JPH0694693A - Method and apparatus for analyzing sample - Google Patents

Method and apparatus for analyzing sample

Info

Publication number
JPH0694693A
JPH0694693A JP26652492A JP26652492A JPH0694693A JP H0694693 A JPH0694693 A JP H0694693A JP 26652492 A JP26652492 A JP 26652492A JP 26652492 A JP26652492 A JP 26652492A JP H0694693 A JPH0694693 A JP H0694693A
Authority
JP
Japan
Prior art keywords
sample
separation column
pressure
valve
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26652492A
Other languages
Japanese (ja)
Inventor
Akira Yamashita
暁 山下
Kenji Yamaguchi
憲治 山口
Aogu Yamagami
仰 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA ANALYTICAL SYST KK
Original Assignee
YOKOKAWA ANALYTICAL SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA ANALYTICAL SYST KK filed Critical YOKOKAWA ANALYTICAL SYST KK
Priority to JP26652492A priority Critical patent/JPH0694693A/en
Publication of JPH0694693A publication Critical patent/JPH0694693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To chromatographically separate the components to be measured of a sample by injecting a large quantity of the sample into a separation column within a short time by raising the head pressure of the separation column for a definite time to collect the sample and feeding the sample to the separation column before returning the head pressure of the column to the original pressure. CONSTITUTION:A suction pump 11 is operated to introduce a sample into a sample suction pipe 12. The sample flows through the connection ports 3e, 3f weighing tube 39 connection port 3c, 3d of a sample collecting valve 3. Therefore, the weighing tube 3g is filled with the sample. An electric pressure control valve 6 is operated in this state to raise the pressure of carrier gas to raise the head pressure of a separation column 5 and the collecting valve 3 is turned ON to bring the inner passage of the valve 3 to a broken line state. Therefore, the sample in the weighing tube 3g is fed by the carrier gas to enter the separation column 5 and the components to be measured in the sample are chromatographically separated. The fluid eluted from the separation column 5 is detected and a chromatogram showing the concns. of the respective components in the sample is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスクロマトグラフを
用いて試料中の被測定成分を高感度に分析する方法及び
その装置に係わり、特に、分離カラムのヘッド圧を一定
時間高くした状態で試料を短時間で分離カラムに導入
し、その後、該分離カラムのヘッド圧を元の圧力に戻し
てクロマトグラフ分離の最適化を図った試料の分析方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for highly sensitively analyzing a component to be measured in a sample by using a gas chromatograph and an apparatus therefor, and particularly, to a sample with a head pressure of a separation column kept high for a certain period of time. Is introduced into a separation column in a short time, and then the head pressure of the separation column is returned to the original pressure to optimize the chromatographic separation, and to a sample analysis method and apparatus.

【0002】[0002]

【従来の技術】周知の如く、ガスクロマトグラフは、試
料中の被測定成分を高感度に分析する装置として広く使
用されている。図6はガスクロマトグラフを用いて試料
を分析する方法及びその装置の従来例を説明するための
図であり、図中、1はキャリヤガス供給源、2は質量流
量計、3は試料採取弁、4は注入口、5は例えばキャピ
ラリーカラムでなる分離カラム、7aはスプリットベン
ト、7bはセプタムパージベント、13は注入口4で分
割されセプタムパージベント7bへ流れる流体の流量を
調節するセプタムパージ調節器、13aはセプタムパー
ジ調節器13の入口、13bはセプタムパージ調節器1
3の出口である。14は注入口4で分割されスプリット
ベント7aへ流れる流体の流量を調節する背圧調節器、
14aは背圧調節器14の入口、14bは背圧調節器1
4の出口、14cは圧力計である。
2. Description of the Related Art As is well known, a gas chromatograph is widely used as an apparatus for analyzing a component to be measured in a sample with high sensitivity. FIG. 6 is a diagram for explaining a conventional example of a method and an apparatus for analyzing a sample using a gas chromatograph, in which 1 is a carrier gas supply source, 2 is a mass flow meter, 3 is a sampling valve, 4 is an injection port, 5 is a separation column composed of, for example, a capillary column, 7a is a split vent, 7b is a septum purge vent, 13 is a septum purge controller for adjusting the flow rate of the fluid which is divided by the injection port 4 and flows to the septum purge vent 7b, 13a is the inlet of the septum purge controller 13, 13b is the septum purge controller 1
Exit 3 14 is a back pressure regulator that regulates the flow rate of the fluid that is divided by the inlet 4 and flows to the split vent 7a.
14a is the inlet of the back pressure regulator 14, and 14b is the back pressure regulator 1.
The outlet 4 and 14c are pressure gauges.

【0003】このような構成からなる従来例において、
最初、試料採取弁3がオフで、その内部流路が実線接続
状態となっている。この状態で、キャリヤガス供給源1
から供給されたキャリヤガスは、質量流量計2→試料採
取弁3の第1,第2接続口3a,3bを通り、注入口4
で三方に分流される。このようにして分流された第1分
流としてのキャリヤガスは、セプタムパージ調節器13
で流量調節されたのちセプタムパージべント7bを通っ
て排出される。また、注入口4で分割された第2分流と
してのキャリヤガスは、背圧調節器14で圧力調節され
たのちスプリットベント7aを通って排出される。更
に、注入口4で分割された第3分流としてのキャリヤガ
スは、分離カラム5に導かれ図示しない検出器を通った
後、排出される。
In the conventional example having such a structure,
Initially, the sampling valve 3 is off, and its internal flow path is in a solid line connection state. In this state, the carrier gas supply source 1
The carrier gas supplied from the mass flowmeter 2 → passes through the first and second connection ports 3a and 3b of the sampling valve 3 and the injection port 4
Is divided into three directions. The carrier gas as the first divided stream divided in this way is separated by the septum purge controller 13
After the flow rate is adjusted by (1), it is discharged through the septum purge vent 7b. Further, the carrier gas as the second split stream divided at the inlet 4 is discharged through the split vent 7a after the pressure is adjusted by the back pressure adjuster 14. Further, the carrier gas as the third split stream divided at the inlet 4 is guided to the separation column 5, passed through a detector (not shown), and then discharged.

【0004】また、吸引ポンプ11が作動すると、試料
吸入管12から例えば環境空気などの試料が導入され、
該試料が、試料採取弁3の第5,第6接続口3e,3f
→計量管3g→試料採取弁3の第3,第4接続口3c,
3d→吸引ポンプ11の流路で流れる。このため、計量
管3g内が試料で満たされる。この状態で、試料採取弁
3がオンにされると、その内部流路が破線接続状態とな
る。このため、計量管3g内の試料がキャリヤガスに搬
送されて、注入口4に導入され、その一部が分離カラム
5に導かれる。従って、試料中の被測定成分がクロマト
グラフィックに分離され、その後、図示しない検出器に
導かれる。
When the suction pump 11 is operated, a sample such as ambient air is introduced from the sample suction pipe 12,
The sample is the fifth and sixth connection ports 3e, 3f of the sampling valve 3.
→ 3 g of measuring pipe → 3rd and 4th connection ports 3c of the sampling valve 3
3d → flows through the flow path of the suction pump 11. Therefore, the inside of the measuring tube 3g is filled with the sample. When the sample collection valve 3 is turned on in this state, the internal flow path is in a broken line connection state. Therefore, the sample in the measuring pipe 3g is carried to the carrier gas, introduced into the injection port 4, and part of the sample is introduced into the separation column 5. Therefore, the component to be measured in the sample is chromatographically separated and then guided to a detector (not shown).

【0005】図8はこのようにして分析された環境空気
のクロマトグラムを示す図であり、図中、縦軸は検出信
号の強度を示し、横軸は保持時間(単位は分)を示して
いる。また、図7は上述のような従来例を用いて炭素数
4〜10程度の炭化水素類混合ガスに含まれる微量の被
測定成分を分析した結果を示すクロマトグラムである。
FIG. 8 is a diagram showing a chromatogram of the ambient air analyzed in this way, in which the vertical axis represents the intensity of the detection signal and the horizontal axis represents the retention time (unit is minutes). There is. Further, FIG. 7 is a chromatogram showing a result of analyzing a trace amount of a component to be measured contained in a hydrocarbon mixed gas having about 4 to 10 carbon atoms by using the conventional example as described above.

【0006】図7や図8のクロマトグラムから明かなよ
うに、被測定成分のピーク高さなどが不十分であり、試
料を大量に採取して高感度化を図ることが望まれる。
As is clear from the chromatograms shown in FIGS. 7 and 8, the peak height of the component to be measured is insufficient, and it is desired to collect a large amount of sample to improve the sensitivity.

【0007】[0007]

【発明が解決しようとする課題】然しながら、このよう
な従来例においては、注入口4のスプリット比と計量管
3gの内容量によって分離カラム5に導入される試料の
量が決定されるため、次のような問題が生じていた。即
ち、通常の場合、分析の精度を損なわないような最小の
スプリット比は内径0.25mmのキャピラリーカラム
の場合10:1程度とされている。特に、最適な分離を
得るために、図6のような装置では大量の試料導入が困
難となるという問題があった。
However, in such a conventional example, the amount of the sample introduced into the separation column 5 is determined by the split ratio of the inlet 4 and the internal volume of the measuring tube 3g. There was such a problem. That is, in the usual case, the minimum split ratio that does not impair the analysis accuracy is about 10: 1 in the case of a capillary column having an inner diameter of 0.25 mm. In particular, in order to obtain the optimum separation, there is a problem that it is difficult to introduce a large amount of sample with the device as shown in FIG.

【0008】本発明は、かかる状況に艦み上述のような
従来例の問題点などを解消せんとしてなされたものであ
り、大量の試料を短時間で分離カラムに注入して該試料
中の被測定成分をクロマトグラフィックに分離する試料
の分析方法及び装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the conventional examples and the like in such a situation, and a large amount of sample is injected into a separation column in a short time so that the sample in the sample can be removed. An object of the present invention is to provide a sample analysis method and apparatus for chromatographically separating measurement components.

【0009】[0009]

【課題を達成するための手段】本発明は、ガスクロマト
グラフを用いて試料に含まれる被測定成分を分析する方
法において、該試料を試料採取弁で採取する時に分離カ
ラムのヘッド圧を一定時間高くした状態で試料を採取し
て分離カラムに搬送してのち、前記ヘッド圧を元の圧力
に戻すことにより、前記課題を達成したものである。
The present invention is a method for analyzing a component to be measured contained in a sample using a gas chromatograph, in which the head pressure of the separation column is increased for a certain period of time when the sample is collected by a sampling valve. The above problem is achieved by collecting the sample in this state and transporting it to the separation column, and then returning the head pressure to the original pressure.

【0010】同様にして、本発明は、ガスクロマトグラ
フを用いて試料に含まれる被測定成分を分析する装置に
おいて、キャリヤガス供給源と、該キャリヤガス供給源
から供給されるキャリヤガス圧力を制御する圧力制御弁
と、該圧力制御弁で圧力制御された流体を一定比率で分
割する注入口と、計量管を有し該計量管内の試料を採取
する試料採取弁と、該試料採取弁から搬送された試料を
クロマトグラフィックに分離する分離カラムとを設け、
試料採取弁による試料採取時に分離カラムのヘッド圧を
一定時間高くした状態で試料を採取して分離カラムに搬
送してのち、前記ヘッド圧を元の圧力に戻すことによ
り、前記課題を解決したものである。
Similarly, the present invention controls the carrier gas supply source and the carrier gas pressure supplied from the carrier gas supply source in an apparatus for analyzing a measured component contained in a sample using a gas chromatograph. A pressure control valve, an inlet for dividing a fluid whose pressure is controlled by the pressure control valve at a fixed ratio, a sampling valve having a metering tube for sampling a sample in the metering tube, and a sample sampling valve And a separation column for chromatographically separating the sample,
The above problem is solved by returning the head pressure to the original pressure after the sample is collected and conveyed to the separation column in a state where the head pressure of the separation column is increased for a certain time when the sample is collected by the sample collection valve. Is.

【0011】同様にして、本発明は、ガスクロマトグラ
フを用いて試料に含まれる被測定成分を分析する装置に
おいて、キャリヤガス供給源と、該キャリヤガス供給源
から供給されるキャリヤガスの流量を調節する質量流量
計と、計量管を有し該計量管内の試料を採取する試料採
取弁と、該試料採取弁から送出される流体を一定比率で
第1乃至第3の流れに分流する注入口と、該第1分流が
供給され試料中の被測定成分をクロマトグラフィックに
分離する分離カラムと、第2分流の圧力を制御して分離
カラムのヘッド圧力を制御する圧力制御弁と、第3分流
の圧力を調節する減圧弁及び流体抵抗器とを設け、試料
採取弁による試料採取時に分離カラムのヘッド圧を一定
時間高くした状態で試料を採取して分離カラムに搬送し
てのち、ヘッド圧を元の圧力に戻すことにより前記課題
を解決したものである。
Similarly, the present invention adjusts the carrier gas supply source and the flow rate of the carrier gas supplied from the carrier gas supply source in an apparatus for analyzing a component to be measured contained in a sample using a gas chromatograph. A mass flow meter, a sampling valve having a metering tube for sampling a sample in the metering tube, and an inlet for diverting a fluid delivered from the sample collecting valve into first to third flows at a constant ratio. A separation column for chromatographically separating the component to be measured in the sample supplied with the first partial flow, a pressure control valve for controlling the pressure of the second partial flow to control the head pressure of the separation column, and the third partial flow A pressure reducing valve for adjusting the pressure and a fluid resistor are provided.When the sample is collected by the sampling valve, the head pressure of the separation column is increased for a certain period of time and then the sample is conveyed to the separation column. It is obtained by solving the problems by returning to the original pressure.

【0012】[0012]

【作用】本発明は、次のように作用する。即ち、圧力制
御弁が作動してキャリヤガス圧力が高められて分離カラ
ムのヘッド圧が高められた後、試料採取弁がオンにされ
ると、計量管内の試料がキャリヤガスに搬送されて分離
カラムに導かれ、該試料中の被測定成分がクロマトグラ
フィックに分離される。また、分離カラムから溶出した
流体は検出器で検出され、試料中の被測定成分濃度など
を示すクロマトグラムを与える。
The present invention operates as follows. That is, when the pressure control valve is activated to increase the carrier gas pressure to increase the separation column head pressure and then the sampling valve is turned on, the sample in the measuring pipe is transferred to the carrier gas and separated into the separation column. And the components to be measured in the sample are chromatographically separated. The fluid eluted from the separation column is detected by the detector and gives a chromatogram showing the concentration of the measured component in the sample.

【0013】[0013]

【実施例】以下、本発明の実施例について図面を参照し
て詳しく説明する。図1は本発明実施例の構成説明図で
あり、図中、図6と同一記号は同一意味で使用しここで
の重複説明は省略する。また、キャリヤガス供給源1と
注入口4の間に電気式圧力制御弁6が配置され、注入口
4の下流に試料採取弁3が配置されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a diagram for explaining the configuration of the embodiment of the present invention. In the figure, the same symbols as those in FIG. 6 are used with the same meanings, and duplicate explanations are omitted. Further, an electric pressure control valve 6 is arranged between the carrier gas supply source 1 and the inlet 4, and a sampling valve 3 is arranged downstream of the inlet 4.

【0014】このような構成からなる本発明の実施例に
おいて、最初、試料採取弁3がオフで、その内部流路が
実線接続状態となっている。この状態で、キャリヤガス
供給源1から供給されたキャリヤガスは、電気式圧力制
御弁6を通った後、注入口4で一定比率で分割され二方
に流される。このようにして分割された第1分流として
のキャリヤガスは、試料採取弁3の第1,第2接続口3
a,3bを通り、分離カラム5に導かれて後、排出され
る。また、分流された他方のキャリヤガスは、減圧弁9
→流体抵抗器10→セプタムパージベント7bを通って
排出される。
In the embodiment of the present invention having such a structure, first, the sampling valve 3 is turned off and its internal flow path is in a solid line connection state. In this state, the carrier gas supplied from the carrier gas supply source 1 passes through the electric pressure control valve 6 and is then split at the injection port 4 at a constant ratio to flow in two directions. The carrier gas as the first split flow divided in this way is supplied to the first and second connection ports 3 of the sampling valve 3.
After passing through a and 3b, it is guided to the separation column 5 and then discharged. The other carrier gas that has been split is used as the pressure reducing valve 9
-> Fluid resistor 10-> It is discharged through the septum purge vent 7b.

【0015】吸引ポンプ11が作動すると、試料吸入管
12から例えば環境空気などの試料が導入され、該試料
が、試料採取弁3の第5,第6接続口3e,3f→計量
管3g→試料採取弁3の第3,第4接続口3c,3dの
流路で流れる。このため、計量管3g内が試料で満たさ
れる。この状態で、電気式圧力制御弁6が作動してキャ
リヤガス圧力が高められて分離カラム5のヘッド圧が高
められた後、試料採取弁3がオンにされると、その内部
流路が破線接続状態となる。このため、計量管3g内の
試料がキャリヤガスに搬送されて分離カラム5に導か
れ、該試料中の被測定成分がクロマトグラフィックに分
離される。また、分離カラム5から溶出した流体は図示
しない検出器で検出され、上記試料に含有されている各
成分濃度などを示すクロマトグラムを与える。
When the suction pump 11 is operated, a sample such as ambient air is introduced from the sample suction pipe 12, and the sample is connected to the fifth and sixth connection ports 3e and 3f of the sampling valve 3 → measuring pipe 3g → sample. It flows through the flow paths of the third and fourth connection ports 3c and 3d of the sampling valve 3. Therefore, the inside of the measuring tube 3g is filled with the sample. In this state, when the electric pressure control valve 6 is actuated to increase the carrier gas pressure and the head pressure of the separation column 5 and then the sampling valve 3 is turned on, its internal flow path is broken. Connected. Therefore, the sample in the measuring pipe 3g is carried by the carrier gas and guided to the separation column 5, and the component to be measured in the sample is chromatographically separated. The fluid eluted from the separation column 5 is detected by a detector (not shown) and gives a chromatogram showing the concentration of each component contained in the sample.

【0016】図2は本発明実施例を用いて炭素数4〜1
0程度の炭化水素類混合ガスを分析する動作を説明する
ためのタイムチャートであり、図中、(1)は分離カラ
ムのヘッド圧を示し、(2)は分離カラムの温度を示
し、(3)は試料採取弁のオンオフ動作を示し、(4)
は吸引ポンプのオンオフ動作を示す。また、図3は本発
明実施例を用いて炭素数4〜10程度の炭化水素類混合
ガスを分析したクロマトグラムを示し、図4は本発明実
施例を用いて環境試料を分析したクロマトグラムを示
す。
FIG. 2 shows a carbon number of 4 to 1 using the embodiment of the present invention.
6 is a time chart for explaining an operation of analyzing a hydrocarbon mixed gas of about 0, where (1) shows the head pressure of the separation column, (2) shows the temperature of the separation column, and (3) ) Indicates the on / off operation of the sampling valve, and (4)
Indicates the on / off operation of the suction pump. Further, FIG. 3 shows a chromatogram obtained by analyzing a mixed gas of hydrocarbons having about 4 to 10 carbon atoms using the example of the present invention, and FIG. 4 shows a chromatogram obtained by analyzing an environmental sample using the example of the present invention. Show.

【0017】以下、図1乃至図3を用いて本発明実施例
の動作について更に詳しく説明する。最初、本発明者ら
は次のように分析条件を設定した。即ち、試料採取弁3
の温度を120°C、分離カラム5をJ&W社製DBー
1(長さ60m、内径0.25mm、膜圧1.0μm)のキャピ
ラリーカラム、図示しない検出器をFID(水素炎検出
器)、該検出器の温度を250°C、セプタムパージ流
量を2ml/min.、計量管3gの内容量を10ml
とした。
The operation of the embodiment of the present invention will be described in more detail below with reference to FIGS. First, the present inventors set the analysis conditions as follows. That is, the sampling valve 3
Temperature of 120 ° C., separation column 5 is a J & W company DB-1 (length 60 m, inner diameter 0.25 mm, membrane pressure 1.0 μm) capillary column, detector (not shown) is FID (hydrogen flame detector), and the detector Temperature is 250 ° C, septum purge flow rate is 2 ml / min., And the content volume of 3 g of measuring pipe is 10 ml.
And

【0018】このような分析条件の下で、図2のタイム
チャートに従って炭素数4〜10程度の炭化水素類混合
ガスを分析した。即ち、分離カラム5のヘッド圧即ちカ
ラム先端圧力を図2(1)に示す如く、A(+99ps
i/min.)→B(+100psi)→C(−99p
si/min.)→D(+25psi)のように変化さ
せた。
Under such analysis conditions, a mixed gas of hydrocarbons having about 4 to 10 carbon atoms was analyzed according to the time chart of FIG. That is, as shown in FIG. 2A, the head pressure of the separation column 5, that is, the column tip pressure is A (+99 ps).
i / min.) → B (+100 psi) → C (-99p
si / min.) → D (+25 psi).

【0019】また、分離カラム5の温度を図2(2)に
示す如く、E(−60°C)→F(+20°C/mi
n.)→G(0°C)→H(+5°C/min.)→I
(+250°C)のように変化させた。更に、図2の
(4)や(3)で示すように、吸引ポンプ11を最初1.
0分間オンにし、その0.1分後すなわち最初から1.1分後
に試料採取弁3をオンにした。
Further, as shown in FIG. 2 (2), the temperature of the separation column 5 is E (-60 ° C) → F (+ 20 ° C / mi).
n.) → G (0 ° C) → H (+ 5 ° C / min.) → I
The temperature was changed like (+ 250 ° C). Further, as shown in (4) and (3) of FIG.
It was turned on for 0 minutes, and 0.1 minutes after that, 1.1 minutes from the beginning, the sampling valve 3 was turned on.

【0020】このように分離カラム5のヘッド圧が高い
状態で試料採取弁3がオンにされると、前述のように、
計量管3g内の大量の試料がキャリヤガスに搬送されて
短時間で分離カラム5に導かれる。その後、電気式圧力
制御弁6の作用で分離カラム5のヘッド圧が図2(1)
のC,Dで示すように元の圧力に戻され、該試料中の被
測定成分がクロマトグラフィックに分離される。また、
分離カラム5から溶出した流体は図示しない検出器で検
出され、該試料中の各成分濃度などを示す図3のような
クロマトグラムを与える。
When the sampling valve 3 is turned on with the head pressure of the separation column 5 being high as described above, as described above,
A large amount of sample in the measuring tube 3g is transported to the carrier gas and introduced to the separation column 5 in a short time. After that, the head pressure of the separation column 5 is reduced by the action of the electric pressure control valve 6 as shown in FIG.
The original pressure is restored as indicated by C and D, and the component to be measured in the sample is chromatographically separated. Also,
The fluid eluted from the separation column 5 is detected by a detector (not shown) and gives a chromatogram as shown in FIG. 3 showing the concentration of each component in the sample.

【0021】このようにして得られた図3と前記図6を
比較すれば明かなように、本実施例を用いることによ
り、炭素数4〜10程度の炭化水素類混合ガスを前記従
来例の場合の約50倍も高感度に測定できることが分か
る。また、試料吸入管12から環境空気を導入し、図1
の実施例で詳述したような分析を行うと、図4のような
クロマトグラムが得られる。この図と前記図8を比較す
れば明かなように、本実施例を用いることにより、環境
空気中の被測定成分を前記従来例の場合の約50倍も高
感度に測定できることが分かる。
As is clear from the comparison between FIG. 3 thus obtained and FIG. 6, by using this embodiment, a hydrocarbon mixed gas having about 4 to 10 carbon atoms can be obtained. It can be seen that the measurement can be performed with a sensitivity as high as about 50 times that in the case. In addition, by introducing environmental air from the sample suction pipe 12,
When the analysis as described in detail in Example 1 is performed, a chromatogram as shown in FIG. 4 is obtained. As is clear from comparison between this figure and FIG. 8, by using this example, the component to be measured in ambient air can be measured with about 50 times higher sensitivity than in the case of the conventional example.

【0022】一方、図5は本発明他の実施例を説明する
ための構成説明図であり、図中、図1と同一記号は同一
意味をもたせて使用しここでの重複説明は省略する。ま
た、2は質量流量計、8は圧力伝送器、9は減圧弁、1
0は流体抵抗器である。このような構成からなる本発明
他の実施例において、最初、試料採取弁3がオフで、そ
の内部流路が実線接続状態となっている。この状態で、
キャリヤガス供給源1から供給されたキャリヤガスは、
質量流量計2を通った後、試料採取弁3の第1,第2接
続口3a,3bを通り、注入口4で三方に分流される。
On the other hand, FIG. 5 is a structural explanatory view for explaining another embodiment of the present invention. In the figure, the same symbols as those in FIG. 1 are used with the same meanings, and duplicate explanations are omitted here. Further, 2 is a mass flow meter, 8 is a pressure transmitter, 9 is a pressure reducing valve, 1
0 is a fluid resistor. In another embodiment of the present invention having such a configuration, first, the sampling valve 3 is turned off, and its internal flow path is in a solid line connection state. In this state,
The carrier gas supplied from the carrier gas supply source 1 is
After passing through the mass flow meter 2, the flow passes through the first and second connection ports 3 a and 3 b of the sampling valve 3 and is branched into three directions at the injection port 4.

【0023】このように分流された第1分流としてのキ
ャリヤガスは、分離カラム5に導かれて後、排出され
る。また、第2分流としてのキャリヤガスは、電気式圧
力制御弁6→スプリットベント7aを通って排出され
る。更に、第3分流としてのキャリヤガスは、減圧弁9
→流体抵抗器10→セプタムパージメント7bを通って
排出される。
The carrier gas as the first split stream thus split is introduced into the separation column 5 and then discharged. Further, the carrier gas as the second split flow is discharged through the electric pressure control valve 6 → split vent 7a. Further, the carrier gas as the third split stream is used as the pressure reducing valve 9
-> Fluid resistor 10-> It is discharged through the septum purgement 7b.

【0024】また、吸引ポンプ11が作動すると、試料
吸入管12から例えば環境空気などの試料が導入され、
該試料が、試料採取弁3の第5,第6接続口3e,3f
→計量管3g→試料採取弁3の第3,第4接続口3c,
3dの流路で流れる。このため、計量管3g内が試料で
満たされる。この状態で、試料採取弁3がオンにされる
と、その内部流路が破線接続状態となる。このため、計
量管3g内の試料がキャリヤガスに搬送されて分離カラ
ム5に導かれ、該試料中の被測定成分がクロマトグラフ
ィックに分離される。また、分離カラム5から溶出した
流体は図示しない検出器で検出され、試料中の各成分濃
度などを示すクロマトグラムを与える。
When the suction pump 11 is operated, a sample such as ambient air is introduced from the sample suction pipe 12,
The sample is the fifth and sixth connection ports 3e, 3f of the sampling valve 3.
→ 3 g of measuring pipe → 3rd and 4th connection ports 3c of the sampling valve 3
It flows in the flow path of 3d. Therefore, the inside of the measuring tube 3g is filled with the sample. When the sample collection valve 3 is turned on in this state, the internal flow path is in a broken line connection state. Therefore, the sample in the measuring pipe 3g is carried by the carrier gas and guided to the separation column 5, and the component to be measured in the sample is chromatographically separated. The fluid eluted from the separation column 5 is detected by a detector (not shown) and gives a chromatogram showing the concentration of each component in the sample.

【0025】尚、本発明は図1や図5の実施例に限定さ
れることなく種々の変形が可能であり、例えば、試料採
取弁3を10ポートの試料採取弁にするなどの変形も可
能である。また、計量管3gに導入される試料も気体試
料だけでなく液体試料であってもよく、該計量管を試料
採取弁3に内蔵させてもよいものとする。
The present invention is not limited to the embodiment shown in FIGS. 1 and 5, and various modifications are possible. For example, the sampling valve 3 may be a 10-port sampling valve. Is. Further, the sample introduced into the measuring pipe 3g may be not only a gas sample but also a liquid sample, and the measuring pipe may be built in the sampling valve 3.

【0026】[0026]

【発明の効果】以上詳しく説明したように、本発明によ
れば、10mlもの気体試料であっても該試料を全て分
離カラム5へ導入できるため、該試料に含まれている極
微量の被測定成分を高感度に分析できるという利点があ
る。また、標準的なバルブシステムを採用していて自動
化への対応が容易なうえ、検出器としてMSD(Mas
s Select Detector)なども用いること
ができるため、高感度で選択性の高い分析ができるとい
う利点がある。
As described above in detail, according to the present invention, even a gas sample of 10 ml can be introduced into the separation column 5, so that a very small amount of the sample to be measured contained in the sample can be measured. There is an advantage that the components can be analyzed with high sensitivity. In addition, the standard valve system is adopted to facilitate automation, and the MSD (Mas
s Select Detector) or the like can be used, and thus there is an advantage that an analysis with high sensitivity and high selectivity can be performed.

【0027】従って、本発明によれば、大量の試料を短
時間でカラムに全量注入して該試料中の被測定成分を高
感度に分析できる試料の分析方法及び装置が実現する。
Therefore, according to the present invention, a sample analysis method and apparatus capable of injecting a large amount of sample into the column in a short time and analyzing the component to be measured in the sample with high sensitivity can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明するための構成説明図で
ある。
FIG. 1 is a configuration explanatory view for explaining an embodiment of the present invention.

【図2】本発明実施例の動作を説明するためのタイムチ
ャートである。
FIG. 2 is a time chart for explaining the operation of the embodiment of the present invention.

【図3】本発明実施例を用いて作成したクロマトグラム
である。
FIG. 3 is a chromatogram created using an example of the present invention.

【図4】本発明実施例を用いて作成したクロマトグラム
である。
FIG. 4 is a chromatogram created using an example of the present invention.

【図5】本発明他の実施例を説明するための構成説明図
である。
FIG. 5 is a configuration explanatory view for explaining another embodiment of the present invention.

【図6】従来例を説明するための構成説明図である。FIG. 6 is a configuration explanatory view for explaining a conventional example.

【図7】本発明実施例を用いて作成したクロマトグラム
である。
FIG. 7 is a chromatogram created by using an example of the present invention.

【図8】本発明実施例を用いて作成したクロマトグラム
である。
FIG. 8 is a chromatogram created using an example of the present invention.

【符号の説明】[Explanation of symbols]

1 キャリヤガス供給源 2 質量流量計 3 試料採取弁 4 注入口 5 分離カラム 6 電気式圧力制御弁 7a スプリットベント 7b セプタムパージベント 8 圧力伝送器 9 減圧弁 10 流体抵抗器 1 Carrier gas supply source 2 Mass flow meter 3 Sampling valve 4 Injection port 5 Separation column 6 Electric pressure control valve 7a Split vent 7b Septum purge vent 8 Pressure transmitter 9 Pressure reducing valve 10 Fluid resistor

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ガスクロマトグラフを用いて試料に含まれ
る被測定成分を分析する方法において、該試料を試料採
取弁で採取する時に分離カラムのヘッド圧を一定時間高
くした状態で前記試料を採取して前記分離カラムに搬送
してのち、前記ヘッド圧を元の圧力に戻すことを特徴と
する試料の分析方法。
1. A method for analyzing a component to be measured contained in a sample using a gas chromatograph, wherein the sample is collected with a sampling valve while the head pressure of a separation column is kept high for a certain period of time. The sample pressure is returned to the original pressure after being conveyed to the separation column.
【請求項2】請求項1において、前記分離カラムはキャ
ピラリーカラムであることを特徴とする試料の分析方
法。
2. The method for analyzing a sample according to claim 1, wherein the separation column is a capillary column.
【請求項3】請求項1若しくは請求項2において、前記
試料は気体試料であることを特徴とする試料の分析方
法。
3. The method for analyzing a sample according to claim 1, wherein the sample is a gas sample.
【請求項4】キャリヤガス供給源と、該キャリヤガス供
給源から供給されるキャリヤガス圧力を制御する圧力制
御弁と、該電気式圧力制御弁で圧力制御された流体を一
定比率で分割する注入口と、計量管を有し該計量管内の
試料を採取する試料採取弁と、該試料採取弁から搬送さ
れた前記試料中の被測定成分をクロマトグラフィックに
分離する分離カラムとを具備し、前記試料採取弁による
試料採取時に前記分離カラムのヘッド圧を一定時間高く
した状態で前記試料を採取して前記分離カラムに搬送し
てのち、前記ヘッド圧を元の圧力に戻すことを特徴とす
る試料の分析装置。
4. A carrier gas supply source, a pressure control valve for controlling the carrier gas pressure supplied from the carrier gas supply source, and a fluid whose pressure is controlled by the electric pressure control valve is divided at a fixed ratio. An inlet, a sample collection valve having a metering tube for collecting a sample in the metering tube, and a separation column for chromatographically separating a component to be measured in the sample conveyed from the sample collecting valve, A sample characterized by returning the head pressure to the original pressure after the sample is collected and conveyed to the separation column in a state where the head pressure of the separation column is raised for a certain time when the sample is collected by the sample collection valve. Analyzer.
【請求項5】請求項4において、前記分離カラムはキャ
ピラリーカラムであることを特徴とする試料の分析装
置。
5. The sample analyzer according to claim 4, wherein the separation column is a capillary column.
【請求項6】請求項4若しくは請求項5において、前記
試料採取弁は計量管を有する6ポートの試料採取弁であ
ることを特徴とする試料の分析装置。
6. The sample analyzer according to claim 4, wherein the sample collection valve is a 6-port sample collection valve having a measuring pipe.
【請求項7】請求項4若しくは請求項5において、前記
試料採取弁は計量管を有する10ポートの試料採取弁で
あることを特徴とする試料の分析装置。
7. The sample analyzer according to claim 4 or 5, wherein the sample collecting valve is a 10-port sample collecting valve having a measuring pipe.
【請求項8】キャリヤガス供給源と、該キャリヤガス供
給源から供給されるキャリヤガスの流量を調節する質量
流量計と、計量管を有し該計量管内の試料を採取する試
料採取弁と、該試料採取弁から送出される流体を一定比
率で第1乃至第3の流れに分割する注入口と、該第1分
流が供給され前記試料中の被測定成分をクロマトグラフ
ィックに分離する分離カラムと、前記第2分流の圧力を
制御して前記分離カラムのヘッド圧を制御する圧力制御
弁と、前記第3分流の圧力を調節する減圧弁及び流体抵
抗器とを具備し、前記試料採取弁による試料採取時に前
記分離カラムのヘッド圧を一定時間高くした状態で前記
試料を採取して前記分離カラムに搬送してのち、前記ヘ
ッド圧を元の圧力に戻すことを特徴とする試料の分析装
置。
8. A carrier gas supply source, a mass flow meter for adjusting the flow rate of a carrier gas supplied from the carrier gas supply source, a sampling valve having a measuring pipe for collecting a sample in the measuring pipe, An inlet for dividing the fluid delivered from the sample collection valve into first to third streams at a fixed ratio, and a separation column for chromatographically separating the components to be measured in the sample supplied with the first split stream. A pressure control valve for controlling the pressure of the second split stream to control the head pressure of the separation column; a pressure reducing valve for adjusting the pressure of the third split stream; and a fluid resistor. An apparatus for analyzing a sample, wherein the sample pressure is returned to the original pressure after the sample is sampled and conveyed to the separation column in a state where the head pressure of the separation column is increased for a certain time at the time of sample collection.
【請求項9】請求項8において、前記分離カラムはキャ
ピラリーカラムであることを特徴とする試料の分析装
置。
9. The sample analyzer according to claim 8, wherein the separation column is a capillary column.
JP26652492A 1992-09-09 1992-09-09 Method and apparatus for analyzing sample Pending JPH0694693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26652492A JPH0694693A (en) 1992-09-09 1992-09-09 Method and apparatus for analyzing sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26652492A JPH0694693A (en) 1992-09-09 1992-09-09 Method and apparatus for analyzing sample

Publications (1)

Publication Number Publication Date
JPH0694693A true JPH0694693A (en) 1994-04-08

Family

ID=17432091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26652492A Pending JPH0694693A (en) 1992-09-09 1992-09-09 Method and apparatus for analyzing sample

Country Status (1)

Country Link
JP (1) JPH0694693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181173A (en) * 2016-03-29 2017-10-05 日本写真印刷株式会社 Gas chromatography device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181173A (en) * 2016-03-29 2017-10-05 日本写真印刷株式会社 Gas chromatography device

Similar Documents

Publication Publication Date Title
US4271697A (en) Chromatographic analysis
US8297107B2 (en) System for regulating fluid flowing through chromatographic column
US5711786A (en) Gas chromatographic system with controlled sample transfer
US3790348A (en) Apparatus for determining the carbon monoxide, methane and total hydrocarbons content in air
US3638396A (en) Gas chromatograph interfacing system and method
CN101329228B (en) Peroxy acyl radical nitric acid lipid substance sampling system and detection method
US7255834B2 (en) Method and devices for improving the dynamic flash combustion reaction connected with gas chromatography for the elemental analysis of C H N S O
US6447575B2 (en) Method and apparatus for gas chromatography analysis of samples
US6475437B1 (en) Method and system for preparing samples for gas chromatography
US4442217A (en) Sample injection
US4151741A (en) Method and apparatus for gas chromatographic analysis
JP3915280B2 (en) Gas sample introduction device for gas chromatograph
RU182536U1 (en) GAS CHROMATOGRAPH
US20120125083A1 (en) Gas Chromatography With Ambient Pressure Stability Control
JPH0694693A (en) Method and apparatus for analyzing sample
US4873058A (en) Flow divider for gas chromatographs
US3483731A (en) Trace component chromatography
US3800593A (en) Gas sampling apparatus for chromatographs
EP0654667A1 (en) Gas chromatography systems
CN202903754U (en) Inlet gas path automatic control structure of flame ionization detector of gas chromatograph
JPH0755780A (en) High sensitivity measuring apparatus for ultra-trace ingredient in various gas by gas chromatograph
CN116990427B (en) Sample injection control device for hydrocarbon analysis
JP2000074882A (en) Method and device for analyzing trace impurity in gas
JPH1026616A (en) Chromatograph analyzing system
JP2508749B2 (en) Gas chromatograph