JPH0694586A - Polutant sampling device and average pollutant concentration measuring method - Google Patents

Polutant sampling device and average pollutant concentration measuring method

Info

Publication number
JPH0694586A
JPH0694586A JP4284890A JP28489092A JPH0694586A JP H0694586 A JPH0694586 A JP H0694586A JP 4284890 A JP4284890 A JP 4284890A JP 28489092 A JP28489092 A JP 28489092A JP H0694586 A JPH0694586 A JP H0694586A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
pollutant
sampling device
fluid inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4284890A
Other languages
Japanese (ja)
Inventor
Masahiro Hori
雅宏 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4284890A priority Critical patent/JPH0694586A/en
Publication of JPH0694586A publication Critical patent/JPH0694586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To exactly measure the average pollutant concentration by providing a gas difusion part and vessel body with a specified fraction of cross sectional area, a fluid inlet and outlet parts and a agent selectively catching polutant, catching. CONSTITUTION:A polutant sampling device 1 is almost horizontally placed at a sampling position and the lid part 12 of a gas difusion part 10 is opened. Then, after leaving it for a certain time, the part 12 is fixed to the part 10 to seal it. While air free of carbon dioxide is blowing around the lid part 32 of a fluid inlet outlet part 30, the lid part 32 is opened and sulphuric acid is added from the fluid inlet/outlet part 30 and the lid part 32 is placed for shaking and is left for a certain time. Then, the inside of gas flow path in a carbon dioxide meter is replaced with air free of carbon dioxide and the device 1 is shaker strongly again. The part 32 and 12 of the device 1 is opened, the part 30 is connected to the sample inlet 41 of a carbon dioxide concentration meter 40 of the part 30. Also by connecting the part 10 to the exhaust 42 of the carbon dioxide concentration meter, gas circulation path is formed. By this, the average carbon dioxide concentration is measured independent of the external environment, air quality on the sampling device 1 and the concentration meter 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、環境空気、特にオフィ
スビル、住宅、温室、地下の作業所等の閉鎖空間の環境
空気質を評価するための汚染物質サンプリング装置及び
汚染物質平均濃度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pollutant sampling device and a pollutant average concentration measuring method for evaluating ambient air, particularly ambient air quality in an enclosed space such as an office building, a house, a greenhouse, and an underground work place. Regarding

【従来の技術】閉鎖空間環境中の汚染物質測定方法とし
ては、従来より種々提案されており、代表的な測定対象
として二酸化炭素を挙げることができる。従来の環境中
の二酸化炭素濃度を測定する方法としては、下記の
(1)〜(4)の方法等がある。 (1)一定容量の試料空気を水酸化バリウム溶液に吸収
した後、シュウ酸、EDTA(エチレンジアミン四酢
酸)を用いて滴定する衛生試験法。 (2)二酸化炭素ガス検知管法。 (3)赤外線吸収法。 (4)隔膜pH電極法。 しかしながら、前述の(1)〜(4)の方法には、以下
の問題点がある。 (1)外気を遮断して定量するため、特殊な容器が必要
で、測定操作が煩雑である。 (2)通常ポンプで1分間程度吸引して採気するが、拡
散採気を利用した場合には低濃度長時間暴露で境界が不
明瞭になり、また入口から呈色先端面までの拡散距離が
変化するため、測定精度が低い。 (3)現在、室内環境の評価に用いられている方法で連
続測定が可能で、選択性もあるが、採気する際にポンプ
で吸引しなければならず、長時間にわたり居住環境で使
用するには適さない。また装置が高価であるため、環境
中の濃度分布解析等、同時に数箇所で測定する場合には
費用がかかる。 (4)連続使用可能であるが、pH電極法を用いるた
め、より酸性度の強い共存ガス等の妨害を受けやすい。 さらに、(3)と(4)とを長時間、平均濃度測定に利
用する場合には、記録計かデータロガーが必要となる。
一方、環境空気質の測定に際して、拡散を利用するパッ
シブサンプラーで採気後、定量分析することによって測
定する方法も用いられている。該方法では、パッシブサ
ンプラー内にて隔膜を透過した成分を捕集剤に固定し、
該捕集剤に固定された成分を定量分析することにより、
環境空気質の測定を可能とする。代表的な例としては、
下記(a)〜(c)の方法等を挙げることができる。 (a)捕集剤として活性炭を用い、有機蒸気を捕集し、
二硫化炭素で抽出後、ガスクロマトグラフィーにて定量
分析する方法。 (b)捕集剤としてトリエタノールアミン等の添着濾紙
を用い、二酸化窒素を捕集し、吸光光度法で定量分析す
る方法。 (c)捕集剤として水を用い、ホルムアルデヒドを捕集
し、吸光光度法で定量分析する方法。 しかしながら前記(a)〜(c)の方法では、以下の問
題点がある。 隔膜の面積と、捕集剤を設置する部分の面積とが同一
であるため、汚染物質が高濃度の際には、すぐに捕集剤
が飽和状態となる。また隔膜の通気抵抗を高くして捕集
剤が飽和状態となりにくくしても、捕集容量が少ないた
め、長時間、高濃度の捕集には適さない。 捕集剤を取り出した後、液体に抽出(吸収)させ、分
析機器で定量するため、操作が煩雑であり、環境空気質
による測定誤差が生じやすい。 パッシブサンプラーが使い捨てであるため、コスト高
となり、また省資源化の要望にもそぐわない。
2. Description of the Related Art Various methods for measuring pollutants in a closed space environment have been proposed in the past, and carbon dioxide can be cited as a typical measuring object. Conventional methods for measuring the carbon dioxide concentration in the environment include the following methods (1) to (4). (1) A hygiene test method in which a fixed amount of sample air is absorbed in a barium hydroxide solution and then titrated with oxalic acid and EDTA (ethylenediaminetetraacetic acid). (2) Carbon dioxide gas detector tube method. (3) Infrared absorption method. (4) Diaphragm pH electrode method. However, the above methods (1) to (4) have the following problems. (1) A special container is required because the outside air is shut off for quantification, and the measurement operation is complicated. (2) Normally, the air is sucked for about 1 minute with a pump, but when diffusion air is used, the boundary becomes unclear due to long-term low-concentration exposure, and the diffusion distance from the inlet to the coloring tip surface Changes, the measurement accuracy is low. (3) Continuous measurement is possible with the method currently used to evaluate the indoor environment, and it has selectivity, but it must be sucked with a pump when taking air, and it will be used in the living environment for a long time. Not suitable for. In addition, since the device is expensive, it is costly to measure the concentration distribution in the environment at the same time at several points. (4) Although continuous use is possible, since the pH electrode method is used, it is likely to be interfered with by a coexisting gas having a stronger acidity. Further, when (3) and (4) are used for a long time for measuring the average density, a recorder or a data logger is required.
On the other hand, when measuring the environmental air quality, a method is also used in which a passive sampler that uses diffusion is used to perform air sampling and then quantitative analysis. In this method, the components that have passed through the diaphragm in the passive sampler are fixed to the scavenger,
By quantitatively analyzing the components fixed to the scavenger,
Enables measurement of environmental air quality. As a typical example,
The following methods (a) to (c) can be cited. (A) using activated carbon as a collecting agent, collecting organic vapor,
A method of quantitative analysis by gas chromatography after extraction with carbon disulfide. (B) A method of collecting nitrogen dioxide using a filter paper impregnated with triethanolamine or the like as a collecting agent and quantitatively analyzing by absorptiometry. (C) A method in which formaldehyde is collected using water as a collecting agent and quantitatively analyzed by an absorptiometric method. However, the methods (a) to (c) have the following problems. Since the area of the diaphragm and the area of the portion where the scavenger is installed are the same, when the concentration of the pollutant is high, the scavenger becomes saturated immediately. Further, even if the ventilation resistance of the diaphragm is increased to make it difficult for the scavenger to reach a saturated state, it is not suitable for long-term, high-concentration collection because of its small collection capacity. After the scavenger is taken out, the scavenger is extracted (absorbed) in a liquid and quantified with an analytical instrument, so the operation is complicated and measurement errors due to environmental air quality are likely to occur. Since the passive sampler is disposable, the cost is high and it does not meet the demand for resource saving.

【発明が解決しようとする課題】したがって本発明の目
的は、捕集剤が飽和しにくく、長時間、高濃度の汚染物
質でも捕集でき、サンプリング後の定量分析が容易で、
かつ正確な環境中汚染物質平均濃度測定に供することが
でき、さらに再使用可能な汚染物質サンプリング装置、
及び該サンプリング装置及び測定装置の外部環境空気質
の影響がなく、正確な汚染物質平均濃度測定ができる汚
染物質平均濃度測定方法を提供することにある。
Therefore, the object of the present invention is that the scavenger is less likely to be saturated, can collect high-concentration pollutants for a long time, and facilitates quantitative analysis after sampling.
Reusable pollutant sampling device that can be used for accurate and accurate measurement of pollutant average concentration in the environment,
Another object of the present invention is to provide a pollutant average concentration measuring method that can accurately measure the pollutant average concentration without being affected by the ambient air quality of the sampling device and the measuring device.

【課題を解決するための手段】本発明によれば、容器本
体と、該容器本体の上面に設けられた少なくとも隔膜を
備える気体拡散部材と、該気体拡散部材の下方に離隔し
て位置し、該容器本体内に拡散された汚染物質を選択的
に捕集する捕集剤と、該容器本体の上面にて該気体拡散
部材とは離隔して設置された流体入出部材とからなり、
前記気体拡散部材の断面積が、前記容器本体内の内部断
面積の1倍未満であることを特徴とする汚染物質サンプ
リング装置が提供される。また本発明によれば、前記汚
染物質サンプリング装置と、濃度測定装置とを用いる汚
染物質平均濃度測定装置であって、前記流体入出部材を
該濃度測定装置の試料導入口に、また前記気体拡散部材
を該濃度測定装置の排出口にそれぞれ連結して形成され
た循環流路内にて、前記捕集剤に捕集した汚染物質に遊
離気化剤を加えて気化させた気体を循環させることを特
徴とする汚染物質平均濃度測定方法が提供される。以
下、本発明を詳細に説明する。本発明において、汚染物
質とは、オフィスビル、住宅の室内等の閉鎖空間内で発
生するガス状汚染物質を意味し、特に二酸化炭素、一酸
化炭素、アルデヒド類等を好ましく挙げることができ
る。本発明において用いる捕集剤としては、前記汚染物
質を選択的に捕集する薬剤であれば特に限定されるもの
ではなく、汚染物質に応じて公知の薬剤を適宜用いるこ
とができる。貝体的には、例えば二酸化炭素を捕集する
場合には、水酸化ナトリウム、水酸化バリウム等を、ま
た一酸化炭素を捕集する場合には、アンモニアアルカリ
性第一銅等を挙げることができる。また捕集剤の形態と
しては、液体でもシリカゲル等の固体担体上に被覆させ
た形態でもよく、必要に応じて適宜変更することができ
る。さらに溶液として用いる場合には、薬剤の蒸発を防
止するためにポリエチレングリコール、グリセリン、ト
リエタノールアミン等の乾燥防止剤を添加してもよい。
本発明の汚染物質平均濃度測定方法において用いる遊離
気化剤としては、測定対象に応じた遊離気化剤であれば
特に限定されるものではなく、汚染物質に応じて公知の
遊離気化剤を適宜用いることができ、具体的には例えば
硫酸、EDTA等を挙げることができる。本発明のサン
プリング装置の容器本体の形状は、容器本体内での気体
拡散が均一になるように円筒状であることが望ましく、
前記容器本体の容積は、サンプリンク時間、環境中汚染
物質濃度等に応じて変更することができ、例えば数百〜
数千ppmの二酸化炭素を24時間サンプリングする際
には、捕集剤の捕集容量及び気体拡散空間が飽和状態と
なりにくいように、30〜100mmφ×30〜300
mm程度が望ましい。前記気体拡散部材は、環境中の気
体を容器本体内に導入し、捕集剤の表面に拡散する部材
であって、少なくとも隔膜を備える。前記隔膜として
は、通常の気体サンプリング用隔膜を用いることがで
き、具体的には例えばPF060(商品名、Advan
tec社製)、FP−100(商品名、住友電工社製)
等のフッ素樹脂製膜を好ましく挙げることができる。ま
た前記隔膜の膜厚及び空隙率、保留粒子径若しくは孔径
は、捕集すべき汚染物質に応じて適宜変更することがで
きる。具体的には、例えば二酸化炭素を捕集する場合に
は、膜厚0.1〜1mm、空隙率50〜80容酸%、保
留粒子径2〜10μm、孔径0.1〜1μmが好まし
い。さらに、前記気体拡散部材の形状は円筒状とするの
が好ましく、内径はサンプリング時間、汚染物質濃度範
囲等により適宜変更することができる。例えば、二酸化
炭素1000ppm程度、24時間のガンプリングの場
合には4mmφ、二酸化炭素500ppm程度、8時間
のサンプリングの場合には8mmφ、二酸化炭素100
0ppm程度、1カ月のサンプリングの場合には、1m
mφ等とすることができる。なお、前記気体拡散部材
は、気体のみに限らず、ガス状であればミスト等も拡散
することができる。前記流体入出部材は、前記捕集剤を
前記容器本体内へ投入し、後述する濃度測定装置の試料
導入口と接続する部材であり、該部材の形状としては円
筒状が好ましい。前記容器本体、気体拡散部材及び流体
入出部材の材質は、汚染物質に影響されず、気体透過性
のない材質であれば特に限定されるものではなく、例え
ばフッ素樹脂、ポリプロピレン、アクリル樹脂、塩化ビ
ニル樹脂等を好ましく挙げることができる。前記気体拡
散部材の断面積は、前記容器本体内部断面積の1倍未満
であり、特に捕集剤が飽和しにくくするために、1/4
0〜1/2500であることが好ましい。前記気体拡散
部材の断面積が、前記容器本体内部断面積の1倍以上の
場合には、捕集剤が飽和しやすく、長時間、高濃度の捕
集には適さないので、1倍未満とする必要がある。な
お、前記容器本体内部断面積と、捕集剤表面積とは同一
の面積を有する。
According to the present invention, a container body, a gas diffusion member having at least a diaphragm provided on the upper surface of the container body, and a gas diffusion member located below the gas diffusion member, A collecting agent that selectively collects contaminants diffused in the container body, and a fluid inlet / outlet member that is installed apart from the gas diffusion member on the upper surface of the container body,
A pollutant sampling device is provided, wherein the cross-sectional area of the gas diffusion member is less than 1 time the internal cross-sectional area within the container body. Further, according to the present invention, there is provided a pollutant average concentration measuring device using the pollutant sampling device and a concentration measuring device, wherein the fluid inlet / outlet member is provided at a sample inlet of the concentration measuring device, and the gas diffusion member. Characterized in that a vaporized gas obtained by adding a free vaporizing agent to the pollutant collected in the collecting agent is circulated in a circulation flow path formed by connecting the respective outlets of the concentration measuring device. A method for measuring the average concentration of pollutants is provided. Hereinafter, the present invention will be described in detail. In the present invention, the pollutant means a gaseous pollutant generated in an enclosed space such as an office building or a room of a house, and carbon dioxide, carbon monoxide, aldehydes and the like can be preferably mentioned. The collecting agent used in the present invention is not particularly limited as long as it is a drug that selectively collects the pollutant, and a known drug can be appropriately used depending on the pollutant. Examples of shellfish include sodium hydroxide and barium hydroxide when capturing carbon dioxide, and ammonia-alkaline cuprous when capturing carbon monoxide. . The form of the scavenger may be a liquid or a form coated on a solid support such as silica gel, and can be appropriately changed as necessary. When it is used as a solution, a drying inhibitor such as polyethylene glycol, glycerin, or triethanolamine may be added to prevent evaporation of the drug.
The free vaporizing agent used in the pollutant average concentration measuring method of the present invention is not particularly limited as long as it is a free vaporizing agent according to the measurement target, and a known free vaporizing agent may be appropriately used depending on the contaminant. For example, sulfuric acid, EDTA and the like can be specifically mentioned. The shape of the container body of the sampling device of the present invention is preferably cylindrical so that gas diffusion in the container body is uniform,
The volume of the container body can be changed according to the sampling time, the concentration of pollutants in the environment, etc.
When sampling several thousand ppm of carbon dioxide for 24 hours, 30 to 100 mmφ × 30 to 300 so that the collection capacity of the scavenger and the gas diffusion space are less likely to be saturated.
About mm is desirable. The gas diffusion member is a member that introduces gas in the environment into the container body and diffuses it onto the surface of the scavenger, and includes at least a diaphragm. As the diaphragm, a normal gas sampling diaphragm can be used. Specifically, for example, PF060 (trade name, Advan
tec), FP-100 (trade name, manufactured by Sumitomo Electric Industries, Ltd.)
Preferred examples include fluororesin film. Further, the thickness and porosity of the diaphragm, the retained particle size or the pore size can be appropriately changed according to the contaminant to be collected. Specifically, for example, when capturing carbon dioxide, a film thickness of 0.1 to 1 mm, a porosity of 50 to 80 volume% acid, a retained particle diameter of 2 to 10 μm, and a pore diameter of 0.1 to 1 μm are preferable. Further, the shape of the gas diffusion member is preferably cylindrical, and the inner diameter can be appropriately changed depending on the sampling time, the pollutant concentration range and the like. For example, carbon dioxide of about 1000 ppm, 4 mmφ for 24 hours of gambling, about 500 ppm of carbon dioxide, 8 mmφ of 100 ppm of carbon dioxide for 8 hours of sampling.
About 0ppm, 1m for 1 month sampling
It can be mφ or the like. The gas diffusing member is not limited to gas, but can diffuse mist or the like as long as it is in a gaseous state. The fluid inlet / outlet member is a member that puts the scavenger into the container body and connects to the sample inlet of the concentration measuring device described later, and the shape of the member is preferably cylindrical. The material of the container body, the gas diffusion member and the fluid inlet / outlet member is not particularly limited as long as it is a material that is not affected by contaminants and has no gas permeability, and examples thereof include fluororesin, polypropylene, acrylic resin, vinyl chloride. Preferable examples include resins. The cross-sectional area of the gas diffusion member is less than 1 time the cross-sectional area of the inside of the container main body, and in particular, it is 1/4 in order to make it difficult for the scavenger to saturate.
It is preferably from 0 to 1/2500. When the cross-sectional area of the gas diffusion member is 1 times or more the internal cross-sectional area of the container body, the scavenger is easily saturated and is not suitable for high-concentration collection for a long time. There is a need to. The internal cross-sectional area of the container body and the surface area of the scavenger have the same area.

【実施例】以下、本発明の汚染物質サンプリング装置の
一実施例を添付図面を参照して詳細に説明するが本発明
はこれらに限定されるものではない。図1は、容器本体
2と、前記容器本体2の上面3に設置されて、上方先端
部に0.2mm厚、孔径0.45μmのフッ素樹脂製隔
膜11を備える気体拡散部材10と、前記気体拡散部材
10の下方に離隔して位置し、容器本体内に拡散された
二酸化炭素を選択的に捕集する捕集剤20と、容器本体
上面3にて前記気体拡散部材10とは離隔して設置され
た流体入出部材30とからなる汚染物質サンプリング装
置1の概略斜視図である。前記容器本体2は、54mm
φ×94mm高さのポリプロピレン製の中空円柱であ
る。また容器の上面3は、前記容器本体2に着脱可能に
かつ容器本体2の密封状態を維持しつつ設置された蓋部
材となっており、該上面3を取り外して内部を洗浄する
ことにより、汚染物質サンプリング装置を繰り返して使
用することができる。前記気体拡散部材10は、4mm
φ×90mm高さのフっ素樹脂製の円筒形状であり、前
記容器本体上面3のほぼ中央部にて、容器本体上面3を
貫通して設置されている。また前記気体拡散部材10の
上部先端部には、気体拡散部材10を密閉できるポリプ
ロピレン製蓋部材12が着脱自在に設けられており、非
サンプリング時における環境気体の容器本体内部への侵
入を防止することができる。前記捕集剤20は、乾燥防
止剤としてポリエチレングリコールを5重量%添加した
4重量%水酸化バリウム水溶液であり、前記捕集剤20
は、フッ素樹脂製の細管を有するプラスチック製シリン
ジ(図示せず)により前記流体入出部材30を通して投
入されたものである。この際、前記流体入出部材30に
二酸化炭素を除去した空気を吹き付けることにより、環
境気体が容器本体内に侵入することを防止することがで
きる。ここで、前記気体拡散部材10の下端部と前記捕
集剤20の上面とは、10mmの間隔をおいて配設され
ており、高濃度、長時間の汚染物質捕集に適するよう、
容器本体内に気体を拡散することができる。前記流体入
出部材30は、2mmφ×30mm高さのフッ素樹脂製
の円筒形状であり、前記容器本体上面3を貫通して設置
されている。また前記流体入出部材の上部先端部には、
流体入出部材30を密閉できるポリプロピレン製蓋部材
32が着脱自在に設けられており、非濃度測定時に環境
気体の容器本体内への侵入を防止することができる。次
に、本発明の汚染物質平均濃度測定方法について説明す
る。まず前記汚染物質サンプリング装置1をサンプリン
グ位置にほぼ水平に設置し、前記気体拡散部材10の蓋
部材12を開放する。次に一定時間放置した後、再度蓋
部材12を前記気体拡散部材10に装着して、密閉す
る。次いで、前記流体入出部材30の蓋部材32の周囲
に、二酸化炭素を除去した空気を吹き付けながら、前記
蓋部材32を開放し、流体入出部材30より、遊離気化
剤として硫酸を2ml添加した後、直ちに前記蓋部材3
2を装着して、15秒間程度振とうを行い、一定時間
(数分〜数時間)放置する。放置後、図2に示す赤外線
吸収式二酸化炭素濃度計(環境測定用測定範囲:50〜
5000ppm)40の気体流路内を二酸化炭素を除去
した空気で置換するとともに、前記サンプリング装置1
を再度激しく振とうする。次いで、前記サンプリング装
置1の蓋部材32及び12を開放し、図2に示すように
前記流体入出部材30を前記濃度計40の試料導入口4
1に、また前記気体拡散部材10を前記濃度計40の排
出口42に、それぞれ連結して気体循環流路を形成す
る。これにより、サンプリング装置1及び濃度計40の
外部環境空気質の影響を受けることなく、二酸化炭素平
均濃度を測定することができる。前記気体循環流路を形
成した後、循環ポンプ44を作動させ、軽く振とうを続
けながら、濃度計の指示値が一定になったときの値を測
定二酸化炭素濃度あるいは記録計のチャートから読み取
り、該値からブランク値を差し引いた値を検出濃度と
し、下記数式1に従って二酸化炭素平均濃度を求めるこ
とができる。 C=αW/t (1) ここで、C:二酸化炭素平均濃度(ppm) a:比例定数(ppm・時間/mg) W:検出量(mg) t:サンプリング時間(時間) a=(1/3600D)・(L/A)・(V/M) ここで、D:分子拡散係数(cm) L:拡散長(cm) A:有効拡散面積(cm) V:1モルのガス容量(1) M:1モルのガス重量(g) なお、aは実験により求めることができ、Wはサンプリ
ング装置の空間容積と捕集剤容積が決まれば、検出濃度
で表すことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the pollutant sampling device of the present invention will be described below in detail with reference to the accompanying drawings, but the present invention is not limited to these. FIG. 1 shows a container main body 2, a gas diffusion member 10 installed on the upper surface 3 of the container main body 2, and provided with a fluororesin diaphragm 11 having a thickness of 0.2 mm and a hole diameter of 0.45 μm at an upper tip portion, and the gas. The gas diffusing member 10 is spaced apart from the gas diffusion member 10 on the upper surface 3 of the container body and the scavenger 20 which is located below the diffusing member 10 and is separated to selectively collect the carbon dioxide diffused in the container body. It is a schematic perspective view of the pollutant sampling device 1 consisting of the installed fluid inlet / outlet member 30. The container body 2 is 54 mm
It is a hollow cylinder made of polypropylene with a height of φ × 94 mm. Further, the upper surface 3 of the container is a lid member that is detachably attached to the container body 2 while maintaining the hermetically sealed state of the container body 2. By removing the upper surface 3 and cleaning the inside, contamination is caused. The material sampling device can be used repeatedly. The gas diffusion member 10 is 4 mm
It has a cylindrical shape made of fluorine resin and has a height of φ × 90 mm, and is installed so as to penetrate the container body upper surface 3 at approximately the center of the container body upper surface 3. Further, a polypropylene lid member 12 capable of sealing the gas diffusion member 10 is detachably provided at an upper end portion of the gas diffusion member 10 to prevent environmental gas from entering the inside of the container body during non-sampling. be able to. The scavenger 20 is a 4% by weight aqueous barium hydroxide solution containing 5% by weight of polyethylene glycol as an anti-drying agent.
Is injected through the fluid inlet / outlet member 30 by a plastic syringe (not shown) having a fluororesin thin tube. At this time, by blowing air from which carbon dioxide has been removed onto the fluid inlet / outlet member 30, it is possible to prevent environmental gas from entering the container body. Here, the lower end of the gas diffusion member 10 and the upper surface of the scavenger 20 are arranged at a distance of 10 mm, and are suitable for high-concentration and long-term trapping of pollutants.
The gas can be diffused in the container body. The fluid inlet / outlet member 30 has a cylindrical shape made of fluororesin and has a height of 2 mmφ × 30 mm, and is installed so as to penetrate the container body upper surface 3. Further, at the upper tip of the fluid inlet / outlet member,
A polypropylene lid member 32 capable of sealing the fluid inlet / outlet member 30 is detachably provided, and it is possible to prevent environmental gas from entering the container body during non-concentration measurement. Next, the pollutant average concentration measuring method of the present invention will be described. First, the pollutant sampling device 1 is installed substantially horizontally at the sampling position, and the lid member 12 of the gas diffusion member 10 is opened. Next, after leaving for a certain period of time, the lid member 12 is attached to the gas diffusion member 10 again and hermetically sealed. Then, while the carbon dioxide-removed air is blown around the lid member 32 of the fluid inlet / outlet member 30, the lid member 32 is opened, and 2 ml of sulfuric acid as a free vaporizing agent is added from the fluid inlet / outlet member 30. Immediately the lid member 3
2 is attached, shaken for about 15 seconds, and left for a fixed time (several minutes to several hours). After standing, the infrared absorption type carbon dioxide concentration meter shown in FIG. 2 (measurement range for environmental measurement: 50 to
(5000 ppm) 40 gas flow path is replaced with air from which carbon dioxide has been removed, and the sampling device 1
Shake violently again. Then, the lid members 32 and 12 of the sampling device 1 are opened, and the fluid inlet / outlet member 30 is connected to the sample inlet 4 of the densitometer 40 as shown in FIG.
1, and the gas diffusion member 10 is connected to the outlet 42 of the densitometer 40 to form a gas circulation flow path. As a result, the average concentration of carbon dioxide can be measured without being affected by the external environmental air quality of the sampling device 1 and the densitometer 40. After forming the gas circulation channel, operate the circulation pump 44, and while continuing to gently shake, read the value when the indicated value of the densitometer becomes constant from the measured carbon dioxide concentration or the chart of the recorder, The value obtained by subtracting the blank value from the value is used as the detected concentration, and the carbon dioxide average concentration can be calculated according to the following mathematical formula 1. C = αW / t (1) where C: average concentration of carbon dioxide (ppm) a: proportional constant (ppm · time / mg) W: amount of detection (mg) t: sampling time (hour) a = (1 / 3600D) · (L / A) · (V / M) where D: Molecular diffusion coefficient (cm 2 ) L: Diffusion length (cm) A: Effective diffusion area (cm 2 ) V: Gas volume of 1 mole ( 1) M: gas weight of 1 mol (g) In addition, a can be determined by an experiment, and W can be expressed as a detected concentration if the space volume of the sampling device and the scavenger volume are determined.

【実施例1】前述の図1に示す汚染物質サンプリング装
置1を用いて、一般住宅の台所、寝室、居間、子供部屋
及び書斎における二酸化炭素をサンプリングした。次い
で、図2に示す汚染物質平均濃度測定方法に従って、二
酸化炭素平均濃度を測定したところ、台所570pp
m、寝室1220ppm、子供部屋940ppm、居間
440ppm及び書斎510ppmであった。
Example 1 Carbon dioxide was sampled in the kitchen, bedroom, living room, children's room and study room of a general house using the pollutant sampling device 1 shown in FIG. Then, the average concentration of carbon dioxide was measured according to the method for measuring the average concentration of pollutants shown in FIG.
m, bedroom 1220 ppm, children's room 940 ppm, living room 440 ppm and study 510 ppm.

【発明の効果】本発明の汚染物質サンプリング装置は、
高濃度の汚染物質に対しても捕集剤が飽和状態となりに
くく、長時間の捕集ができ、正確な環境濃度測定が可能
で、サンプリング後の定量分析が容易であり、さらには
再使用可能である。また本発明の汚染物質平均濃度測定
方法によれば、前記汚染物質サンプリング装置を濃度測
定装置に直結して測定することができるため、サンプリ
ング後の汚染物質の濃度減衰、サンプリング装置や測定
装置の外部環境空気質の影響等が少なく、正確な測定が
でき、かつサンプリング後の定量分析が容易である。
The pollutant sampling device of the present invention is
The scavenger is unlikely to reach saturation even for high-concentration pollutants, allowing long-term scavenging, accurate environmental concentration measurement, easy quantitative analysis after sampling, and reusability Is. Further, according to the pollutant average concentration measuring method of the present invention, since the pollutant sampling device can be directly connected to the concentration measuring device for measurement, the concentration of the pollutant after sampling can be reduced, and the outside of the sampling device or the measuring device There is little influence of environmental air quality, accurate measurement is possible, and quantitative analysis after sampling is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の汚染物質サンプリング装置の
実施態様を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing an embodiment of a pollutant sampling device of the present invention.

【図2】図2は、本発明の汚染物質平均濃度測定方法に
用いる測定装置の実施態様を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing an embodiment of a measuring device used in the pollutant average concentration measuring method of the present invention.

【符号の説明】[Explanation of symbols]

1 汚染物質サンプリング装置 2 容器本体 10 気体拡散部材 11 隔膜 20 捕集剤 30 流体入出部材 40 濃度測定装置 41 試料導入口 42 排出口 1 Contaminant Sampling Device 2 Container Main Body 10 Gas Diffusion Member 11 Septum 20 Collection Agent 30 Fluid Inlet / Outlet Member 40 Concentration Measuring Device 41 Sample Inlet 42 Outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器本体と、該容器本体の上面に設けら
れた少なくとも隔膜を備える気体拡散部材と、該気体拡
散部材の下方に離隔して位置し、該容器本体内に拡散さ
れた汚染物質を選択的に捕集する捕集剤と、該容器本体
の上面にて該気体拡散部材とは離隔して設置された流体
入出部材とからなり、 前記気体拡散部材の断面積が、前記容器本体内の内部断
面積の1倍未満であることを特徴とする汚染物質サンプ
リング装置。
1. A container main body, a gas diffusion member having at least a diaphragm provided on an upper surface of the container main body, and a pollutant diffused in the container main body, the gas diffusion member being positioned below the gas diffusion member so as to be separated from each other. And a fluid inlet / outlet member installed separately from the gas diffusion member on the upper surface of the container body, wherein the cross-sectional area of the gas diffusion member is the container body. The pollutant sampling device is characterized in that the internal cross-sectional area is less than 1 time.
【請求項2】 請求項1記載の汚染物質サンプリング装
置と、濃度測定装置とを用いる汚染物質平均濃度測定方
法であって、前記流体入出部材を該濃度測定装置の試料
導入口に、また前記気体拡散部材を該濃度測定装置の排
出口にそれぞれ連結して形成された循環流路内にて、前
記捕集剤に捕集した汚染物質に遊離気化剤を加えて気化
させた気体を循環させることを特徴とする汚染物質平均
濃度測定方法。
2. A pollutant average concentration measuring method using the pollutant sampling device according to claim 1 and a concentration measuring device, wherein the fluid inlet / outlet member is provided at a sample inlet of the concentration measuring device, and the gas. Circulating a vaporized gas by adding a free vaporizing agent to the pollutant collected in the collecting agent in a circulation flow path formed by connecting a diffusion member to each outlet of the concentration measuring device. And a method for measuring the average concentration of pollutants.
JP4284890A 1992-09-10 1992-09-10 Polutant sampling device and average pollutant concentration measuring method Pending JPH0694586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4284890A JPH0694586A (en) 1992-09-10 1992-09-10 Polutant sampling device and average pollutant concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4284890A JPH0694586A (en) 1992-09-10 1992-09-10 Polutant sampling device and average pollutant concentration measuring method

Publications (1)

Publication Number Publication Date
JPH0694586A true JPH0694586A (en) 1994-04-05

Family

ID=17684368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4284890A Pending JPH0694586A (en) 1992-09-10 1992-09-10 Polutant sampling device and average pollutant concentration measuring method

Country Status (1)

Country Link
JP (1) JPH0694586A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177672B1 (en) * 1998-06-29 2001-01-23 Industrial Technology Research Institute Dual-chamber gas sampling device
CN103712939A (en) * 2013-12-30 2014-04-09 张显超 Pollutant concentration fitting method based on ultraviolet-visible spectrum
WO2017056424A1 (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Air purification device
CN110275002A (en) * 2019-08-07 2019-09-24 河南工业大学 It is a kind of for detecting the devices and methods therefor of grain heap hiding pest

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177672B1 (en) * 1998-06-29 2001-01-23 Industrial Technology Research Institute Dual-chamber gas sampling device
CN103712939A (en) * 2013-12-30 2014-04-09 张显超 Pollutant concentration fitting method based on ultraviolet-visible spectrum
CN103712939B (en) * 2013-12-30 2016-07-20 张显超 A kind of pollutant levels approximating method based on uv-vis spectra
WO2017056424A1 (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Air purification device
JP2017064575A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Air cleaner
CN110275002A (en) * 2019-08-07 2019-09-24 河南工业大学 It is a kind of for detecting the devices and methods therefor of grain heap hiding pest

Similar Documents

Publication Publication Date Title
Pawliszyn Sampling and sample preparation in field and laboratory: fundamentals and new directions in sample preparation
De Santis et al. Development of a passive sampling technique for the determination of nitrogen dioxide and sulphur dioxide in ambient air
US3985017A (en) Gaseous contaminate dosimeter and method
Yanagisawa et al. A badge-type personal sampler for measurement of personal exposure to NO2 and NO in ambient air
US6087183A (en) High-throughput liquid-absorption air-sampling apparatus and methods
Levin et al. A passive sampler for formaldehyde in air using 2, 4-dinitrophenylhydrazine-coated glass fiber filters
Koziel et al. Sampling and sample-preparation strategies based on solid-phase microextraction for analysis of indoor air
US4235097A (en) Dosimeter for measuring gaseous contaminants
Geisling et al. A passive sampling device for determining formaldehyde in indoor air
Wilson et al. New technologies in the use of exhaled breath analysis for biological monitoring.
Monster et al. Simultaneous determination of trichloroethylene and metabolites in blood and exhaled air by gas chromatography
Zeinali et al. Effect of household air pollutants on the composition of exhaled breath characterized by solid-phase microextraction and needle-trap devices
US4144032A (en) Personal dosimeter and method of use
Pranitis et al. Continuous monitoring of ambient ammonia with a membrane-electrode-based detector
Tsai et al. Time-weighted average sampling of airborne n-valeraldehyde by a solid-phase microextration device
JPH0694586A (en) Polutant sampling device and average pollutant concentration measuring method
US20160334339A1 (en) Sensor platform and method of use
Brown et al. Diffusive sampling using tube-type samplers
De Santis et al. Simultaneous determination of nitrogen dioxide and peroxyacetyl nitrate in ambient atmosphere by carbon-coated annular diffusion denuder
Tsai et al. A new passive sampler for aldehydes
Swaans et al. Laboratory and field validation of a combined NO 2–SO 2 Radiello passive sampler
Woolfenden Optimising analytical performance and extending the application range of thermal desorption for indoor air monitoring
Shen et al. Optimization of a solid sorbent dynamic personal air sampling method for aldehydes
Hochheiser et al. Automatic sequential sampling of atmospheric hydrogen sulfide by chemisorption on mercuric chloride-treated paper tape
Kumagai et al. Passive sampling and head space analysis for quantitative determination of nitrous oxide exposure