JPH0693837B2 - Immobilized enzyme and method for producing the same - Google Patents

Immobilized enzyme and method for producing the same

Info

Publication number
JPH0693837B2
JPH0693837B2 JP7656486A JP7656486A JPH0693837B2 JP H0693837 B2 JPH0693837 B2 JP H0693837B2 JP 7656486 A JP7656486 A JP 7656486A JP 7656486 A JP7656486 A JP 7656486A JP H0693837 B2 JPH0693837 B2 JP H0693837B2
Authority
JP
Japan
Prior art keywords
enzyme
immobilized
group
immobilization
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7656486A
Other languages
Japanese (ja)
Other versions
JPS62236483A (en
Inventor
久恵 嶋之木
清 藤森
徳幸 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7656486A priority Critical patent/JPH0693837B2/en
Publication of JPS62236483A publication Critical patent/JPS62236483A/en
Publication of JPH0693837B2 publication Critical patent/JPH0693837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固定化酵素とその製造法に係り、特に数種類の
酵素を同一系内に固定化した固定化酵素と、その製造法
に関する。
TECHNICAL FIELD The present invention relates to an immobilized enzyme and a method for producing the same, and more particularly to an immobilized enzyme having several kinds of enzymes immobilized in the same system and a method for producing the same.

〔従来の技術〕[Conventional technology]

酵素反応は、その基質特異性や常温常圧での高い反応性
のため、様々な有用物質の生産或いは有害物質の除去な
どに利用されている。特に、近年、酵素の固定化技術が
進歩したことにより、酵素を有効に再利用し、かつ、酵
素反応を連続して行うことが一部の酵素についてではあ
るが可能となり、酵素の工業的利用は増々盛んになつて
いる。
The enzyme reaction is used for production of various useful substances or removal of harmful substances because of its substrate specificity and high reactivity at room temperature and atmospheric pressure. In particular, due to recent advances in enzyme immobilization technology, it has become possible to reuse the enzyme effectively and to carry out the enzyme reaction continuously, even for some enzymes. Is becoming more and more popular.

酵素を固定化する方法としては、1)担体結合法、2)
架橋法、3)包括法などがある。
As a method for immobilizing an enzyme, 1) carrier binding method and 2)
Cross-linking method, 3) comprehensive method, etc.

この内1)は水不溶性の担体に結合させる方法であり、
固定化酵素の製造法の中では最も古くから行われてお
り、報告例が最も多い。その結合様式によつて、さら
に、物理的吸着法,イオン結合法、および共有結合法の
三つの方法に分けられる。物理的吸着法は、共有結合法
などに比べると、酵素の活性中心の破壊あるいは高次構
造の変化が少ないと考えられるので、酵素に適した担体
が見いだされれば優れた方法である。しかし、一般に酵
素と担体との相互作用が弱いため、酵素が脱離しやすい
という欠点がある。イオン結合法は、共有結合法に比べ
て操作が簡単であり、処理も緩和なため、比較的活性の
高い固定化酵素が得られる場合が多い。しかし、共有結
合に比べると担体と酵素との結合力が弱いため、緩衝液
の種類あるいはpHの影響をうけやすく、反応をイオン強
度の高い状態で行うと、酵素が担体から脱離することが
ある。共有結合法は、物理的吸着法やイオン結合法に比
べて、反応条件の設定がむずかしく、反応操作が複雑で
あり、比較的激しい処理をするために、活性の高い固定
化酵素を得られないことがあり、場合によつては基質特
異性などの酵素的性質に変化をきたすという欠点があ
る。しかし、酸素が担体と強く結合しているため、高濃
度の基質溶液あるいは塩類溶液などによつて簡単に脱離
しないという特長がある。
Of these, 1) is a method of binding to a water-insoluble carrier,
This is the oldest method for producing immobilized enzymes, and the number of reported cases is the largest. Depending on the binding mode, it can be further divided into three methods: a physical adsorption method, an ionic binding method, and a covalent binding method. The physical adsorption method is considered to be less likely to destroy the active center of the enzyme or change the higher-order structure as compared with the covalent bond method, etc. Therefore, it is an excellent method if a carrier suitable for the enzyme is found. However, since the interaction between the enzyme and the carrier is generally weak, there is a drawback that the enzyme is easily released. The ionic bond method is easier to operate than the covalent bond method, and the treatment is easy, so that an immobilized enzyme having a relatively high activity is often obtained. However, since the binding force between the carrier and the enzyme is weaker than the covalent bond, the enzyme is likely to be desorbed from the carrier when the reaction is carried out under the condition of high ionic strength because it is easily affected by the type of buffer solution or pH. is there. The covalent bond method is more difficult to set the reaction conditions than the physical adsorption method or the ionic bond method, the reaction procedure is complicated, and the immobilized enzyme having high activity cannot be obtained due to the relatively vigorous treatment. In some cases, there is a drawback that the enzymatic properties such as substrate specificity are changed. However, since oxygen is strongly bound to the carrier, it has the feature that it is not easily desorbed by a highly concentrated substrate solution or salt solution.

2)の架橋法は2個またはそれ以上の官能基をもつ試薬
を用いて、酵素と酵素を架橋することによつて固定化す
る方法である。この方法は1)の共有結合法の場合と同
様に、比較的激しい条件下で反応を行うため、得られた
固定化酵素の活性は比較的低い場合が多い。
The cross-linking method 2) is a method of immobilizing an enzyme by cross-linking the enzyme with a reagent having two or more functional groups. As in the case of the covalent bond method of 1), this method performs the reaction under relatively violent conditions, and thus the activity of the obtained immobilized enzyme is often relatively low.

3)の包括法には、高分子ゲルの細かい格子の中に酵素
を取込む格子型と、半透性の高分子の皮膜によつて酵素
を被覆するマイクロカプセル型がある。これらの方法
は、1)の担体結合法や2)の架橋法と異なり、原理的
には酵素自体とは結合反応を起こしていない。したがつ
て、多くの酵素の固定化に応用できる可能性がある。し
かし、化学的な重合反応を起こさせるよう場合には、酵
素が失活しやすい。
The encapsulation method of 3) includes a lattice type in which an enzyme is incorporated in a fine lattice of a polymer gel and a microcapsule type in which an enzyme is coated with a semipermeable polymer film. These methods are different from the carrier binding method of 1) and the crosslinking method of 2), and in principle, do not cause a binding reaction with the enzyme itself. Therefore, it can be applied to immobilization of many enzymes. However, when a chemical polymerization reaction is caused, the enzyme is easily deactivated.

このように、従来公知の酵素固定化方法は一長一短があ
り、必ずしも満足し得るものではなかつた。
As described above, the conventionally known enzyme immobilization methods have advantages and disadvantages and are not always satisfactory.

かかる現状に鑑み、本発明者らは上記の如き問題のな
い、酵素活性が高く、操作が簡便な固定化法を確立すべ
く種々研究を重ねた結果、数種類の酵素を高い活性を保
持したまま同一系内に容易に固定化できる、担体結合法
を用いた新規な固定化法を見出し、本発明を完成した。
In view of the present situation, the present inventors have conducted various studies to establish an immobilization method having high enzyme activity and easy operation, which does not have the above-mentioned problems, and as a result, several types of enzymes have high activity. The present invention has been completed by finding a new immobilization method using a carrier binding method that can be easily immobilized in the same system.

尚、この種の酵素固定化方法に関するものには、例え
ば、特公昭56-39879号、特開昭54-41383号各公報記載の
方法がある。
Examples of this type of enzyme immobilization method include the methods described in JP-B-56-39879 and JP-A-54-41383.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、酵素活性,操作性,固定化量、担体か
らの酵素の脱離などの点について、一長一短があり、必
ずしも満足できる固定化方法ではなかつた。
The above-mentioned conventional techniques have advantages and disadvantages in terms of enzyme activity, operability, amount of immobilization, desorption of the enzyme from the carrier, etc., and are not necessarily satisfactory immobilization methods.

本研究の目的は、高い酵素活性を有し、操作が簡便で汎
用性の高い固定化法を提供することにある。
The purpose of this study is to provide a highly versatile immobilization method which has high enzyme activity, is easy to operate.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、酵素を担体結合法の物理的吸着法とイオン
結合法を組み合わせることにより、達成される。物理的
吸着法は水不溶性担体に酵素を物理的に吸着させて固定
化する方法であつて、本発明においては、疎水基を含有
する水不溶性担体に酵素を疎水的相互作用により吸着さ
せている。イオン結合法は、イオン交換基を含有する水
不溶性担体に、酵素のもつアミノ酸残基を利用して、酵
素を結合させるものである。この二種類の担体を混合
し、これに酵素溶液を接触させることにより、酵素の固
定化を行なう。その際酵素溶液のpH、イオン強度が酵素
の固定化量に大きな影響を与える。一般的に、イオン強
度を増すことにより、疎水結合による吸着力は強化され
るものの、逆にイオン結合による吸着力が弱められる。
pHは担体や酵素のイオン基の解離に影響を与える。好適
な固定化条件は、酵素の種類,酵素反応の条件などによ
り異なり、特定されないが、例えば、酵素が安定で、固
定化に関与するイオン基が最大限解離するようなpHで、
疎水結合の吸着力の増加とイオン結合の吸着力の減少を
考えて全体として吸着力が最大になるようなイオン強度
という条件が好ましい。
The above object is achieved by combining an enzyme with a physical adsorption method of a carrier binding method and an ionic binding method. The physical adsorption method is a method of physically adsorbing and immobilizing an enzyme on a water-insoluble carrier, and in the present invention, the enzyme is adsorbed on a water-insoluble carrier containing a hydrophobic group by hydrophobic interaction. . The ionic bond method is a method of binding an enzyme to a water-insoluble carrier containing an ion exchange group by utilizing the amino acid residue of the enzyme. The two types of carriers are mixed and the enzyme solution is brought into contact with the carriers to immobilize the enzymes. At that time, the pH and ionic strength of the enzyme solution have a great influence on the immobilized amount of the enzyme. Generally, by increasing the ionic strength, the adsorption force by the hydrophobic bond is strengthened, but the adsorption force by the ionic bond is weakened.
pH affects the dissociation of ionic groups of carriers and enzymes. Suitable immobilization conditions vary depending on the type of enzyme, conditions of enzyme reaction, etc. and are not specified, but for example, at a pH at which the enzyme is stable and the ionic groups involved in immobilization are maximally dissociated,
Considering the increase of the adsorptive power of the hydrophobic bond and the decrease of the adsorptive power of the ionic bond, the condition of ionic strength that maximizes the adsorptive power as a whole is preferable.

第1の発明は、疎水基を含有する水不溶性担体とイオン
交換基を含有する水不溶性担体の混合担体の疎水基及び
イオン交換基に結合して固定化され、疎水基がアルキル
基、イオン交換基が陰イオン交換基であり。酵素が酸性
アミノ酸残基を含有することを特徴とする。
A first aspect of the invention is a mixture of a water-insoluble carrier containing a hydrophobic group and a water-insoluble carrier containing an ion-exchange group, which is immobilized by binding to a hydrophobic group and an ion-exchange group of the carrier, and the hydrophobic group is an alkyl group or an ion-exchange group. The group is an anion exchange group. The enzyme is characterized by containing acidic amino acid residues.

第2の発明は、疎水基を含有する水不溶性担体とイオン
交換基を含有する水不溶性担体を混合し、この混合担体
に酵素溶液を接触させることにより酵素の固定化を行な
うことを特徴とし、上記固定化は、カラムに充填された
上記混合担体の疎水基の部分及びイオン交換基の部分
で、疎水結合による物理的吸着及びイオン結合によるイ
オン結合的吸着によつて行なわれることを特徴とする。
A second invention is characterized in that a water-insoluble carrier containing a hydrophobic group and a water-insoluble carrier containing an ion exchange group are mixed, and an enzyme solution is brought into contact with the mixed carrier to immobilize the enzyme. The immobilization is characterized in that it is carried out by physical adsorption by a hydrophobic bond and ionic binding by an ionic bond at a hydrophobic group portion and an ion exchange group portion of the mixed carrier packed in a column. .

本発明に適用される水不溶性担体としては、アガロース
〔例えばセフアローズ(フアルマシア社製の商品名)、
バイオゲルA(バイオラツド社製の商品名)〕、架橋デ
キストラン〔例えばセフアデツクス(フアルアシア社製
の商品名)〕、セルロース(例えばセレツクス(バイオ
ラツド社製の商品名)、アゼヒル(旭化成社製の商品
名)〕の如き多糖類、ポリアクリルアミドゲル(例えば
バイオゲルP(バイオラツド社製の商品名)〕の如き合
成高分子、多孔質ガラス〔例えばアミノプロピル−CPG
(エレクトロ・ヌクレオニクス社製の商品名)〕の如き
無機物質などが挙げられる。該担体を公知の方法〔例え
ばA.H.Nishikawa,P.Bailon,J.Solid−Phase Biochem.,
1,33−49(1976)参照〕により、エポキシ化した後、ア
ルキル基を導入したものを、疎水基を含有する水不溶性
担体として用いることができる。或いは、オクチル−セ
フアローズCL−4B(フアルマシア社製の商品名)、フエ
ニル−セフアローズCL−4B(フアルマシア社製の商品
名)の如き、疎水基を含有する市販のハイドロフオービ
ツククロマトグラフイー用の吸着剤を用いることができ
る。また、該担体に公知の方法(例えばJ.Am.Chem.So
c.,78,751(1956)参照〕により、ジエチルアミノエチ
ル基を導入したものを、陰イオン交換基を含有する水不
溶性担体として用いることができる。或いは、DEAE−セ
フアデツクス(フアルマシア社製の商品名)の如き、ジ
エチルアミノエチル基を含有する市販のイオン交換クロ
マトグラフイー用の吸着剤を用いることができる。
Examples of the water-insoluble carrier applied to the present invention include agarose [for example, Sepharose (trade name of Pharmacia),
Biogel A (trade name of Bio-Rad Co.)], cross-linked dextran [for example, Cefadexx (trade name of Fuarasia Co.)], cellulose (for example, Serexus (trade name of Bio-Rad Co.), Azehiru (trade name of Asahi Kasei Co.)] , A synthetic polymer such as a polyacrylamide gel (for example, Biogel P (trade name of Bio-Rad)), a porous glass [for example, aminopropyl-CPG]
(Trade name of Electro Nucleonics Co., Ltd.)] and the like. The carrier is prepared by a known method (for example, AH Nishikawa, P. Bailon, J. Solid-Phase Biochem.,
1, 33-49 (1976)], an epoxidized product having an alkyl group introduced therein can be used as a water-insoluble carrier containing a hydrophobic group. Alternatively, an adsorption for a commercially available hydrophobic chromatograph containing a hydrophobic group, such as octyl-Sepharose CL-4B (trade name manufactured by Pharmacia), Phenyl-Sepharose CL-4B (trade name manufactured by Pharmacia). Agents can be used. In addition, a known method for the carrier (for example, J. Am. Chem. So
c., 78, 751 (1956)], a product having a diethylaminoethyl group introduced therein can be used as a water-insoluble carrier containing an anion exchange group. Alternatively, a commercially available ion exchange chromatography adsorbent containing a diethylaminoethyl group, such as DEAE-Sephadex (trade name, manufactured by Pharmacia) can be used.

本発明に適用される酵素は、アミノ酸残基即ち電荷を有
しているものであれば、特に制限されないが、例えば次
の如きものが好適に挙げられる。
The enzyme applied to the present invention is not particularly limited as long as it has an amino acid residue, that is, an electric charge. For example, the followings are preferable.

酸化還元酵素: アラニンデヒドロゲナーゼ、アルコールデヒドロゲナー
ゼ、アルデヒドデヒドロゲナーゼ、イソクエン酸デヒド
ロゲナーゼ、ギ酸デヒドロゲナーゼ、グリセルアルデヒ
ドリン酸デヒドロゲナーゼ、グリコースデヒドロゲナー
ゼ、グリコース−6−リン酸デヒドロゲナーゼ、グルタ
ミン酸シンターゼ、グルタミン酸デヒドロゲナーゼ、シ
スチンレダクターゼ、セリンデヒドロゲナーゼ、乳酸デ
ヒドロゲナーゼ、リンゴ酸デヒドロゲナーゼ、ロイシン
デヒドロゲナーゼなど。
Redox enzymes: alanine dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, isocitrate dehydrogenase, formate dehydrogenase, glyceraldehyde phosphate dehydrogenase, glucose dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate synthase, glutamate dehydrogenase, cystine reductase, serine dehydrogenase. Lactate dehydrogenase, malate dehydrogenase, leucine dehydrogenase, etc.

転移酵素: アデニル酸キナーゼ、グリコーゲンシンターゼ、グレセ
リン酸キナーゼ、グリセロールキナーゼ、グルコキナー
ゼ、グルタミン酸キナーゼ、コリンキナーゼ、酢酸キナ
ーゼ、ヒスタミンメチルトランスフエラーゼ、ピルビン
酸キナーゼ、ヘキソキナーゼなど。
Transferases: Adenylate kinase, glycogen synthase, glcerate kinase, glycerol kinase, glucokinase, glutamate kinase, choline kinase, acetate kinase, histamine methyl tranferase, pyruvate kinase, hexokinase, etc.

合成酵素: アスパラギンシンテターゼ、アセチル−CoAシンテター
ゼ、カルバモイルリン酸シンテターゼ、グルタチオンシ
ンテターゼ、グルタミンシンテターゼ、ジヒドロ葉酸シ
ンテターゼ、ビオチンカルボキシラーゼ、ピルビン酸シ
ンテターゼなど。
Synthase: Asparagine synthetase, acetyl-CoA synthetase, carbamoyl phosphate synthetase, glutathione synthetase, glutamine synthetase, dihydrofolate synthetase, biotin carboxylase, pyruvate synthetase, etc.

〔作用〕[Action]

本発明では、物理的吸着法とイオン結合法の組み合わせ
により酵素の固定化を行なうため、操作が簡便であり、
比較的酵素活性の高い固定化酵素が得られる。しかも、
物理的吸着法やイオン結合法だけの場合より強固に吸着
されているので、pHやイオン強度の及ぼす影響が小さく
なり、より多くの酵素を固定化でき、また、担体からの
酵素の脱離が少ない。担体や酵素を特に限定する必要が
ないので、本固定化法は汎用性が高く、また数種類の酵
素を同一系内に固定化することが可能となる。
In the present invention, since the enzyme is immobilized by the combination of the physical adsorption method and the ionic bond method, the operation is simple,
An immobilized enzyme having a relatively high enzymatic activity can be obtained. Moreover,
Since it is more strongly adsorbed than the physical adsorption method or the ionic bond method alone, the influence of pH and ionic strength is reduced, more enzymes can be immobilized, and the enzyme can be desorbed from the carrier. Few. Since it is not necessary to limit the carrier and the enzyme in particular, this immobilization method is highly versatile, and several kinds of enzymes can be immobilized in the same system.

本発明の酵素固定化法によれば、固定化したい酵素の種
類(本来、本発明の酵素は物理的吸着法でも、イオン結
合的による吸着法でも固定化される酵素であるが、混在
する酵素によつて、より物理的吸着に適するものとより
イオン結合による吸着に適するものがある)に応じて、
単に疎水基を含有する担体とイオン交換基を含有する担
体との混合割合を変えて仕込むのみで酵素はより結合力
が強い担体の方を選択して固着するため、酵素を効率よ
く強固に固定化可能である。
According to the enzyme immobilization method of the present invention, the type of enzyme desired to be immobilized (the enzyme of the present invention is originally an enzyme that is immobilized by both physical adsorption method and adsorption method by ionic bond, Therefore, there are those more suitable for physical adsorption and those more suitable for adsorption by ionic bond).
Simply by changing the mixing ratio of the carrier containing the hydrophobic group and the carrier containing the ion-exchange group, the enzyme selects the carrier with the stronger binding force and fixes it, so that the enzyme is efficiently and firmly fixed. Can be converted.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳細に説明するが、
本発明はこれに限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to this.

[実施例1] 蒸留水で洗浄したセフアローズ4B(フアルマシア社製の
商品名)(静置体積50ml)に対して、蒸留水8ml、ジオ
キサン30ml、1NNaOH水溶液12ml及びエピブロモヒドリン
4mlを加え、30℃で4時間かくはんした。反応終了後、
ゲルを濾集した蒸留水(500ml以上)で充分に洗浄し
た。得られたエポキシ化セフアローズ4Bは直ちに次の反
応に用いた。エポキシ化セフアローズ4B(静置体積50m
l)を、60%ジオキサン水溶液50mlにけんだくし、0.1mo
lのn−オクチルアミンを加え、室温で8時間かくはん
した。さらに室温で2日間放置した後、ゲルを濾集し、
40%ジオキサン水溶液で洗浄した。洗液に2,4,6−トリ
ニトロベンゼンスルホン酸の水溶液を少量加え、呈色反
応が起こらなくなるまで洗浄を続けた後、蒸留水で充分
洗浄した。得られたn−オチクル化セフアローズ4Bは、
蒸留水にけんだくし4℃で保存した。DEAEセフアデツク
ス50(フアルマシア社製の商品名)を100倍量以上の蒸
留水中で2日間膨した後(室温)、ブフナーろうとで吸
引しながら蒸留水で繰り返し洗浄後、1時間、脱気を行
なつた。得られたDEAEセフアデツクスA50は、蒸留水に
けんだくし4℃で保存した。
[Example 1] 8 ml of distilled water, 30 ml of dioxane, 12 ml of 1N NaOH aqueous solution, and epibromohydrin were used against Sepharose 4B (trade name of Pharmacia) (still volume 50 ml) washed with distilled water.
4 ml was added, and the mixture was stirred at 30 ° C. for 4 hours. After the reaction,
The gel was thoroughly washed with distilled water (500 ml or more) collected by filtration. The epoxidized Sepharose 4B thus obtained was immediately used in the next reaction. Epoxidized Cepharose 4B (Static volume 50m
l) in 50 ml of 60% aqueous dioxane solution,
l-N-octylamine was added, and the mixture was stirred at room temperature for 8 hours. After standing at room temperature for 2 days, the gel is collected by filtration,
It was washed with a 40% aqueous dioxane solution. A small amount of an aqueous solution of 2,4,6-trinitrobenzenesulfonic acid was added to the washing solution, and the washing was continued until the color reaction did not occur, and then thoroughly washed with distilled water. The obtained n-octylated cepharose 4B is
Stored in distilled water at 4 ° C. DEAE Sephadex 50 (trade name, manufactured by Pharmacia) is swelled in 100 times or more of distilled water for 2 days (room temperature), then repeatedly washed with distilled water while sucking with a Buchner funnel, and then degassed for 1 hour. It was The obtained DEAE Sephadex A50 was stored in distilled water at 4 ° C.

n−オチクル化セフアローズ4BとDEAEセフアデツクスA5
0を1mlずつカラムに充てんし、混合した。50mmol/lトリ
エタノールアミン緩衝液(pH7)で洗浄後、4℃で冷却
し、同緩衝液に溶解した酵素溶液を空間速度SV=1.5h-1
で送り、その後一昼夜放置する。固定化反応終了後、ゲ
ルの15倍量以上の50mmol/lトリエタノールアミン緩衝液
(pH7)で洗浄し、酵素が担体から脱離して漏出してこ
ないことを、洗浄液のタンパク質を定量することにより
(Bradford法)、確認した。酵素はギ酸デヒドロゲナー
ゼ(FDHと略す)を使用した。その際の添加量と固定化
量の関係、担体からの酵素の脱離の有無を表1に示し
た。
n-Occlusion Cefarrows 4B and DEAE Sephadex A5
Each column was filled with 0 ml of 0 and mixed. After washing with 50 mmol / l triethanolamine buffer (pH 7), it was cooled at 4 ° C, and the enzyme solution dissolved in the same buffer had a space velocity SV = 1.5 h -1.
And then leave it all day and night. After the completion of the immobilization reaction, wash with 15 mmol or more of 50 mmol / l triethanolamine buffer (pH 7) of the gel, and confirm that the enzyme does not desorb from the carrier and does not leak out. (Bradford method), confirmed. As the enzyme, formate dehydrogenase (abbreviated as FDH) was used. Table 1 shows the relationship between the amount added and the amount immobilized, and the presence or absence of desorption of the enzyme from the carrier.

[比較例1] 実施例1と同様の方法で調製したn−オチクル化セフア
ローズ4B2mlを用いて、FDHを実施例1と同様の手法で固
定化した結果を第1表に示す。
[Comparative Example 1] Table 1 shows the results of immobilizing FDH in the same manner as in Example 1 using 2 ml of n-octylated cepharose 4B prepared by the same method as in Example 1.

第1表の本発明の実施例のものは、担体からの脱離が無
く、酵素が担体に強固に吸着した固定化酵素であること
がわかる。
It can be seen that the examples of the present invention in Table 1 are immobilized enzymes in which the enzyme is firmly adsorbed on the carrier without desorption from the carrier.

[比較例2] 実施例1と同様の方法で調製したDEAE−セフアデツクス
A502mlを用いて、FDHを実施例1と同様の手法で固定化
した結果を第1表に示す。
Comparative Example 2 DEAE-Sephadex prepared in the same manner as in Example 1
Table 1 shows the results of immobilizing FDH using A502 ml in the same manner as in Example 1.

[実施例2] 実施例1と同様の手法を用いて作製した固定化FDHカラ
ムに、1mmol/lのNAD及び100mmol/lのギ酸ナトリウムを
含む50mmol/lトリエタノールアミン緩衝液(pH7)を、
種類の流速(室温)で導通し、NADH再生反応を行なつた
結果を第2表に示す。流出液中のNADH濃度は260nmの吸
光度(ε=15cm2/μmol)及び340nmの吸光度(ε=6.2
cm2/μmol)、NAD濃度は260nmの吸光度(ε=18cm2
μmol)を測定して求めた。FDHの固定化量は20.35mgを
タンパク1mlゲルである。
[Example 2] A 50 mmol / l triethanolamine buffer solution (pH 7) containing 1 mmol / l NAD and 100 mmol / l sodium formate was added to an immobilized FDH column prepared by the same method as in Example 1.
Table 2 shows the results of conducting NADH regeneration reaction by conducting at different flow rates (room temperature). The concentration of NADH in the effluent was 260 nm (ε = 15 cm 2 / μmol) and 340 nm (ε = 6.2
cm 2 / μmol), NAD concentration is 260 nm absorbance (ε = 18 cm 2 /
μmol) was measured. The amount of FDH immobilized is 20.35 mg in 1 ml protein gel.

第2表によれば基質(酵素の固定化を助力する物質)の
変換率は100%に近く酵素の固定化に再利用するのに好
的である。
According to Table 2, the conversion rate of the substrate (substance that assists the immobilization of the enzyme) is close to 100%, which is favorable for reuse for the immobilization of the enzyme.

[実施例3] 実施例1と同様の手法で作製したn−オチクル化セフア
ローズ4BとDEAEセフアデツクスA50を混合して充てん
し、50mmol/lトリエタノールアミン緩衝液(pH7)で洗
浄を行なつたカラムに、約25mgのFDHを溶解した乳酸デ
ヒドロゲナーゼ(LDHと略す)溶液(約4.3mgタンパク質
1ml)0.8mlを、実施例1と同様の手法で固定化を行な
い、FDHとLSHを同時に定量的に固定化することができ
た。
[Example 3] A column prepared by the same method as in Example 1 was mixed and filled with n-octylated cepharose 4B and DEAE Sephadex A50 and washed with 50 mmol / l triethanolamine buffer (pH 7). Lactate dehydrogenase (abbreviated as LDH) solution containing about 25 mg of FDH (about 4.3 mg of protein)
1 ml) 0.8 ml was immobilized by the same method as in Example 1, and FDH and LSH could be immobilized quantitatively at the same time.

[実施例4] 以下に示す酵素活性測定法により、種々の濃度のギ酸,N
AD,ピルビン酸,NADHに対する反応初速度を測定し、Km
(ミカエリス定数)を求めた。その結果を第3表に示
す。
Example 4 Various concentrations of formic acid and N were measured by the following enzyme activity measuring method.
The initial reaction rate against AD, pyruvate, NADH was measured and Km
(Michaelis constant) was calculated. The results are shown in Table 3.

第3表によれば、得られた固定化酵素は酵素活性を保持
しており、固定化によつても酵素的性質に変化がないこ
とがわかる。
According to Table 3, the obtained immobilized enzyme retains the enzymatic activity, and it is found that the enzymatic properties are not changed even by the immobilization.

FDHについては次のようにして酵素活性を測定した。光
路長1cmのUVセル中に、400mmol/lギ酸ナトリウム水溶
液、40mmol/lNAD水溶液、50mmol/lトリエタノール水溶
液(pH7)を適当量入れ、全体で3mlになるようにする。
これにFDH溶液0.01mlを加え、すばやく混合した後、25
℃での340nmの吸光度の時間変化により、反応初速度を
求めた。固定化FDHの場合は、前記酵素溶液のかわりに
固定化FDHのけんだく液(同量の50mmol/lトリエタノー
ルアミン,pH7にけんだく)0.01mlを加え、かくはん下、
25℃で340nmの吸光度の時間変化を測定し、反応の初速
度を求めた。
The enzyme activity of FDH was measured as follows. Into a UV cell with an optical path length of 1 cm, 400 mmol / l sodium formate aqueous solution, 40 mmol / l NAD aqueous solution and 50 mmol / l triethanol aqueous solution (pH 7) are put in appropriate amounts, and the total volume is 3 ml.
Add 0.01 ml of FDH solution to this, mix quickly, and
The initial reaction rate was determined by the time change of the absorbance at 340 nm at ° C. In the case of immobilized FDH, 0.01 ml of a suspension of immobilized FDH (same volume of 50 mmol / l triethanolamine, pH 7) was added instead of the enzyme solution, and the mixture was stirred.
The time change of the absorbance at 340 nm was measured at 25 ° C to determine the initial reaction rate.

LDHについてもFDHと同様に25℃での340nmの吸光度の時
間変化を測定した。その際ギ酸ナトリウム水溶液とNAD
水溶液のかわりに、50mmol/lピルビン酸ナトリウム水溶
液、5mmol/lNADH水溶液を使用する。LDH溶液は0.001ml
添加する。固定化LDHの場合も固定化FDHと同様にして、
反応の初速度を求めた。
For LDH as well as FDH, the time change of the absorbance at 340 nm at 25 ° C. was measured. At that time, sodium formate aqueous solution and NAD
Instead of the aqueous solution, 50 mmol / l sodium pyruvate aqueous solution and 5 mmol / l NADH aqueous solution are used. LDH solution is 0.001 ml
Added. In the case of immobilized LDH as well as immobilized FDH,
The initial rate of reaction was determined.

固定化酵素は実施例1と同様の手法で調整したn−オク
チル化セフアローズ4BとDEAEセフアデツクスA50の混合
物2mlに、FDHとLDHが各々15.9mg,1.53mg固定化した物で
ある。
The immobilized enzyme is a mixture of 25.9 ml of n-octylated cepharose 4B and DEAE sephadex A50 prepared by the same method as in Example 1 with FDH and LDH immobilized by 15.9 mg and 1.53 mg, respectively.

〔発明の効果〕 本発明によれば、酵素の種類に応じて酵素を多量に容易
に固定化でき、しかも疎水的吸着法やイオン結合法だけ
の場合に比べて強固に吸着されるので、pHやイオン強度
の変化による固定化酵素からの酵素の脱離を防止する効
果がある。
[Effect of the invention] According to the present invention, a large amount of an enzyme can be easily immobilized depending on the type of the enzyme, and moreover, it is strongly adsorbed as compared with the case of only the hydrophobic adsorption method or the ionic bond method. It also has the effect of preventing the enzyme from desorbing from the immobilized enzyme due to changes in ionic strength.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】疎水基を含有する水不溶性担体とイオン交
換基を含有する水不溶性担体の混合担体の疎水基及びイ
オン交換基に結合して固定化されたことを特徴とする固
定化酵素。
1. An immobilized enzyme which is immobilized by binding to a hydrophobic group and an ion exchange group of a mixed carrier of a water insoluble carrier containing a hydrophobic group and a water insoluble carrier containing an ion exchange group.
【請求項2】疎水基がアルキル基であることを特徴とす
る特許請求の範囲第1項記載の固定化酵素。
2. The immobilized enzyme according to claim 1, wherein the hydrophobic group is an alkyl group.
【請求項3】イオン交換基が陰イオン交換基であること
を特徴とする特許請求の範囲第1項または第2項記載の
固定化酵素。
3. The immobilized enzyme according to claim 1 or 2, wherein the ion exchange group is an anion exchange group.
【請求項4】酵素が酸性アミノ酸残基を含有することを
特徴とする特許請求の範囲第1〜3項のいずれかに記載
の固定化酵素。
4. The immobilized enzyme according to any one of claims 1 to 3, wherein the enzyme contains an acidic amino acid residue.
【請求項5】疎水基を含有する水不溶性担体とイオン交
換基を含有する水不溶性担体を混合し、この混合担体に
酵素溶液を接触させることにより酵素の固定化を行なう
ことを特徴とする固定化酵素の製造法。
5. An immobilization characterized in that an enzyme is immobilized by mixing a water-insoluble carrier containing a hydrophobic group and a water-insoluble carrier containing an ion exchange group, and bringing the enzyme solution into contact with the mixed carrier. Method of oxidase.
【請求項6】上記固定化は、カラムに充填された上記混
合担体の疎水基の部分及びイオン交換基の部分で行なわ
れることを特徴とする特許請求の範囲第5項記載の固定
化酵素の製造法。
6. The immobilized enzyme according to claim 5, wherein the immobilization is performed at a hydrophobic group portion and an ion exchange group portion of the mixed carrier packed in a column. Manufacturing method.
【請求項7】上記固定化は、疎水結合による物理的吸着
及びイオン結合によるイオン結合的吸着によつて行なわ
れることを特徴とする特許請求の範囲第5項または第6
項記載の固定化酵素の製造法。
7. The method according to claim 5, wherein the immobilization is carried out by physical adsorption by a hydrophobic bond and ionic binding by an ionic bond.
The method for producing an immobilized enzyme according to the item.
JP7656486A 1986-04-04 1986-04-04 Immobilized enzyme and method for producing the same Expired - Lifetime JPH0693837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7656486A JPH0693837B2 (en) 1986-04-04 1986-04-04 Immobilized enzyme and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7656486A JPH0693837B2 (en) 1986-04-04 1986-04-04 Immobilized enzyme and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62236483A JPS62236483A (en) 1987-10-16
JPH0693837B2 true JPH0693837B2 (en) 1994-11-24

Family

ID=13608731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7656486A Expired - Lifetime JPH0693837B2 (en) 1986-04-04 1986-04-04 Immobilized enzyme and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0693837B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219265B2 (en) * 2008-08-13 2013-06-26 トヨタ自動車株式会社 Enzyme electrode and method for producing the same

Also Published As

Publication number Publication date
JPS62236483A (en) 1987-10-16

Similar Documents

Publication Publication Date Title
Nilsson et al. [3] Tresyl chloride-activated supports for enzyme immobilization
Bı́lková et al. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly (HEMA-co-EDMA) and magnetic poly (HEMA-co-EDMA) microspheres
US4048416A (en) Thiopolymers, their derivatives and methods for their preparation and use
Klibanov et al. A rationale for stabilization of oxygen-labile enzymes: application to a clostridial hydrogenase.
JPS61272202A (en) Production of material for affinity chromatography
KR940005581B1 (en) Method for immobilization of enzyme and immobilized enzymes
Campbell et al. The recycling of NAD+ (free and immobilized) within semipermeable aqueous microcapsules containing a multi-enzyme system
JPS5839513B2 (en) Storage method for purified trypsin and trypsin-like enzymes
JPS6219835B2 (en)
JPH04507193A (en) Immobilized lipase preparations and their use for ester synthesis
Bazzone et al. Single-step isolation and resolution of pancreatic carboxypeptidases A and B
JPH0693837B2 (en) Immobilized enzyme and method for producing the same
JPS61111685A (en) Stabilized enzyme and its preparation
Mateescu et al. Ready to use p-Benzoquinone activated supports for biochemical coupling, with special applications for laccase immobilization
JPH022587B2 (en)
EP0186347B1 (en) Method for producing high-active biologically efficient compounds immobilized on a carrier
Lindsey Polymeric enzymes and enzyme analogs
US4194067A (en) Process for the purification of carbohydrate containing enzymes
EP0019857B1 (en) Apoglucose oxidase preparation and its production
O'Flaherty et al. The kinetic locking-on strategy for bioaffinity purification: Further studies with bovine liver glutamate dehydrogenase
CN117821436A (en) Chiral immobilized enzyme nano material and preparation method and application thereof
KR900003710B1 (en) Method for immobilising of fracto transferase
HU213760B (en) Process for the production of glyoxylic acid by enzyme catalysed oxidation of glycolic acid
JP2834190B2 (en) Deactivation method of inactivated enzyme
Cherkasov Affinity chromatography of enzymes