JPH0694594A - Evaluation method for resin surface characteristic - Google Patents

Evaluation method for resin surface characteristic

Info

Publication number
JPH0694594A
JPH0694594A JP24672292A JP24672292A JPH0694594A JP H0694594 A JPH0694594 A JP H0694594A JP 24672292 A JP24672292 A JP 24672292A JP 24672292 A JP24672292 A JP 24672292A JP H0694594 A JPH0694594 A JP H0694594A
Authority
JP
Japan
Prior art keywords
resin
contact angle
temperature
liquid
dynamic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24672292A
Other languages
Japanese (ja)
Inventor
Tatsuro Yoshida
達朗 吉田
Norihiro Kaiya
法博 海谷
Naoyuki Amaya
直之 天谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP24672292A priority Critical patent/JPH0694594A/en
Publication of JPH0694594A publication Critical patent/JPH0694594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To evaluate the surface characteristics of a resin including thermal characteristics by measuring a dynamic contact angle with variation of the temperature of liquid including water and organic solvent. CONSTITUTION:Resin to be evaluated is hung down from a load detector 12a and liquid is poured in a liquid container 14. Water or an organic solvent is controlled at a specified temperature with a circulation temperature controller 1. Then, a driver part 15 is operated to move up the container 14 and the load of throwing the resin 13 in the container 14 is detected with a load detector 12a and the contact angle (forward angle) is indicated on a contact angle indicator 12b. By operating the driver part 15, the resin 13 is pulled out of the container 14 and the load of pulling up is detected with the detector 12 and the contact angle backward angle) is indicated on the contact angle indicator 12b. Then, the liquid temperature in the container 14 is varied with the controlled to a specified temperature, and by repeating the similar operation for desired times, dynamic contact angle of the resin 13 related to thermal variations can be measured. Also, by varying the liquid temperature continuously and repeating the similar operation, dynamic contact angle of the resin can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂の実用的な用途範
囲等を決定するにあたって測定される樹脂の撥水性、撥
油性等の表面特性を評価するための新規な評価方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel evaluation method for evaluating surface characteristics such as water repellency and oil repellency of a resin which is measured in determining a practical application range of the resin.

【0002】[0002]

【従来の技術】従来、有機化学分野の進歩に伴い、種々
の樹脂材料が開発され、様々な分野に多用されている。
このような樹脂の特性を評価する方法としては種々提案
され、実施されているが、中でもその表面特性は、樹脂
の実用性能に大きく影響している。
2. Description of the Related Art Conventionally, various resin materials have been developed and widely used in various fields with the progress of the field of organic chemistry.
Various methods for evaluating the properties of such resins have been proposed and implemented, but among them, their surface properties have a great influence on the practical performance of the resins.

【0003】このような樹脂の表面特性を評価する方法
としては、例えば、フーリエ変換赤外分光計(FT−I
R)、X線光電子分光(XPS)、走査電子顕微鏡(S
EM)等を用いた分光学的方法;接着、粘着、剥離現象
等を測定する物理学的方法又は接触角測定法等が知られ
ている。特に接触角測定法は、樹脂の実用に即した表面
特性を直接評価できることが知られている。該接触角測
定法としては、静止した樹脂上の液滴を測定する静的接
触角測定法及び液体中で樹脂又は樹脂コーティングした
支持板を上下動させ、樹脂表面に係わる張力を測定し
て、樹脂の表面特性を評価する動的接触角測定法があ
り、特に動的接触角測定法は、再現性に優れている。
As a method for evaluating the surface characteristics of such a resin, for example, a Fourier transform infrared spectrometer (FT-I) is used.
R), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (S
A spectroscopic method using EM) and the like; a physical method for measuring adhesion, tackiness, peeling phenomenon and the like, a contact angle measuring method and the like are known. In particular, it is known that the contact angle measuring method can directly evaluate the surface characteristics of the resin in practical use. As the contact angle measuring method, a static contact angle measuring method for measuring a liquid droplet on a stationary resin and a supporting plate coated with a resin or a resin in a liquid are moved up and down to measure a tension related to a resin surface, There is a dynamic contact angle measuring method for evaluating the surface characteristics of a resin, and the dynamic contact angle measuring method is particularly excellent in reproducibility.

【0004】しかしながら、前記従来の接触角測定法で
は、測定が室温において行われていたにすぎず、接触角
の温度依存性、即ち表面特性と熱特性との関係について
は何等検討がなされていないのが現状であって、特に熱
的作用により変化しやすい樹脂、更には高温下において
使用される樹脂等においては、所望の表面特性評価がな
されていなかったのが実情である。
However, in the above-mentioned conventional contact angle measuring method, the measurement was performed only at room temperature, and no consideration was made on the temperature dependence of the contact angle, that is, the relationship between the surface characteristics and the thermal characteristics. However, in the current situation, the desired surface property evaluation has not been carried out in the case of a resin which is particularly apt to change due to a thermal action, and further a resin which is used at a high temperature.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、熱的
特性をも含めた樹脂の撥水性、撥油性等の表面特性を直
接評価することができる、新規な樹脂表面特性の評価方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel resin surface property evaluation method capable of directly evaluating surface properties such as water repellency and oil repellency of a resin including thermal properties. To provide.

【0006】[0006]

【課題を解決するための手段】本発明によれば、樹脂の
表面特性を動的接触角測定により評価するにあたり、該
動的接触角測定を、水及び/又は有機溶剤を含む液体に
対して、該液体の温度を変化させて測定することを特徴
とする樹脂表面特性の評価方法が提供される。
According to the present invention, when the surface characteristics of a resin are evaluated by dynamic contact angle measurement, the dynamic contact angle measurement is performed on a liquid containing water and / or an organic solvent. A method for evaluating resin surface characteristics is provided, which is characterized in that the temperature of the liquid is changed and measured.

【0007】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0008】本発明の評価方法において、測定対象とな
る樹脂は、特に限定されるものではなく、ポリ(フマル
酸イソプロピル−3,3,4,4,5,5,6,6,
7,7,8,8,8−トリデカフルオロオクチル)、ポ
リ(フマル酸イソプロピル−3,3,4,4,5,5,
6,6,7,7,8,8,9,9,10,10,10−
ヘプタデカフルオロデシル)等のポリフマル酸エステル
類、ポリ(メタ)アクリル酸エステル類、ポリイタコン
酸エステル類、トリアセチルセルロース、ポリエチレン
テレフタレート、ポリスチレン系樹脂、ポリオレフィン
系樹脂、ポリエステル樹脂、ポリウレタン樹脂等を挙げ
ることができ、例えば板状に成形した樹脂;硝子、シリ
コンウェハ等の無機質基板又は塩化ビニル、ポリエチレ
ンテレフタラート等の高分子基板等にコーティングした
樹脂;これらの基板に貼着した製膜樹脂等の形態等によ
って、測定に供することができる。
In the evaluation method of the present invention, the resin to be measured is not particularly limited, and poly (isopropyl fumarate-3,3,4,5,5,6,6,6) is used.
7,7,8,8,8-tridecafluorooctyl), poly (isopropyl fumarate-3,3,4,4,5,5,5)
6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl) and other polyfumaric acid esters, poly (meth) acrylic acid esters, polyitaconic acid esters, triacetyl cellulose, polyethylene terephthalate, polystyrene resins, polyolefin resins, polyester resins, polyurethane resins, etc. For example, a resin molded in a plate shape; a resin coated on an inorganic substrate such as glass or a silicon wafer or a polymer substrate such as vinyl chloride or polyethylene terephthalate; a film-forming resin attached to these substrates It can be used for measurement according to the above.

【0009】本発明の評価方法では、評価する樹脂を前
記形態等に成形し、水及び/又は有機溶剤を含む液体中
において、通常の動的接触角測定法に従って測定するこ
とができるのであるが、この際前記液体の温度を変化さ
せて測定する必要がある。このように液体の温度を変化
させて測定することにより、熱的特性に関係した樹脂の
表面特性を明確に評価することができる。
In the evaluation method of the present invention, the resin to be evaluated can be molded into the above-mentioned form and the like, and can be measured in a liquid containing water and / or an organic solvent according to a usual dynamic contact angle measuring method. At this time, it is necessary to measure by changing the temperature of the liquid. By thus measuring the temperature of the liquid while changing it, it is possible to clearly evaluate the surface characteristics of the resin related to the thermal characteristics.

【0010】本発明に用いる前記液体としては、評価す
る樹脂を溶解せず、且つ温度変化させる温度範囲に対し
て、好ましくは十分高い沸点を有する液体を適宜選択す
れば良く、例えば水、有機溶剤としてn−ドデカン、n
−デカン、n−ウンデカン、ヘキサン、オクタン又は市
販のぬれ指数標準液等を挙げることができ、更にこれら
を含む乳化液又は懸濁液等を挙げることができる。
As the liquid used in the present invention, a liquid which does not dissolve the resin to be evaluated and preferably has a sufficiently high boiling point with respect to the temperature range in which the temperature is changed may be appropriately selected, for example, water or an organic solvent. As n-dodecane, n
-Decane, n-undecane, hexane, octane, a commercially available standard solution of wetting index, and the like, and an emulsion or suspension containing these can be given.

【0011】また前記液体の温度を変化させる際の温度
範囲は、評価する樹脂及び目的に応じて適宜決定するこ
とができ、例えば実用的には−20〜120℃、好まし
くは、樹脂の表面特性において熱的要件が影響を及ぼす
可能性が大きい温度範囲、例えば評価する樹脂の分子運
動を反映させる温度付近、特に評価する樹脂のガラス転
移温度付近、更には評価する樹脂のガラス転移温度±3
0℃、特に評価する樹脂のガラス転移温度±20℃の温
度範囲等で変化させるのが望ましい。この際変化させる
温度は、連続的変化であっても段階的変化であっても良
く、好ましくは評価する樹脂が同一物である場合には連
続的に温度を変化させて、また評価する樹脂が複数の異
なる物である場合には段階的に温度を変化させて測定す
るのが望ましい。
The temperature range for changing the temperature of the liquid can be appropriately determined depending on the resin to be evaluated and the purpose, for example, practically -20 to 120 ° C., preferably surface characteristics of the resin. In the temperature range in which the thermal requirements are likely to affect, for example, the temperature around the molecular motion of the resin to be evaluated, especially the glass transition temperature of the resin to be evaluated, and further the glass transition temperature of the resin to be evaluated ± 3
It is desirable to change the temperature at 0 ° C., particularly within the temperature range of the glass transition temperature of the resin to be evaluated ± 20 ° C. At this time, the temperature to be changed may be continuous change or stepwise change. Preferably, when the resin to be evaluated is the same, the temperature is continuously changed and the resin to be evaluated is changed. When a plurality of different objects are used, it is desirable to change the temperature stepwise for measurement.

【0012】本発明の評価方法を実施するにあたり使用
可能な装置としては、従来市販されている動的接触角測
定装置等において、評価する試料を投入する液体の温度
を所定温度に調節することができる液体温度調節器を備
えた装置等であれば特に限定されるものではない。
As a device that can be used for carrying out the evaluation method of the present invention, in a commercially available dynamic contact angle measuring device or the like, it is possible to adjust the temperature of the liquid into which the sample to be evaluated is added to a predetermined temperature. There is no particular limitation as long as it is an apparatus including a liquid temperature controller that can be used.

【0013】更に本発明の評価方法では、表面特性及び
熱的特性との関係をより明確化するために、評価する樹
脂に対して、水、有機溶剤の2種以上について測定する
のが好ましい。具体的には例えば、樹脂中の親水性基や
撥水性基の分子運動の温度依存性を測定するには水を使
用し、一方樹脂中の親油性基や撥油性基の分子運動の温
度依存性を測定するには有機溶剤を使用して解析するの
が好ましく、これら2つの分子運動の温度依存性を調べ
る場合には、水及び有機溶剤の両方に対して別々に測定
するのが好ましい。
Further, in the evaluation method of the present invention, in order to further clarify the relationship between the surface characteristics and the thermal characteristics, it is preferable to measure two or more kinds of water and an organic solvent for the resin to be evaluated. Specifically, for example, water is used to measure the temperature dependence of the molecular motion of hydrophilic or water-repellent groups in the resin, while the temperature dependence of the molecular motion of lipophilic or oil-repellent groups in the resin is used. In order to measure the property, it is preferable to analyze using an organic solvent, and when investigating the temperature dependence of these two molecular motions, it is preferable to measure separately for both water and the organic solvent.

【0014】また、実用に即した液体を用いて測定する
ことも可能であり、具体的には例えば、プリンタのイン
ク噴射部分のコーティングに用いる樹脂に対しては、イ
ンクに対する動的接触角を、生体適合性材料の表面部分
のコーティングに用いる樹脂に対しては、血液成分等に
対する動的接触角を測定することで、それぞれの実用条
件下での撥液性の温度特性を評価することができる。
It is also possible to measure with a liquid suitable for practical use. Specifically, for example, for a resin used for coating the ink ejecting portion of a printer, the dynamic contact angle with respect to ink is For the resin used to coat the surface of the biocompatible material, the temperature characteristic of liquid repellency under each practical condition can be evaluated by measuring the dynamic contact angle with respect to blood components, etc. .

【0015】具体的には例えば図1を参照して装置の一
実施態様及び本発明の評価方法の一例を説明するが、本
発明はこれに限定されるものではない。
Specifically, one embodiment of the apparatus and an example of the evaluation method of the present invention will be specifically described with reference to FIG. 1, but the present invention is not limited to this.

【0016】図1において、10は本発明の評価方法に
使用可能な、循環式温度調節器11を備える動的接触角
測定装置である。該動的接触角測定装置10は、測定試
料である樹脂13の荷重変化を検出する荷重検出部12
aと、該荷重検出部12aにより検出した荷重を接触角
に変換して表示する接触角表示部12bと、液体を収容
し、循環式温度調節器11に接続する液体収容部14
と、前記樹脂13が該液体収容部14内を上下動しうる
ように、該液体収容部14を上下動させるための駆動部
15とを備える。
In FIG. 1, 10 is a dynamic contact angle measuring device equipped with a circulation type temperature controller 11 which can be used in the evaluation method of the present invention. The dynamic contact angle measuring device 10 includes a load detector 12 for detecting a load change of a resin 13 as a measurement sample.
a, a contact angle display unit 12b that converts the load detected by the load detection unit 12a into a contact angle and displays the contact angle, and a liquid storage unit 14 that stores a liquid and is connected to the circulation temperature controller 11.
And a drive unit 15 for moving the liquid storage unit 14 up and down so that the resin 13 can move up and down in the liquid storage unit 14.

【0017】本発明の評価方法では、評価する樹脂13
を、荷重検出部12aに吊り下げ、液体収容部14内に
適当な液体を投入し、循環式温度調節器11により、前
記水又は有機溶剤を所定温度に調整した後、駆動部15
を作動させて、液体収容部14を上方に移動させ、樹脂
13が液体収容部14内に投入する際の荷重を、荷重検
出部12aにより検出して、接触角表示部12bに接触
角(前進角)を表示する。次に駆動部15を作動させて
液体収容部14を下方に移動させることにより樹脂13
を液体収容部14内から引揚げ、この引揚げる際の荷重
を、荷重検出部12aにより検出して、接触角表示部1
2bに接触角(後退角)を表示する。次いで液体収容部
14内の液体の温度を循環式温度調節器11により変化
させて、所定温度に達したところで、前述同様な操作を
所望回数繰り返すことにより、樹脂13の熱的変化に係
わる動的接触角を測定することができる。また前記液体
収容部14内の液体の温度を循環式温度調節器11によ
り連続的に変化させながら、前述と同様な操作を繰り返
して樹脂13の動的接触角を測定することもできる。
In the evaluation method of the present invention, the resin 13 to be evaluated is used.
Is hung on the load detection unit 12a, an appropriate liquid is put into the liquid storage unit 14, and the circulating temperature controller 11 adjusts the water or the organic solvent to a predetermined temperature.
Is operated to move the liquid storage portion 14 upward, and the load when the resin 13 is put into the liquid storage portion 14 is detected by the load detection portion 12a, and the contact angle (forward movement) is displayed on the contact angle display portion 12b. (Corner) is displayed. Next, the drive unit 15 is operated to move the liquid storage unit 14 downward, so that the resin 13
Is lifted from inside the liquid storage portion 14, and the load at the time of lifting is detected by the load detection portion 12a, and the contact angle display portion 1
The contact angle (receding angle) is displayed on 2b. Then, the temperature of the liquid in the liquid storage unit 14 is changed by the circulation type temperature controller 11, and when the temperature reaches a predetermined temperature, the same operation as described above is repeated a desired number of times, thereby dynamically changing the temperature of the resin 13. The contact angle can be measured. Further, the dynamic contact angle of the resin 13 can be measured by repeating the same operation as described above while continuously changing the temperature of the liquid in the liquid storage portion 14 by the circulation type temperature controller 11.

【0018】[0018]

【発明の効果】本発明の評価方法では、水及び/又は有
機溶剤を含む液体を用い、且つ該液体の温度を変えて動
的接触角を測定するので、評価する樹脂の撥水性、撥油
性、耐熱性、耐候性、硬化性基板密着性等の表面特性と
熱的特性を明らかにすることができ、樹脂の実用温度範
囲での表面特性を評価することができる。
In the evaluation method of the present invention, a liquid containing water and / or an organic solvent is used, and the dynamic contact angle is measured by changing the temperature of the liquid. , Surface characteristics such as heat resistance, weather resistance and curable substrate adhesion and thermal characteristics can be clarified, and surface characteristics of the resin in a practical temperature range can be evaluated.

【0019】[0019]

【実施例】以下本発明を実施例により更に詳細に説明す
るが本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto.

【0020】[0020]

【実施例1】樹脂として、ポリ(フマル酸イソプロピル
−3,3,4,4,5,5,6,6,7,7,8,8,
8−トリデカフルオロオクチル)(ガラス転移温度25
℃)を用い、該樹脂の1,1,2−トリクロロ−1,
2,2−トリフルオロエタン1重量%溶液を調製した。
次いで20×50×0.5mmの塩化ビニル基板を、前
記樹脂溶液中に浸漬して、樹脂がコーティングされた基
板を作成し、これを試料基板とした。得られた試料基板
を、前述した図1に示す動的接触角測定装置10の樹脂
13に変えて設置し、純水に対して同様な方法により測
定温度5〜50℃の範囲で5℃毎に変化させて前進角及
び後退角の動的接触角を測定した。その結果を図2に示
す。図2の結果よりガラス転移温度以上では後退角が減
少し、樹脂の撥水性が低下することが認められた。
Example 1 As a resin, poly (isopropyl fumarate-3,3,4,4,5,5,6,6,7,7,8,8,
8-tridecafluorooctyl) (glass transition temperature 25
C.), 1,1,2-trichloro-1,
A 1% by weight solution of 2,2-trifluoroethane was prepared.
Then, a 20 × 50 × 0.5 mm vinyl chloride substrate was immersed in the resin solution to prepare a resin-coated substrate, which was used as a sample substrate. The obtained sample substrate was placed in place of the resin 13 of the dynamic contact angle measuring device 10 shown in FIG. 1 described above, and the same method was used for pure water at a measurement temperature of 5 to 50 ° C. at every 5 ° C. And the dynamic contact angles of the advancing angle and the receding angle were measured. The result is shown in FIG. From the results of FIG. 2, it was confirmed that the receding angle was decreased and the water repellency of the resin was decreased at the glass transition temperature or higher.

【0021】[0021]

【実施例2】純水の代わりにn−ドデカンを用いた以外
は実施例1と同様に行い動的接触角を測定した。その結
果を図3に示す。図3の結果よりガラス転移温度以上で
は前進角及び後退角がともに増大し、樹脂の撥油性が増
大することが認められた。
Example 2 The dynamic contact angle was measured in the same manner as in Example 1 except that n-dodecane was used instead of pure water. The result is shown in FIG. From the results of FIG. 3, it was confirmed that the advancing angle and the receding angle both increased at the glass transition temperature or higher, and the oil repellency of the resin increased.

【0022】[0022]

【実施例3】樹脂として、ポリ(フマル酸イソプロピル
−3,3,4,4,5,5,6,6,7,7,8,8,
9,9,10,10,10−ヘプタデカフルオロデシ
ル)(ガラス転移温度32℃)を用いた以外は実施例1
と同様に行い動的接触角を測定した。その結果を図4に
示す。図4の結果よりガラス転移温度以上では後退角が
減少し、樹脂の撥水性が低下することが認められた。
Example 3 As resin, poly (isopropyl fumarate-3,3,4,4,5,5,6,6,7,7,8,8,
Example 1 except that 9,9,10,10,10-heptadecafluorodecyl) (glass transition temperature 32 ° C.) was used.
The dynamic contact angle was measured in the same manner as above. The result is shown in FIG. From the results of FIG. 4, it was confirmed that the receding angle was decreased and the water repellency of the resin was decreased at the glass transition temperature or higher.

【0023】[0023]

【実施例4】純水の代わりにn−ドデカンを用いた以外
は実施例3と同様に行い動的接触角を測定した。その結
果を図5に示す。図5の結果よりガラス転移温度以上で
は前進角及び後退角がともに増大し、樹脂の撥油性が増
大することが認められた。
Example 4 The dynamic contact angle was measured in the same manner as in Example 3 except that n-dodecane was used instead of pure water. The result is shown in FIG. From the results of FIG. 5, it was confirmed that the advancing angle and the receding angle both increased at the glass transition temperature or higher, and the oil repellency of the resin increased.

【0024】[0024]

【実施例5】樹脂として、トリアセチルセルロース(ガ
ラス転移温度43℃)の20×50×0.16mmの板
状フィルムを使用し、測定温度を20〜60℃とした以
外は実施例1と同様に行い動的接触角を測定した。その
結果を図6に示す。図6の結果よりガラス転移温度以上
では後退角が減少し、樹脂の撥水性が低下することが認
められた。
Example 5 The same as Example 1 except that a 20 × 50 × 0.16 mm plate-like film of triacetyl cellulose (glass transition temperature 43 ° C.) was used as the resin and the measurement temperature was 20 to 60 ° C. Then, the dynamic contact angle was measured. The result is shown in FIG. From the results of FIG. 6, it was confirmed that the receding angle was decreased and the water repellency of the resin was decreased at the glass transition temperature or higher.

【0025】[0025]

【実施例6】樹脂として、ポリエチレンテレフタレート
(ガラス転移温度73℃)の20×50×0.10mm
の板状フィルムを使用し、測定温度を50〜90℃とし
た以外は実施例1と同様に行い動的接触角を測定した。
その結果を図7に示す。図7の結果よりガラス転移温度
付近での接触角の変化は認められず、ポリエチレンテレ
フタレートのような側鎖をもたない樹脂では、撥水性の
温度依存性がないことが判った。
Example 6 As a resin, polyethylene terephthalate (glass transition temperature 73 ° C.) 20 × 50 × 0.10 mm
The dynamic contact angle was measured in the same manner as in Example 1 except that the plate-shaped film of 1 was used and the measurement temperature was 50 to 90 ° C.
The result is shown in FIG. 7. From the results shown in FIG. 7, no change in contact angle was observed near the glass transition temperature, and it was found that the resin having no side chain such as polyethylene terephthalate has no temperature dependence of water repellency.

【0026】[0026]

【実施例7】樹脂として、フマル酸イソプロピル−3,
3,4,4,5,5,6,6,7,7,8,8,9,
9,10,10,10−ヘプタデカフルオロデシル)と
エチルメチルブタン酸ビニルの共重合体(組成重量比=
8:2;ガラス転移温度40℃)を、20×50×0.
1mmの市販のカバーグラスを用い、純水の代わりにエ
コール社製のボトルインクを用いた以外は実施例1と同
様に行い動的接触角を測定した。その結果を図8に示
す。図8の結果よりガラス転移温度以上では後退角が減
少し、樹脂のインクに対する撥液性が低下することが認
められた。
Example 7 As a resin, isopropyl fumarate-3,
3,4,4,5,5,6,6,7,7,8,8,9,
Copolymer of 9,10,10,10-heptadecafluorodecyl) and vinyl ethylmethylbutanoate (composition weight ratio =
8: 2; glass transition temperature 40 ° C.), 20 × 50 × 0.
The dynamic contact angle was measured in the same manner as in Example 1 except that a 1 mm commercially available cover glass was used and a bottle ink manufactured by Ecole was used instead of pure water. The result is shown in FIG. From the results of FIG. 8, it was confirmed that the receding angle was decreased at the glass transition temperature or higher, and the liquid repellency of the resin to ink was decreased.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の評価方法に使用可能な動的接触
角測定装置を示す該略図である。
FIG. 1 is a schematic diagram showing a dynamic contact angle measuring device that can be used in the evaluation method of the present invention.

【図2】図2は実施例1で測定した温度変化に対する樹
脂表面の動的接触角の結果を示すグラフである。
FIG. 2 is a graph showing the results of the dynamic contact angle of the resin surface with respect to the temperature change measured in Example 1.

【図3】図3は実施例2で測定した温度変化に対する樹
脂表面の動的接触角の結果を示すグラフである。
FIG. 3 is a graph showing the results of the dynamic contact angle of the resin surface with respect to the temperature change measured in Example 2.

【図4】図4は実施例3で測定した温度変化に対する樹
脂表面の動的接触角の結果を示すグラフである。
FIG. 4 is a graph showing the results of the dynamic contact angle of the resin surface with respect to the temperature change measured in Example 3.

【図5】図5は実施例4で測定した温度変化に対する樹
脂表面の動的接触角の結果を示すグラフである。
FIG. 5 is a graph showing the results of the dynamic contact angle of the resin surface with respect to the temperature change measured in Example 4.

【図6】図6は実施例5で測定した温度変化に対する樹
脂表面の動的接触角の結果を示すグラフである。
FIG. 6 is a graph showing the results of the dynamic contact angle of the resin surface with respect to the temperature change measured in Example 5.

【図7】図7は実施例6で測定した温度変化に対する樹
脂表面の動的接触角の結果を示すグラフである。
FIG. 7 is a graph showing the results of the dynamic contact angle of the resin surface with respect to the temperature change measured in Example 6.

【図8】図8は実施例7で測定した温度変化に対する樹
脂表面の動的接触角の結果を示すグラフである。
FIG. 8 is a graph showing the results of the dynamic contact angle of the resin surface with respect to the temperature change measured in Example 7.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 樹脂の表面特性を動的接触角測定により
評価するにあたり、該動的接触角測定を、水及び/又は
有機溶剤を含む液体に対して、該液体の温度を変化させ
て測定することを特徴とする樹脂表面特性の評価方法。
1. When evaluating the surface characteristics of a resin by dynamic contact angle measurement, the dynamic contact angle measurement is measured by changing the temperature of the liquid with respect to a liquid containing water and / or an organic solvent. A method for evaluating resin surface characteristics, comprising:
JP24672292A 1992-09-16 1992-09-16 Evaluation method for resin surface characteristic Pending JPH0694594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24672292A JPH0694594A (en) 1992-09-16 1992-09-16 Evaluation method for resin surface characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24672292A JPH0694594A (en) 1992-09-16 1992-09-16 Evaluation method for resin surface characteristic

Publications (1)

Publication Number Publication Date
JPH0694594A true JPH0694594A (en) 1994-04-05

Family

ID=17152682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24672292A Pending JPH0694594A (en) 1992-09-16 1992-09-16 Evaluation method for resin surface characteristic

Country Status (1)

Country Link
JP (1) JPH0694594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431961A4 (en) * 2016-09-30 2019-05-01 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Magnetic pole part, fiber-reinforced material, test apparatus therefor, and control method for test apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431961A4 (en) * 2016-09-30 2019-05-01 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Magnetic pole part, fiber-reinforced material, test apparatus therefor, and control method for test apparatus
AU2017333529B2 (en) * 2016-09-30 2020-04-30 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Magnetic pole part, fiber-reinforced material, test apparatus therefor, and control method for test apparatus
US11193869B2 (en) 2016-09-30 2021-12-07 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Magnetic pole part, fiber-reinforced material, test apparatus therefor, and control method for test apparatus

Similar Documents

Publication Publication Date Title
Kuzmenka et al. Collapse of poly (ethylene oxide) monolayers
Lam et al. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis
Kwok et al. Contact angle measurement and contact angle interpretation
Sauer et al. Surface tension and dynamic wetting on polymers using the Wihelmy method: Applications to high molecular weights and elevated temperatures
Extrand Contact angles and hysteresis on surfaces with chemically heterogeneous islands
Lee Correlation between Lewis acid− base surface interaction components and linear solvation energy relationship solvatochromic α and β parameters
Grate et al. Dewetting effects on polymer-coated surface acoustic wave vapor sensors
Priestley et al. Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer–silica nanocomposites
US3619254A (en) Thermometric articles and methods for preparing same
Salamanca et al. Lateral drying in thick films of waterborne colloidal particles
Chowdhury et al. Segmental relaxations have macroscopic consequences in glassy polymer films
Lhermerout et al. Contact angle dynamics on pseudo-brushes: Effects of polymer chain length and wetting liquid
US2384848A (en) Dispersions of ethlyene polymers
Kwok Contact angles and surface energetics
Geng et al. Molecular-weight dependent Tg depression of silica-supported poly (α-methyl styrene) films
Tavana et al. On the question of rate-dependence of contact angles
Tokuyama et al. Effects of synthesis-solvent on swelling and elastic properties of poly (N-isopropylacrylamide) hydrogels
JPH03169590A (en) Heat reversible recording material
JPH0694594A (en) Evaluation method for resin surface characteristic
WO2005003246A1 (en) Surface tension control agent for coating material and coating material containing same
Pongprayoon et al. Surface characterization of cotton coated by a thin film of polystyrene with and without a cross-linking agent
Hu et al. Coating based on the modified chlorinated polypropylene emulsion for promoting printability of biaxially oriented polypropylene film
Sohn et al. Wettability of the morphologically and compositionally varied surfaces prepared from blends of well ordered comb-like polymer and polystyrene
Arda et al. Film formation from nanosized copolymeric latex particles: a photon transmission study
Rosano et al. Determination of the critical surface tension using an automatic wetting balance