニック株式会社 Pupil detection device and pupil detection method
JP2012065719A (en) * 2010-09-21 2012-04-05 Fujitsu Ltd View line detection device, view line detection method, view line-detecting computer program and mobile terminal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105004A1 (en) * 2010-02-26 2011-09-01 パナソニック株式会社 Pupil detection device and pupil detection method
CN102439627A (en) * 2010-02-26 2012-05-02 松下电器产业株式会社 Pupil detection device and pupil detection method
US8810642B2 (en) 2010-02-26 2014-08-19 Panasonic Intellectual Property Corporation Of America Pupil detection device and pupil detection method
JP5694161B2 (en) * 2010-02-26 2015-04-01 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Pupil detection device and pupil detection method
JP2012065719A (en) * 2010-09-21 2012-04-05 Fujitsu Ltd View line detection device, view line detection method, view line-detecting computer program and mobile terminal

Similar Documents

Publication Publication Date Title
JP3158643B2 (en) Camera having focus detecting means and line-of-sight detecting means
US6674964B2 (en) Visual axis detecting apparatus
JPH07151950A (en) Camera
JP3478644B2 (en) Optical device
EP0848272B1 (en) Camera provided with focus detecting device
JPH08271784A (en) Optical instrument with function of detecting line of sight
US5402199A (en) Visual axis detecting apparatus
US5579080A (en) Camera including an apparatus for detecting a line of sight
US5970258A (en) Optical apparatus capable of performing a desired function by gazing
JPH06138379A (en) Camera provided with device for detecting line of sight
JPH0694980A (en) Camera provided with device for detecting line of sight
US5576796A (en) Optical apparatus having function to detect visual axis
JP3184633B2 (en) camera
JP4054436B2 (en) Optical device
JP3559622B2 (en) Gaze detection device and optical apparatus having gaze detection device
US5426483A (en) Camera with a line of sight detecting device
JPH0694979A (en) Camera provided with device for detecting
JPH10148864A (en) Photometry device for camera
JPH08286240A (en) Photographing device
JPH06138364A (en) Camera provided with device for detecting line of sight
JP3126700B2 (en) Optical equipment
JPH06125874A (en) Sight line detecting device
JPH1099274A (en) Visual axis detecting device and optical instrument
JPH0951875A (en) Line of sight detector and optical device
JPH0924024A (en) Visual axis detecting device and apparatus having visual axis detecting means