JPH0694101A - Conical involute gear - Google Patents

Conical involute gear

Info

Publication number
JPH0694101A
JPH0694101A JP24388492A JP24388492A JPH0694101A JP H0694101 A JPH0694101 A JP H0694101A JP 24388492 A JP24388492 A JP 24388492A JP 24388492 A JP24388492 A JP 24388492A JP H0694101 A JPH0694101 A JP H0694101A
Authority
JP
Japan
Prior art keywords
tooth
gear
meshing
center distance
conical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24388492A
Other languages
Japanese (ja)
Other versions
JP3237915B2 (en
Inventor
Kohei Hori
光平 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24388492A priority Critical patent/JP3237915B2/en
Publication of JPH0694101A publication Critical patent/JPH0694101A/en
Application granted granted Critical
Publication of JP3237915B2 publication Critical patent/JP3237915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)

Abstract

PURPOSE:To provide a conical involute gear which is meshed in a wide range with a tooth surface so that a high torque can be transmitted. CONSTITUTION:This gear is formed by giving a transposition coefficient x for nearly matching a meshing center distance with a center distance between axes in a tooth orthogonal direction on the arbitary tooth orthogonal surface of an entire tooth width bn1 in relation to a pinion 7 and can be processed by moving the reference pitch line of such tool as a hob and the like along the locus of a pitch circle in a tooth width direction obtained by adding the radius of the reference pitch circle to a product computed by multiplying the transposition coefficient x by a module m and brought in contact with the pinion 7 on a tooth surface whose meshing center distance is nearly equal to the center distance between axes across the nearly entire tooth width bn1. Therefore, touch of a tooth during meshing is not necessarily limited to a part of the tooth width bn1, but applicable to a wide range on the tooth surface so that a high torque can be transmitted. This gear can be formed by a general process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、動力伝達機構に用いら
れる円錐形インボリュート歯車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conical involute gear used in a power transmission mechanism.

【0002】[0002]

【従来の技術】従来より知られているように歯車による
動力伝達機構は、種々の形状の歯車を駆動歯車軸と従動
歯車軸とを平行に設けたり、交差するように設けたりす
るような配置により構成される。そして動力伝達機構に
はコンパクトで高トルクが伝達できるように構成するこ
とが求められ、またバックラッシュが小さい回転伝達特
性や噛み合い音が静かな低騒音特性が望まれている。
2. Description of the Related Art As is known in the prior art, a power transmission mechanism using gears has an arrangement in which gears of various shapes are provided such that a drive gear shaft and a driven gear shaft are provided in parallel or so as to intersect with each other. It is composed of The power transmission mechanism is required to be compact and capable of transmitting high torque, and further, it is desired to have a rotation transmission characteristic with a small backlash and a low noise characteristic with a quiet meshing noise.

【0003】このような中で、円錐形インボリュート歯
車(以下、円錐歯車と記す)は、平行軸及び交差軸の両
方に使用できると共に、軸方向に移動調節することでバ
ックラッシュを小さく調節でき、また、はすば歯車に近
い噛み合わせであることから噛み合い音が静かであると
いった特徴がある。
Under such circumstances, the conical involute gear (hereinafter, referred to as a conical gear) can be used for both the parallel shaft and the cross shaft, and the backlash can be adjusted small by adjusting the movement in the axial direction. Further, since the meshing is close to that of a helical gear, the meshing sound is quiet.

【0004】しかし、従来のホブ盤あるいは歯面研削盤
での加工で得られる一般的な円錐歯車の噛み合わせで
は、歯当りが歯幅の一部分に限られ全歯幅で接触させる
ことができなかった。特に歯車の円錐角の傾斜が大きく
なると接触の幅が狭くなり一点に集中するようになるこ
とが知られている。そのため高トルクを伝達することが
困難で実用に供することが難しい状況にあった。さらに
交差軸の場合には歯車の円錐角の設計値と実際に噛み合
わせた時の軸角が一致せず、軸方向の一端で片寄った歯
当りをするため、同様に高トルクを伝達することが困難
で実用に供することが難しい状況にあった。
However, in the meshing of general conical gears obtained by processing with a conventional hobbing machine or tooth surface grinding machine, the tooth contact is limited to a part of the tooth width and it is impossible to make contact with the entire tooth width. It was In particular, it is known that when the inclination of the conical angle of the gear increases, the width of the contact narrows and the points concentrate on one point. Therefore, it is difficult to transmit high torque and it is difficult to put it to practical use. Furthermore, in the case of crossed shafts, the design value of the conical angle of the gear does not match the shaft angle when actually engaged, and one end in the axial direction causes uneven tooth contact, so similarly transmit high torque. Was difficult to put into practical use.

【0005】また、全歯幅で接触が得られるものとして
は、特殊な場合で噛み合う相手ピニオンの歯数と同じ歯
数でピニオンカッタで歯切りしたものが知られている
が、加工工具に互換性がなく、ホブ盤等の加工で得られ
るような一般的なものではなかった。
Further, as a contact which can obtain contact at all tooth widths, it is known that a pinion cutter has the same number of teeth as the mating pinion to be meshed in a special case, but it is compatible with a machining tool. It was not general, and it was not a general one obtained by processing hobbing machines.

【0006】このような状況の下に、本発明者は従来の
設計法で設計され歯切りされた円錐歯車が、実際の噛み
合いで歯当りが一部分に限られ片当りする原因を解明し
た。すなわち、図7に示す断面図において、円錐歯車1
は、その基準平面S−Sが転位零の軸直角平面で、ラッ
ク2のピッチ線3を円錐歯車軸4と角度δの傾斜をなす
ように歯切りされている。そしてP0 は基準ピッチ点
で、db を基準ピッチ円の直径、mを歯車モジュール、
zを歯数とすれば、 db =m・z (1) と定義される。
Under these circumstances, the present inventor has clarified the cause of the tooth contact of a conical gear, which is designed by the conventional design method and which is tooth-cut, is limited to a part due to actual meshing. That is, in the sectional view shown in FIG. 7, the conical gear 1
The reference plane S-S is a plane perpendicular to the axis with zero displacement, and the pitch line 3 of the rack 2 is geared so as to form an angle δ with the conical gear shaft 4. P 0 is the reference pitch point, d b is the diameter of the reference pitch circle, m is the gear module,
If z is the number of teeth, it is defined as d b = m · z (1).

【0007】また、図8に概略の断面図を示すように、
ホブ盤による円錐歯車1の歯切りは、ホブ5がそのO2
を中心とする基準ピッチ円6が角度δの傾斜のピッチ線
3に接するように、矢印Aの方向にホブ5を移動するこ
とによって行われる。そしてピッチ線3上の基準ピッチ
点P0 から長さbだけ離れた点Pの転位係数x2 は、 x2 =(b・sin δ)/m (2) となり、軸直角方向に転位していることを示している。
Further, as shown in a schematic sectional view in FIG.
Hobbing of the O 2
This is done by moving the hob 5 in the direction of arrow A so that the reference pitch circle 6 centered at is in contact with the pitch line 3 inclined at the angle δ. The dislocation coefficient x 2 of the point P on the pitch line 3 which is separated from the reference pitch point P 0 by the length b is x 2 = (b · sin δ) / m (2), and the dislocation occurs in the direction orthogonal to the axis. It indicates that

【0008】次に、このように設計され加工された円錐
歯車1が、図9に概略の断面図を示すように円筒形のピ
ニオン7と、円錐歯車軸4とピニオン軸8とが角度δs
(=δ)となるようにして噛み合う状態にある場合につ
いて考えてみる。ここで円錐歯車1の基準ピッチ点P0
を含むピニオン7の歯直角面と、円錐歯車軸4及びピニ
オン軸8との交点をそれぞれV0 ,U0 とし、ピニオン
軸8上の点U0 から長さbだけ離れた点をUとし、また
点Uを含むピニオン7の歯直角面の円錐歯車軸4との交
点をVとする。
Next, in the conical gear 1 designed and processed as described above, a cylindrical pinion 7, a conical gear shaft 4 and a pinion shaft 8 form an angle δ s as shown in the schematic sectional view of FIG.
Consider the case where the meshing state is such that (= δ). Here, the reference pitch point P 0 of the conical gear 1
Let V 0 and U 0 be the points of intersection of the tooth-perpendicular surface of the pinion 7 and the conical gear shaft 4 and the pinion shaft 8, respectively, and let U be the point separated from the point U 0 on the pinion shaft 8 by the length b. Further, the point of intersection of the pinion 7 including the point U with the conical gear shaft 4 on the plane perpendicular to the teeth is V.

【0009】そして、このピニオン7の歯直角面におけ
る円錐歯車1とピニオン7の噛み合い中心距離aを求め
る。この噛み合い中心距離aは、円筒形の転位インボリ
ュート平歯車どうしの噛み合いと同様に下記のように求
められる。
Then, the meshing center distance a between the conical gear 1 and the pinion 7 on the plane perpendicular to the teeth of the pinion 7 is determined. The meshing center distance a is obtained as described below, like the meshing of the cylindrical dislocation involute spur gears.

【0010】 inv αb =2〔(x1 +x2 )/(z1 +z2 )〕tan α0 +inv α0 (3) y=(z1 +z2 )〔(cos α0 /cos αb )−1〕/2 (4) a=〔(z1 +z2 )/2+y〕・m (5) ここで、α0 :工具の圧力角、 αb :噛み合
い圧力角、 x1 ,x2 :ピニオン7及び円錐歯車1の転位係数、 z1 ,z2 :ピニオン7及び円錐歯車1の歯数、 y:中心距離増加係数 である。
Inv α b = 2 [(x 1 + x 2 ) / (z 1 + z 2 )] tan α 0 + inv α 0 (3) y = (z 1 + z 2 ) [(cos α 0 / cos α b ). −1] / 2 (4) a = [(z 1 + z 2 ) / 2 + y] · m (5) where α 0 : tool pressure angle, α b : meshing pressure angle, x 1 , x 2 : pinion 7 and the dislocation coefficient of the conical gear 1, z 1 , z 2 : the number of teeth of the pinion 7 and the conical gear 1, y: the center distance increase coefficient.

【0011】一方、円錐歯車1とピニオン7の回転軸間
距離as は、直線U−Vの長さに一致するものであるか
ら次式によって求められる。
On the other hand, since the distance a s between the rotating shafts of the conical gear 1 and the pinion 7 corresponds to the length of the straight line UV, it can be obtained by the following equation.

【0012】 as =as0+b・tan δs (6) ただし、as0は基準歯直角面における軸間距離で、直線
0 −V0 の長さであり、式(5)から得られる噛み合
い中心距離aに一致させておく。
A s = a s0 + b · tan δ s (6) where a s0 is the axial distance in the plane perpendicular to the reference tooth and is the length of the straight line U 0 −V 0 , which is obtained from equation (5). It is made to match the meshing center distance a.

【0013】そして、式(5)から得られる噛み合い中
心距離aと、式(6)から得られる軸間距離as とをそ
れぞれ円錐歯車1の小径端から大径端にかけて、具体的
に歯車諸元を与えて算出した。例えば歯車諸元として工
具の圧力角α0 =20°、モジュールm=1.5、並歯
で、ピニオン7が歯数z1 =17、転位係数x1 =0.
3とし、また円錐歯車4が歯数z2 =39、歯幅bn
13mm、転位係数x2 が図10に示すように小径端
(これを基準ピッチ点P0 とする)での転位係数x2
0とし、大径端での転位係数x2 =1.4036となる
実線9で示される直線となっていて、円錐歯車軸4とピ
ニオン軸8との角度δs =δ=9°の場合については、
歯幅bn に対する噛み合い中心距離a、軸間距離as
図11に示す実線10,11の通りとなる。なお、歯数
42の場合については図11中の()内に示す値とな
る。
Then, the meshing center distance a obtained from the equation (5) and the interaxial distance a s obtained from the equation (6) are respectively applied from the small diameter end to the large diameter end of the conical gear 1 in detail. Calculated by giving the original. For example, as gear specifications, the tool pressure angle α 0 = 20 °, the module m = 1.5, the parallel teeth, the pinion 7 has the number of teeth z 1 = 17, the dislocation coefficient x 1 = 0.
3 and the conical gear 4 has a tooth number z 2 = 39 and a tooth width b n =
13 mm, addendum modification coefficient x 2 dislocation of a smaller diameter end, as shown in FIG. 10 (referred to as reference pitch point P 0) coefficient x 2 =
0, and the straight line indicated by the solid line 9 at which the dislocation coefficient x 2 = 1.4036 at the large diameter end and the angle δ s = δ = 9 ° between the conical gear shaft 4 and the pinion shaft 8 Is
The meshing center distance a and the interaxial distance a s with respect to the tooth width b n are as shown by the solid lines 10 and 11 in FIG. In the case of 42 teeth, the values are shown in parentheses in FIG.

【0014】すなわち、噛み合い中心距離aの曲線10
と軸間距離as の実線11とは同じように変化するもの
ではなく、小径端でa=as であるが、大径端にかけて
の他の部分ではa<as となっている。これは噛み合い
中心距離aと軸間距離as とが等しい小径端では円錐歯
車1とピニオン7の歯面は接触しているが、その他の部
分では歯面が接触せず、小径端で片寄った歯当りをして
いることを示している。
That is, the curve 10 of the meshing center distance a
And the solid line 11 of the inter-axis distance a s do not change in the same manner, and a = a s at the small diameter end, but a <a s at other portions up to the large diameter end. This is because the tooth surface of the conical gear 1 and the pinion 7 are in contact with each other at the small diameter end where the meshing center distance a and the axial distance a s are equal, but the tooth surfaces do not contact at the other parts, and are offset at the small diameter end. It shows that the teeth are in contact with each other.

【0015】また、噛み合い中心距離aの実線10は点
線12で示されている直線と対比するに、上に凸の緩や
かな曲線となっており、軸間距離as を噛み合い中心距
離aに一致させるように、円錐歯車軸4とピニオン軸8
との角度δをδs =9°からずらすようにしても、円錐
歯車1とピニオン7の接触する歯面の部位が変わるのみ
で局部的な部分接触の状態は変わるものではない。
Further, the solid line 10 of the center distance a meshing match contrast to the straight line shown by the dotted line 12, has a gentle curve convex upward, the center distance a meshing the axial distance a s So that the conical gear shaft 4 and the pinion shaft 8
Even if the angle δ with respect to δ s is shifted from δ s = 9 °, only the part of the tooth surface where the conical gear 1 and the pinion 7 contact is changed, and the state of local partial contact does not change.

【0016】[0016]

【発明が解決しようとする課題】上記のように従来設計
法によって設計され、ホブ盤等での一般的な加工で得ら
れる円錐歯車は、噛み合わせ時の歯当りが歯幅の一部分
に限られ広い歯面で接触させることができず、高トルク
を伝達することが困難なもので実用化し難いものであっ
た。このような状況に鑑みて本発明はなされたもので、
その目的とするところは汎用的な加工によって加工する
ことができ、噛み合わせ時には歯面の広い範囲で接触さ
せることができ、高トルクを伝達することができる円錐
形インボリュート歯車を提供することにある。
As described above, the conical gear designed by the conventional design method and obtained by general processing using a hobbing machine or the like has a tooth contact at the time of meshing limited to a part of the tooth width. It was difficult to make contact with a wide tooth surface, and it was difficult to transmit high torque, which was difficult to put into practical use. The present invention has been made in view of such a situation,
The object is to provide a conical involute gear that can be processed by general-purpose processing, can be brought into contact with a wide range of tooth surfaces during meshing, and can transmit high torque. .

【0017】[0017]

【課題を解決するための手段】本発明の円錐形インボリ
ュート歯車は、転位係数を歯車軸方向に変化させ外形形
状を円錐状に形成してなる円錐形インボリュート歯車に
おいて、相手歯車との全歯幅の任意の歯直角面で、軸間
中心距離に噛み合い中心距離を略一致させる転位係数を
歯直角方向に与えることによって形成されたことを特徴
とするものである。
A conical involute gear according to the present invention is a conical involute gear in which a dislocation coefficient is changed in the gear axis direction to form a conical outer shape. It is characterized in that it is formed by giving a dislocation coefficient in the direction perpendicular to the teeth so that the center distance between the shafts meshes with the center distance between the shafts and the center distance between the shafts.

【0018】[0018]

【作用】上記のように構成された円錐形インボリュート
歯車は、相手歯車との全歯幅の任意の歯直角面で、軸間
中心距離に噛み合い中心距離を略一致させる転位係数を
歯直角方向に与えることによって形成されており、これ
は転位係数とモジュールの積に基準ピッチ円の半径を加
えて得られる歯幅方向のピッチ円の軌跡に沿ってホブ等
の工具の基準ピッチ線を移動させることで加工すること
ができ、相手歯車とは略全歯幅に亘る軸間中心距離と噛
み合い中心距離が略一致している歯面で接触することに
なる。そのため噛み合わせ時の歯当りが歯幅の一部分に
限られたものではなく歯面の広い範囲で接触させること
ができ、高トルクを伝達することができる。また、これ
は一般的な加工によって形成することができる。
The conical involute gear configured as described above has a dislocation coefficient in the direction perpendicular to the teeth on the surface perpendicular to the tooth of any tooth width of the mating gear, which makes the center distance between the shafts substantially coincide with the center distance. It is formed by giving the reference pitch line of the tool such as the hob along the locus of the pitch circle in the tooth width direction obtained by adding the radius of the reference pitch circle to the product of the dislocation coefficient and the module. And the mating gear comes into contact with the mating gear at the tooth surface where the center distance between the shafts and the meshing center distance over substantially the entire tooth width are substantially the same. Therefore, the tooth contact at the time of meshing is not limited to a part of the tooth width, but the tooth contact can be made in a wide range of the tooth surface, and high torque can be transmitted. In addition, this can be formed by general processing.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して説明
する。各実施例は上述した本発明者が従来の設計法で設
計され、歯切りされた円錐歯車の噛み合いでの歯当りが
一部分に限られ、片当りする原因を解明した結果を踏ま
えてなされたもので、以下、本発明の実施例を図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the drawings. Each embodiment was designed based on the result of the above-mentioned inventor designed by the conventional design method, and the tooth contact in the meshing of the toothed conical gear is limited to a part, and the cause of the one-side contact is clarified. Now, embodiments of the present invention will be described below with reference to the drawings.

【0020】先ず、第1の実施例を図1乃至図4により
説明する。図1は円錐歯車の断面図であり、図2は歯幅
に対する噛み合い中心距離及び軸間距離の関係を示す図
であり、図3は歯幅に対する転位係数の関係を示す図で
あり、図4は歯当りの状態を示す断面図である。
First, a first embodiment will be described with reference to FIGS. 1 is a sectional view of a conical gear, FIG. 2 is a diagram showing a relationship between a meshing center distance and an axial distance with respect to a tooth width, and FIG. 3 is a diagram showing a relationship of a dislocation coefficient with respect to a tooth width. FIG. 6 is a cross-sectional view showing a state of tooth contact.

【0021】初めに図1に示した円錐歯車21がどの様
な根拠に基づいて加工されているものか説明する。すな
わち、円錐歯車を全歯幅Bsec δs で相手歯車、例えば
ピニオンの歯面と接触させるには、噛み合い中心距離a
と軸間距離as とが任意の歯直角面で等しい状態にある
ことが必要で、これは次式で示される。
First, the basis for processing the conical gear 21 shown in FIG. 1 will be described. That is, in order to bring the conical gear into contact with the mating gear, for example, the tooth surface of the pinion with the total tooth width Bsec δ s , the meshing center distance a
And the inter-axle distance a s are required to be equal on any plane perpendicular to the tooth, which is expressed by the following equation.

【0022】 a=a0 +b・tan δs (7) ここで、a0 は基準歯直角面における噛み合い中心距離
である。
A = a 0 + b · tan δ s (7) Here, a 0 is the meshing center distance in the plane perpendicular to the reference tooth.

【0023】そして、式(7)で任意の歯直角面におけ
る噛み合い中心距離aが定まると、式(4),(5)か
ら噛み合い圧力角αb は次式となる。
Then, when the meshing center distance a on an arbitrary tooth right-angled surface is determined by the equation (7), the meshing pressure angle α b becomes the following equation from the equations (4) and (5).

【0024】 αb = cos-1〔(z1 +z2 )m・cos α0 〕/(2・a) (8) さらに、式(8)を式(3)に代入すると円錐歯車の転
位係数xが式(9)として求められる。 x=〔(z1 +z2 )(inv αb −inv α0 )/(2tan α0 )〕−x1 (9) この式(9)で示される転位係数xは、円錐歯車の歯直
角面に対して検討したもので、転位方向は歯直角方向と
なる。
Α b = cos −1 [(z 1 + z 2 ) m · cos α 0 ] / (2 · a) (8) Furthermore, substituting equation (8) into equation (3), the dislocation coefficient of the conical gear x is calculated as Expression (9). x = [(z 1 + z 2 ) (inv α b −inv α 0 ) / (2 tan α 0 )] − x 1 (9) The dislocation coefficient x shown in this formula (9) is the tooth right-angled surface of the conical gear. However, the dislocation direction is perpendicular to the teeth.

【0025】ここで具体的に歯車諸元を次の通り与えて
計算すると共に、図1の円錐歯車21を形成した。なお
図1において21は円錐歯車で、22は歯であり、歯2
2の小径端の点P1 が基準ピッチ点P0 となっている。
23は点P1 を通る歯幅方向のピッチ円の軌跡で、大径
端の歯直角面と点P2 で交わり、ピッチ円の軌跡23上
の点P3 は点P1 (=P0 )と点P2 との中間点であ
る。
Here, concrete gear specifications are given and calculated as follows, and the conical gear 21 of FIG. 1 is formed. In FIG. 1, 21 is a conical gear, 22 is a tooth, and 2 is a tooth.
The point P 1 at the small diameter end of 2 is the reference pitch point P 0 .
23 is a locus of the pitch circle in the tooth width direction that passes through the point P 1 , intersects with the tooth right-angled surface at the large diameter end at the point P 2 , and the point P 3 on the locus 23 of the pitch circle is the point P 1 (= P 0 ). Is an intermediate point between the point P 2 and the point P 2 .

【0026】歯車諸元としては、工具の圧力角α0 =2
0°、モジュールm=1.5、並歯で、ピニオン7が歯
数z1 =17、転位係数x1 =0.3とし、また円錐歯
車21が歯数z21=39、歯幅bn1=13mm、円錐歯
車軸4とピニオン軸8との角度δs =9°とし、全歯幅
n1に対する噛み合い中心距離aと軸間距離as を図2
に示す実線24のように一致させると、式(9)で求め
られる転位係数xは図3に示す実線25のように、小径
端の転位係数x=0で大径端での転位係数x=1.69
84となり、上に凹の緩やかな曲線を描くように変化す
るものとなる。また、歯数42の場合については図2中
の( )内に示す値となる。なお図3に示された点線2
6は比較のために記載した直線である。
As the gear specifications, the tool pressure angle α 0 = 2
0 °, module m = 1.5, parallel teeth, pinion 7 has tooth number z 1 = 17, dislocation coefficient x 1 = 0.3, and conical gear 21 has tooth number z 21 = 39, tooth width b n1 = 13 mm, the angle δ s between the conical gear shaft 4 and the pinion shaft 8 = 9 °, and the meshing center distance a and the inter-axis distance a s for the total tooth width b n1 are shown in FIG.
When the values are matched as shown by the solid line 24 in FIG. 3, the dislocation coefficient x obtained by the equation (9) is as shown by the solid line 25 in FIG. 3, the dislocation coefficient x = 0 at the small diameter end and the dislocation coefficient x = at the large diameter end. 1.69
84, which changes so as to draw a concave gentle curve on the upper side. Further, when the number of teeth is 42, the value is shown in parentheses in FIG. The dotted line 2 shown in FIG.
6 is a straight line described for comparison.

【0027】そして、円錐歯車21は、噛み合い中心距
離aを軸間距離as に、全歯幅bn1に亘る任意の歯直角
面で一致させる式(9)で求められる転位係数xを歯直
角方向に与えるようにすることで形成され、その加工
は、点P1 を通るピッチ円の軌跡23が全歯幅bn1に亘
る任意の歯直角面において式(9)で求められる転位係
数xとモジュールmの積に、基準ピッチ円半径(小径端
での半径)を加えることで得られるものであるから、工
具の基準ピッチ線をピッチ円の軌跡23に沿って点P1
から点P3 を経由し点P2 へと移動させるよう数値制御
できる加工機械のNCホブ盤等により行われる。
In the conical gear 21, the dislocation coefficient x obtained by the equation (9) for matching the meshing center distance a with the interaxial distance a s on an arbitrary right-angled surface over the entire tooth width b n1 The process is performed by giving the dislocation coefficient x obtained by the equation (9) on an arbitrary right-angled plane in which the locus 23 of the pitch circle passing through the point P 1 extends over the entire tooth width b n1. Since it is obtained by adding the reference pitch circle radius (radius at the small diameter end) to the product of the modules m, the reference pitch line of the tool is set at the point P 1 along the trajectory 23 of the pitch circle.
From an NC hobbing machine of a processing machine that can be numerically controlled to move from a point P 3 to a point P 2 .

【0028】このようにして形成された円錐歯車21を
図4に示すようにピニオン7に噛合させて歯当りの確認
を行ったところ、その歯当り状況は斜線部27で示すよ
うに全歯面において均一に接触した状態となっている。
なお比較のために同図中に示した従来設計法によって加
工された円錐歯車1の歯当りの状況は、斜線部13で示
されるように片当りの接触状態となっている。
The conical gear 21 thus formed was meshed with the pinion 7 as shown in FIG. 4, and the tooth contact was confirmed. In the state of uniform contact.
For comparison, the state of tooth contact of the conical gear 1 machined by the conventional design method shown in the figure is a contact state of one side as shown by the shaded portion 13.

【0029】それ故、上述の通り構成された本実施例の
円錐歯車21によれば、バックラッシュを調節でき、且
つ噛み合い音が静かであるという特徴を損なうことな
く、相手歯車とは全歯幅で接触させることができて高ト
ルクの伝達が実現でき、また歯車の円錐角の傾斜が大き
な場合でも高トルクの伝達が実現できる。さらに加工す
る場合においても固有の工具を必要とせず、ホブ盤等に
よる一般的な方法で加工できるものである。
Therefore, according to the conical gear 21 of the present embodiment constructed as described above, the backlash can be adjusted, and the meshing noise is not impaired. It is possible to realize high torque transmission by contacting with each other, and high torque transmission can be achieved even when the conical angle of the gear is large. Further, in the case of further processing, a unique tool is not required, and it can be processed by a general method using a hobbing machine or the like.

【0030】次に、本発明の第2の実施例を図5により
説明する。図5は断面図であり、図において31は円錐
歯車で、32は歯であり、33は歯32の小径端の点P
1 と、中間の点P3 及び大径端の点P2 の第1の実施例
と同じ3点を通る歯幅方向のピッチ円の軌跡で、第1の
実施例と異なり歯切り加工を単純なものとするために点
1 、中間の点P3 及び点P2 を通る円弧としている。
そして歯車諸元は第1の実施例と同様に形成されてい
る。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a sectional view, in which 31 is a conical gear, 32 is a tooth, and 33 is a point P at the small diameter end of the tooth 32.
1 and the intermediate point P 3 and the large-diameter end point P 2 pass through the same three points as in the first embodiment, and the locus of the pitch circle in the tooth width direction is different from the first embodiment. For this reason, an arc passing through the point P 1 , the intermediate point P 3 and the point P 2 is used.
The gear specifications are formed in the same manner as in the first embodiment.

【0031】ピッチ円の軌跡33は基準ピッチ点P
0 (=P1 )を原点とする直角座標系で点O3 を中心と
し、X=53.311mm、Y=310.264mm、
R=314.811mmとして示され、これは第1の実
施例のピッチ円の軌跡23を円弧で近似したものであ
る。そして加工は、工具の基準ピッチ線をピッチ円の軌
跡33に沿って点P1 から点P3 を経由し点P2 へと移
動させるようにしてNCホブ盤等により行われる。
The locus 33 of the pitch circle is the reference pitch point P.
In a Cartesian coordinate system with 0 (= P 1 ) as the origin, centering on the point O 3 , X = 53.311 mm, Y = 310.264 mm,
R = 314.811 mm, which is an approximation of the pitch circle locus 23 of the first embodiment by an arc. The process is a reference pitch line of the tool to be moved from point P 1 along the path 33 of the pitch circle to the via to point P 2 to the point P 3 performed by the NC hobbing machine and the like.

【0032】このようにして形成された円錐歯車31
を、第1の実施例の円錐歯車21と同じようにピニオン
7に噛合させて歯当りの確認を行ったところ、その歯当
り状況は第1の実施例の円錐歯車21と同様に実質的に
全歯面において均一に接触した状態となっていた。
The conical gear 31 formed in this way
When the tooth contact was confirmed by meshing with the pinion 7 in the same manner as the conical gear 21 of the first embodiment, the tooth contact condition is substantially the same as that of the conical gear 21 of the first embodiment. All tooth surfaces were in uniform contact.

【0033】このため、本実施例においても第1の実施
例と同等の作用、効果が得られるものである。
Therefore, also in this embodiment, the same operation and effect as in the first embodiment can be obtained.

【0034】さらに、本発明の第3の実施例を図6によ
り説明する。図6は断面図であり、図において41は円
錐歯車で、42は歯であり、43は歯42の小径端の点
4と大径端の点P5 とを通る歯幅方向のピッチ円の軌
跡で、第2の実施例と異なり歯切り加工をさらに単純な
ものとするため直線となっていて、この直線は、全歯幅
n3に亘る任意の歯直角面で噛み合い中心距離aを軸間
距離as に一致させる式(9)で求められる転位係数x
を、歯直角方向に与えた場合のピッチ円の軌跡を直線近
似したものとなっている。。
Further, a third embodiment of the present invention will be described with reference to FIG. Figure 6 is a sectional view, 41 is a conical gear in FIG, 42 is a tooth, 43 pitch circle of the tooth width direction through the the point P 4 of the small diameter end and the point P 5 of the large diameter end of the tooth 42 Unlike the second embodiment, the locus is a straight line for simplifying the gear cutting process, and this straight line defines the meshing center distance a in an arbitrary right-angled surface over the entire tooth width b n3. Dislocation coefficient x obtained by equation (9) that matches the axial distance a s
Is a straight line approximation of the locus of the pitch circle when given in the direction perpendicular to the teeth. .

【0035】また歯車諸元としては、工具の圧力角α0
=20°、モジュールm=1.5、並歯で、ピニオン7
が歯数z1 =17、転位係数x1 =0.3とし、また円
錐歯車41が歯数z23=45、歯幅bn3=13mm、円
錐歯車軸44とピニオン軸8との角度δs =9°、小径
端の点P4 の転位係数x=0で大径端の点P5 での転位
係数x=1.6730としている。
The gear specifications are the pressure angle α 0 of the tool.
= 20 °, module m = 1.5, double teeth, pinion 7
Is the number of teeth z 1 = 17, the dislocation coefficient x 1 = 0.3, the conical gear 41 has the number of teeth z 23 = 45, the tooth width b n3 = 13 mm, and the angle δ s between the conical gear shaft 44 and the pinion shaft 8. = 9 °, the dislocation coefficient x at the small-diameter end point P 4 is x = 0, and the dislocation coefficient at the large-diameter end point P 5 is x = 1.6730.

【0036】また、ピッチ円の軌跡43は、第2の実施
例と異なり歯切り加工をさらに単純なものとするため、
小径端の点P4 と大径端の点P5 とを通る直線となって
いて、この直線は、任意の歯直角面で噛み合い中心距離
aを軸間距離as に一致させる式(9)で求められる転
位係数xを、歯直角方向に与えた場合のピッチ円の軌跡
を直線近似したものとなっている。そして加工は、工具
の基準ピッチ線をピッチ円の軌跡43に沿って点P4
ら点P5 へと移動させるようにしてホブ盤等により行わ
れる。
Further, the locus 43 of the pitch circle is different from that of the second embodiment in order to make the gear cutting process simpler.
It becomes a straight line passing through the point P 4 of the small diameter end and the point P 5 of the large-diameter end, the straight line equation to match the center distance a mesh of any tooth plane perpendicular to the axis-to-axis distance a s (9) The locus of the pitch circle when the dislocation coefficient x obtained in (3) is given in the direction perpendicular to the teeth is linearly approximated. The machining is performed by a hobbing machine or the like so that the reference pitch line of the tool is moved from the point P 4 to the point P 5 along the locus 43 of the pitch circle.

【0037】このようにして形成された円錐歯車41
を、第1の実施例の円錐歯車21と同じようにピニオン
7に噛合させて歯当りの確認を行ったところ、その歯当
り状況は斜線部45で示すように全歯面において均一に
接触する状態には至らなかったが、従来例の円錐歯車1
に比較し接触範囲が大きく、歯面の周辺部での接触がな
かっただけで実用的には問題とならない範囲での歯面の
接触状態が得られた。
The conical gear 41 formed in this way
When the tooth contact was confirmed by meshing with the pinion 7 in the same manner as the conical gear 21 of the first embodiment, the tooth contact state is uniformly contacted on all tooth surfaces as indicated by the shaded portion 45. Although it did not reach the state, the conventional conical gear 1
The contact area was larger than that of No. 1 and the contact state of the tooth surface was obtained in a range where there was no contact in the peripheral portion of the tooth surface, which was not a problem in practical use.

【0038】このため、本実施例においても第1の実施
例と略同等の作用、効果が得られるものである。
Therefore, also in this embodiment, substantially the same operation and effect as in the first embodiment can be obtained.

【0039】尚、本発明は上記の各実施例に記載したも
ののみに限定されるものではなく、例えば相手歯車はピ
ニオンでなく円錐歯車でもよく、また異なる歯車諸元や
異なる軸角度に対しても適用できるものである。さらに
ピッチ円の軌跡についても複数の円弧や他の曲線、ある
いは直線で近似するようにしてもよい等、要旨を逸脱し
ない範囲内で適宜変更して実施し得るものである。
The present invention is not limited to those described in each of the above-mentioned embodiments. For example, the mating gear may be a conical gear instead of a pinion, and for different gear specifications and different axial angles. Is also applicable. Further, the locus of the pitch circle may be approximated by a plurality of arcs, other curved lines, or straight lines, and the like, which can be appropriately changed and implemented within a range not departing from the gist.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、本発明
は、相手歯車との全歯幅の任意の歯直角面で、軸間中心
距離に噛み合い中心距離を略一致させる転位係数を歯直
角方向に与えることによって形成される構成としたこと
により、一般的な加工によって形成することができ、噛
み合わせ時の歯当りが歯幅の一部分に限られたものでは
なく歯面の広い範囲で接触させることができ、高トルク
を伝達することができる効果が得られる。
As is apparent from the above description, according to the present invention, the dislocation coefficient for making the meshing center distance substantially coincide with the inter-axis center distance on the tooth right angle surface of the entire tooth width of the mating gear is set. Since it is formed by giving it in the direction, it can be formed by general processing, and the tooth contact at the time of meshing is not limited to a part of the tooth width, but contacts in a wide range of the tooth surface. It is possible to obtain the effect that high torque can be transmitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の円錐形インボリュート
歯車を示す断面図である。
FIG. 1 is a sectional view showing a conical involute gear according to a first embodiment of the present invention.

【図2】同上における歯幅に対する噛み合い中心距離及
び軸間距離の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a tooth center width and a meshing center distance and an axial distance in the same as above.

【図3】同上における歯幅に対する転位係数の関係を示
す図である。
FIG. 3 is a diagram showing a relationship between a dislocation coefficient and a tooth width in the same as above.

【図4】同上における歯当りの状態を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a state of tooth contact in the above.

【図5】本発明の第2の実施例の円錐形インボリュート
歯車を示す断面図である。
FIG. 5 is a sectional view showing a conical involute gear according to a second embodiment of the present invention.

【図6】本発明の第3の実施例の円錐形インボリュート
歯車を示す断面図である。
FIG. 6 is a sectional view showing a conical involute gear according to a third embodiment of the present invention.

【図7】円錐形インボリュート歯車を説明するための断
面図である。
FIG. 7 is a sectional view for explaining a conical involute gear.

【図8】従来の円錐形インボリュート歯車の歯切りを説
明するための断面図である。
FIG. 8 is a sectional view for explaining gear cutting of a conventional conical involute gear.

【図9】従来の円錐形インボリュート歯車のピニオンと
の噛合せ状態を解析するために示す断面図である。
FIG. 9 is a cross-sectional view shown for analyzing a meshing state of a conventional conical involute gear with a pinion.

【図10】従来例の歯幅に対する転位係数の関係を示す
図である。
FIG. 10 is a diagram showing a relationship between a dislocation coefficient and a tooth width in a conventional example.

【図11】同上における歯幅に対する噛み合い中心距離
及び軸間距離の関係を示す図である。
FIG. 11 is a view showing the relationship between the meshing center distance and the axial distance with respect to the tooth width in the above.

【符号の説明】[Explanation of symbols]

7…ピニオン 21…円錐歯車 22…歯 23…ピッチ円の軌跡 P0 …基準ピッチ点 bn1…歯幅 m…モジュール x…転位係数7 ... pinion 21 ... trajectory P 0 ... reference pitch point of conical gears 22 ... teeth 23 ... pitch circle b n1 ... tooth width m ... module x ... shift coefficient

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 転位係数を歯車軸方向に変化させ外形形
状を円錐状に形成してなる円錐形インボリュート歯車に
おいて、相手歯車との全歯幅の任意の歯直角面で、軸間
中心距離に噛み合い中心距離を略一致させる前記転位係
数を歯直角方向に与えることによって形成されたことを
特徴とする円錐形インボリュート歯車。
1. A conical involute gear in which a dislocation coefficient is changed in the gear axis direction to form a conical outer shape, in which a center-to-axis center distance is set on a surface orthogonal to an arbitrary tooth having a full tooth width with a mating gear. A conical involute gear, which is formed by applying the dislocation coefficient that makes the meshing center distances substantially equal to each other in the direction perpendicular to the teeth.
JP24388492A 1992-09-14 1992-09-14 Conical involute gear Expired - Fee Related JP3237915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24388492A JP3237915B2 (en) 1992-09-14 1992-09-14 Conical involute gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24388492A JP3237915B2 (en) 1992-09-14 1992-09-14 Conical involute gear

Publications (2)

Publication Number Publication Date
JPH0694101A true JPH0694101A (en) 1994-04-05
JP3237915B2 JP3237915B2 (en) 2001-12-10

Family

ID=17110423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24388492A Expired - Fee Related JP3237915B2 (en) 1992-09-14 1992-09-14 Conical involute gear

Country Status (1)

Country Link
JP (1) JP3237915B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090468A (en) * 2004-09-24 2006-04-06 Fuji Heavy Ind Ltd Design evaluation device for conical shape involute gear pair
EP1884686A2 (en) 2006-07-31 2008-02-06 Jtekt Corporation Conical involute gear and gear pair

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090468A (en) * 2004-09-24 2006-04-06 Fuji Heavy Ind Ltd Design evaluation device for conical shape involute gear pair
JP4583856B2 (en) * 2004-09-24 2010-11-17 富士重工業株式会社 Design evaluation system for conical involute gear pairs
EP1884686A2 (en) 2006-07-31 2008-02-06 Jtekt Corporation Conical involute gear and gear pair
JP2008032161A (en) * 2006-07-31 2008-02-14 Jtekt Corp Conical involute gear and gear pair
EP1884686A3 (en) * 2006-07-31 2011-03-16 Jtekt Corporation Conical involute gear and gear pair
US8225691B2 (en) 2006-07-31 2012-07-24 Jtekt Corporation Conical involute gear and gear pair

Also Published As

Publication number Publication date
JP3237915B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
EP0323858B1 (en) Differential planet gear unit
US5823857A (en) Apparatus and method for precision grinding of face gears
US8225691B2 (en) Conical involute gear and gear pair
JPH0510399A (en) Planetary gears
EP2350493A1 (en) Hypoid gears with low shaft angles
EP1027464B1 (en) Face-gear forging method
US2338367A (en) Worm gearing
WO1997039856A1 (en) Apparatus for precision grinding face gears
US6415678B1 (en) Wrist mechanism of industrial robot
JPS61159323A (en) Method of machining tooth of gear by rotating gear-shaped tool
JPH0694101A (en) Conical involute gear
US4630404A (en) Apparatus for manufacturing and machining gears
JPH07208582A (en) Spiral bevel gear type pinion
JP2002011615A (en) Manufacturing method and machining device for face gear wheel
GB2168274A (en) Dressing gear-finishing tools
JP3577422B2 (en) Helical concave gear and method of manufacturing the same
US20060090340A1 (en) Method of generation of face enveloping gears
CN102979855A (en) Involute tooth-thickness variable non-circular gear transmission
EP0161072B1 (en) Mechanical reduction gear system
US3453931A (en) Drive mechanism for a machine tool
JPS5828416A (en) Rolling projecting cutting method for forming contour of workpiece and device for executing said method
US2362787A (en) Method of finishing gears
JP2003065402A (en) Simple epicyclic gearing structure
US20050115071A1 (en) Manufacturing for face gears
JP3711583B2 (en) Machining method of bent tooth bevel gear

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees