JPH0693654A - Double steel pipe truss structure service structural material and joint method thereof - Google Patents

Double steel pipe truss structure service structural material and joint method thereof

Info

Publication number
JPH0693654A
JPH0693654A JP26938092A JP26938092A JPH0693654A JP H0693654 A JPH0693654 A JP H0693654A JP 26938092 A JP26938092 A JP 26938092A JP 26938092 A JP26938092 A JP 26938092A JP H0693654 A JPH0693654 A JP H0693654A
Authority
JP
Japan
Prior art keywords
steel pipe
structural member
joining
length
male screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26938092A
Other languages
Japanese (ja)
Other versions
JPH0811891B2 (en
Inventor
Katsuhiko Imai
克彦 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawatetsu Steel Products Co Ltd
Original Assignee
Kawatetsu Steel Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Steel Products Co Ltd filed Critical Kawatetsu Steel Products Co Ltd
Priority to JP26938092A priority Critical patent/JPH0811891B2/en
Publication of JPH0693654A publication Critical patent/JPH0693654A/en
Publication of JPH0811891B2 publication Critical patent/JPH0811891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PURPOSE:To adopt a double pipe whose cross section outside dimensions are small to a location to which a large load of a truss steel structure exerts and to increase and stabilize plastic deformation of an outer pipe. CONSTITUTION:On both sides of a connection bolt 26, there are installed a connection male screw 26a which is threaded into a screw hole of a contact material and a connection male screw 26b which is threaded into a screw hole 25a of an end material mounted to an outer pipe of a double pipe and which is reversely spiraled at the same pitch with the connection screw 26a. A steel pipe structural member 23 and a bending resistant steel pipe 24 to be inserted thereinto are fixed at the central part in the longitudinal direction and the tip of the bending resistant steel pipe 24 is inserted between an outer peripheral surface 25c of a guide 25B of the end member 25 and an inner peripheral surface 23a of the steel pipe structural member 23. There is formed a guide a space 28 whose dimensions are longer than 1/2 of a bucking allowable length L33 which allows the end of the bending steel pipe 24 to be deformable relatively when the steel pipe structural member 23 is subjected to buckling between an end face 24a of the bending resistant steel pipe 24 and a rear side 25b of a cover 25A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二重鋼管型トラス構造物
用構造材およびその接合方法に係り、詳しくは、大スパ
ン構造物もしくは塔状構造物等のトラス鋼構造物に適用
される複数の長尺な鋼管構造部材を、その端部において
節点部材へ容易にかつ強固に接合することができるよう
にした構造材やその接合方法、さらには、多数の構造材
を用いてトラスを組み立てる際に好適となるトラス構築
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural member for a double steel pipe type truss structure and a joining method thereof, and more specifically, a plurality of members applied to a truss steel structure such as a large span structure or a tower structure. The long steel pipe structural member of the above, a structural material capable of easily and firmly joining the end member to the node member, the joining method thereof, and when assembling a truss using a large number of structural materials. The present invention relates to a truss construction method suitable for.

【0002】[0002]

【従来の技術】長尺な鋼管などの構造部材を多数使用し
て、大スパン構造物や塔状構造物等を構築する場合に
は、各構造部材の端部を節点部材に接合し、トラス構造
を構成させることが多い。そして、多面体をなす一つの
節点部材に対して幾本かの構造部材を放射状に接合する
ために、構造部材の軸方向に変位可能とした接合ボルト
が使用される。そのような接合ボルトを介して構造部材
を節点部材に強力に接合することができるようにしたも
のとして、特開昭63−51539号公報,実開平2−
18003号公報や実開平2−125102号公報にお
いて提案されている接合装置がある。これらは、いずれ
も接合ボルトとスリーブ体とを主たる構成要素とし、接
合ボルトに形成したねじ部の径より大きい断面を有する
ボス部の外面に係合して回転力を伝達するとともに、そ
の接合ボルトの軸方向変位を可能にしたスリーブ体の回
転によって、構造部材の端部に取りつけた接合ボルトを
節点部材に形成したねじ孔に送りこむことができるよう
になっている。
2. Description of the Related Art When a large span structure or tower-like structure is constructed by using a large number of structural members such as long steel pipes, the end of each structural member is joined to a node member to form a truss. Often structured. Then, in order to radially join some structural members to one node member forming a polyhedron, a joining bolt that is displaceable in the axial direction of the structural member is used. Japanese Patent Laid-Open No. 63-51539, Japanese Utility Model Laid-Open No. 2-
There is a joining device proposed in Japanese Patent No. 18003 and Japanese Utility Model Laid-Open No. 2-125102. Each of these has a joining bolt and a sleeve body as main components, and engages with the outer surface of a boss portion having a cross section larger than the diameter of the threaded portion formed on the joining bolt to transmit a rotational force, and the joining bolt. With the rotation of the sleeve body that allows axial displacement of the joint member, the joint bolt mounted on the end of the structural member can be fed into the screw hole formed in the node member.

【0003】現在までに提案されている上記した接合装
置は、いずれも鋼管などの薄肉パイプを構造部材として
採用した場合に適用される構造となっている。一方、ト
ラス構造物では、各構造部材に作用する軸荷重に大小が
生じるのは周知のとおりであり、とりわけ、塔状構造物
の柱となる部分には非常に大きい力が作用する。それゆ
えに、薄肉の鋼管ばかりを構造部材として採用すると、
軸荷重の大きく作用する構造部材には大きい径の接合ボ
ルトが要求され、これに伴って大径の鋼管を使用しなけ
ればならなくなる。その場合に、トラス構造物中の構造
部材の太さが著しく不揃いとなって見栄えを損なった
り、一つの節点部材に幾つもの構造部材を放射状に接合
するに際して大きい接合装置が他の接合装置の取付けを
阻害するなどの事態が生じる。ところで、大径の鋼管と
同等な耐力を備えた構造部材として中実断面の棒材もし
くは厚肉管などの構造部材を採用すれば、その断面寸法
の縮小化を図ることができる。しかしながら、中実材も
しくは厚肉管を用いた構造部材を節点部材に接合するた
めに、構造部材の軸方向に変位可能とした接合ボルトを
備える接合装置を採用した例は、現在までほとんど存在
しない。これは、中実材などの構造部材が有する非常に
大きな断面耐力にバランスさせることができるコンパク
トな接合装置が開発されていないからである。したがっ
て、通常は、中実材の端部にボルトを予め溶接してお
き、トラスを構築している高所などへ搬送している。し
かし、大量の構造部材を投入する必要のある大型のトラ
ス構造物において、次々と組み立てられた他の構造部材
の端部に位置する節点部材にボルト溶接された構造部材
を接合するには、構造部材自体を回転させなければなら
ず、中実材や厚肉管などを組み込むことは極めて煩雑で
大掛かりな作業となる欠点がある。
All of the above-mentioned joining devices that have been proposed so far have a structure applied when a thin pipe such as a steel pipe is adopted as a structural member. On the other hand, in a truss structure, it is well known that the axial load acting on each structural member is large and small, and in particular, a very large force acts on the columnar portion of the tower-shaped structure. Therefore, if only thin-walled steel pipes are adopted as structural members,
A large-diameter joining bolt is required for a structural member that exerts a large axial load, and accordingly, a large-diameter steel pipe must be used. In that case, the thickness of the structural members in the truss structure will be significantly uneven and the appearance will be impaired, and when joining several structural members radially to one node member, a large joining device will be necessary to attach other joining devices. The situation occurs such as blocking. By the way, if a structural member such as a rod or a thick-walled pipe having a solid cross section is adopted as the structural member having a proof stress equivalent to that of a large-diameter steel pipe, the cross-sectional size can be reduced. However, there are almost no examples of adopting a joining device including a joining bolt that is displaceable in the axial direction of a structural member in order to join a structural member using a solid material or a thick-walled pipe to a node member. . This is because a compact joining device capable of balancing the extremely large cross-sectional proof strength of a structural member such as a solid material has not been developed. Therefore, normally, the bolts are welded to the ends of the solid material in advance, and the bolts are transported to a high place where a truss is constructed. However, in a large truss structure that requires the input of a large amount of structural members, in order to join the bolt-welded structural members to the node members located at the ends of the other structural members that are assembled one after another, The member itself must be rotated, and there is a drawback that incorporating a solid material, a thick-walled tube, or the like is a very complicated and large-scale work.

【0004】一方、本出願人は、特開平4−14934
5号公報においてトラス用二重管型構造部材を提案し
た。これは、長尺な鋼管構造部材の撓みを抑制して座屈
変形を極めて大きくでき、トラス鋼構造物を構成する鋼
管構造部材のうち所望する鋼管構造部材のみに大きい軸
方向の短縮化を許容させることが可能となっている。こ
の構造部材によれば、大規模地震時に鋼管構造部材が大
きい軸荷重を受けても、大きい塑性変形と二重管による
総合耐力により、トラス構造物が急激に倒壊するのを防
止できる大きい耐震性を発揮させることができる。その
構造材50は、図19に示すように、薄肉管などの鋼管
構造部材51と、その中に嵌挿される曲げ抵抗鋼管52
と、ねじ孔機構53を有して鋼管構造部材51の端部開
口を閉止するエンド部材54と、そのねじ孔機構53に
取りつけられる接合ボルト55を含む接合装置56など
からなり、接合装置56を介して構造材50を節点部材
57に接合することができる。その曲げ抵抗鋼管52に
は鋼管構造部材51の内周面との隙間が可及的に小さく
なる外径が与えられ、かつ、鋼管構造部材51が軸方向
に塑性変形するとき設計上許容される予め決められた座
屈許容長さβの半分の長さだけ、両端でそれぞれ短くな
っている。
On the other hand, the applicant of the present invention has filed in Japanese Patent Laid-Open No. 14934/1992.
In Japanese Patent No. 5 publication, a double tube type structural member for truss was proposed. This is because it is possible to suppress the bending of a long steel pipe structural member and greatly increase the buckling deformation, and to allow a large axial shortening only for the desired steel pipe structural member among the steel pipe structural members constituting the truss steel structure. It is possible to do. According to this structural member, even if a steel pipe structural member receives a large axial load during a large-scale earthquake, the large truss structure can be prevented from being suddenly collapsed due to the large plastic deformation and the total strength of the double pipe. Can be demonstrated. As shown in FIG. 19, the structural member 50 includes a steel pipe structural member 51 such as a thin-walled pipe and a bending resistance steel pipe 52 fitted and inserted therein.
And an end member 54 having a screw hole mechanism 53 for closing the end opening of the steel pipe structural member 51, a joining device 56 including a joining bolt 55 attached to the screw hole mechanism 53, and the like. The structural member 50 can be joined to the nodal member 57 via the interposition member. The bending resistance steel pipe 52 is provided with an outer diameter that minimizes the clearance between the bending resistance steel pipe 52 and the inner peripheral surface of the steel pipe structural member 51, and is allowed by design when the steel pipe structural member 51 is plastically deformed in the axial direction. It is shortened at both ends by half the predetermined allowable buckling length β.

【0005】このような構造によれば、構造材50が大
きい軸圧縮力Pを受けたとき、鋼管構造部材51は曲げ
抵抗鋼管52に影響されることなく降伏して座屈許容長
さβだけ短くなることができ、構造材50の大きい軸方
向変形が実現される。その変形の間に曲げ力が作用した
としても、曲げ抵抗鋼管52が鋼管構造部材51の曲げ
剛性を補う。鋼管構造部材51が座屈許容長さβ分短く
なれば、曲げ抵抗鋼管52の端面52aはエンド部材5
4の裏面54aに当接し、構造材50に作用する軸圧縮
力Pが、鋼管構造部材51と曲げ抵抗鋼管52のそれぞ
れの耐力の総和で対抗され、以後の塑性変形の進行を緩
やかなものとすることができる。上記した鋼管構造部材
51に座屈許容長さβを確保しておくと、構造材50の
所望する軸方向塑性変形を達成することができる反面、
座屈許容長さβの半分が確保されている鋼管構造部材5
1の両端部には、曲げ抵抗鋼管52の存在しない部分が
残る。すなわち、曲げ抵抗鋼管52の端面52aとエン
ド部材54の裏面54aとの間の部分は鋼管構造部材5
1のみであって、曲げ抵抗鋼管52による補強がなされ
ておらず、その部分における鋼管構造部材51の降伏後
の塑性変形が必ずしも軸対称的とならず不安定になりや
すい問題がある。その場合には、図20中の実線Aで示
すように、塑性変形直後の耐力が急激に低下し、その後
は、鋼管構造部材51と曲げ抵抗鋼管52との総合耐力
でもって圧縮力に対抗させることができなくなる。
According to such a structure, when the structural member 50 receives a large axial compressive force P, the steel pipe structural member 51 yields without being influenced by the bending resistance steel pipe 52, and the buckling allowable length β is reached. It can be shortened and a large axial deformation of the structural material 50 is realized. Even if a bending force acts during the deformation, the bending resistant steel pipe 52 supplements the bending rigidity of the steel pipe structural member 51. If the steel pipe structural member 51 is shortened by the buckling allowable length β, the end surface 52a of the bending resistance steel pipe 52 will be the end member 5
The axial compressive force P that is in contact with the back surface 54a of No. 4 and acts on the structural member 50 is opposed by the sum of the respective proof stresses of the steel pipe structural member 51 and the bending resistance steel pipe 52, and the subsequent progress of plastic deformation is moderate. can do. If the buckling allowable length β is secured in the steel pipe structural member 51 described above, the desired axial plastic deformation of the structural material 50 can be achieved, but
Steel pipe structural member 5 with half the allowable buckling length β secured
At both ends of No. 1, portions where the bending resistant steel pipe 52 does not exist remain. That is, the portion between the end surface 52a of the bending resistance steel pipe 52 and the back surface 54a of the end member 54 is the steel pipe structural member 5
However, there is a problem that the plastic deformation after yielding of the steel pipe structural member 51 in that portion is not always axisymmetric and is likely to be unstable because the steel pipe structural member 51 is not reinforced by the bending resistance steel pipe 52. In that case, as indicated by the solid line A in FIG. 20, the proof stress immediately after plastic deformation sharply decreases, and thereafter, the compressive force is opposed by the total proof stress of the steel pipe structural member 51 and the bending resistance steel pipe 52. Can't do it.

【0006】例えば、特開昭56−25549号公報に
は、構造部材を二重管として、内管を外管に対して変位
可能としたものが記載されている。この構造部材の内管
は外管が塑性変形する間の曲げ抵抗を発揮するととも
に、その一方の端面が外管の端部開口を閉止しているエ
ンド部材の裏面に当接した後は、両管の耐力によって圧
縮荷重に対抗させることができるようになっている。し
かし、内管の他方の端部は外管の他方端を閉止している
エンド部材に固定されており、内管に影響されない外管
の降伏後の塑性変形は上記の一方側においてのみ可能と
なっている。すなわち、前記した座屈許容長さは構造部
材の一方側だけに与えられる結果、外管の一方側の端部
における内管で補強されない部分が長くなり、外管に大
きい塑性変形量を与えようとすると、上記したごときの
不安定な変形がますます助長される難点がある。これを
回避するために構造部材を三重管にして、第一内管の一
方端を一つのエンド部材に固定しかつその第一内管に嵌
挿される第二内管の他方端を他方のエンド部材に固定す
るといった複雑な構成が余儀なくされる。これによって
構造部材の重量は増大し、その使用の途が制限される。
重量軽減を図るために二つの内管を薄くすれば、それぞ
れの内管の剛性や圧縮耐力は低くなり、内管が二重にな
っていない部分での曲げに対する外管の補強は著しく低
下する欠点がある。ところで、二重鋼管型の構造部材の
耐力を一重鋼管型の構造部材に発揮させようとすると、
その一重鋼管型の構造部材の径は著しく大きくなる。し
たがって、二重鋼管型の構造部材が実現されると、その
外径も小さいものとすることができる。一方、二重管の
構造部材を節点部材に接合するために好適な接合装置は
いまだ提案されていない。トラス構造物において大きい
荷重の作用する部位に二重鋼管型の構造部材を採用しよ
うとしても、一重鋼管型の構造部材を接合している節点
部材に接合することができなければ、荷重分担に応じた
幾つもの構造部材を一つの節点部材に放射状に配置する
ことができなくなる。
For example, Japanese Unexamined Patent Publication No. 56-25549 discloses a structure in which a double tube is used and an inner tube is displaceable with respect to an outer tube. The inner pipe of this structural member exerts bending resistance during plastic deformation of the outer pipe, and one end face of the inner pipe abuts the back face of the end member that closes the end opening of the outer pipe. The compressive load can be resisted by the proof stress of the pipe. However, the other end of the inner pipe is fixed to the end member that closes the other end of the outer pipe, and plastic deformation after yielding of the outer pipe that is not affected by the inner pipe is possible only on the one side. Has become. That is, as a result of the above-mentioned allowable buckling length being given to only one side of the structural member, the portion of one end of the outer pipe that is not reinforced by the inner pipe becomes longer, and a large amount of plastic deformation is given to the outer pipe. Then, there is a problem that the unstable deformation as described above is further promoted. In order to avoid this, the structural member is made into a triple pipe, one end of the first inner pipe is fixed to one end member, and the other end of the second inner pipe fitted into the first inner pipe is connected to the other end. A complicated structure such as fixing to a member is inevitable. This increases the weight of the structural member and limits its use.
If the two inner pipes are made thinner to reduce the weight, the rigidity and compression strength of each inner pipe will be reduced, and the reinforcement of the outer pipe against bending in the part where the inner pipe is not doubled will be significantly reduced. There are drawbacks. By the way, when trying to exert the proof stress of the double steel pipe type structural member to the single steel pipe type structural member,
The diameter of the single steel pipe type structural member becomes significantly large. Therefore, when the double steel pipe type structural member is realized, the outer diameter thereof can be reduced. On the other hand, a joining device suitable for joining the structural member of the double pipe to the nodal member has not yet been proposed. Even if an attempt is made to adopt a double steel pipe type structural member in a truss structure where a large load acts, if it is not possible to join it to the node member joining the single steel pipe type structural member, the load sharing It becomes impossible to arrange several structural members radially on one node member.

【0007】本発明は上記の問題に鑑みなされたもの
で、その目的は、一重管に比べて外径寸法が小さくな
り、かつ、塑性変形量が大きく耐力も増大させることが
できる二重鋼管型の構造材を、他の一重鋼管型の構造部
材などとともにトラス構造物に採用できるようにするこ
と、トラス構造物を構成する多数の構造部材の太さの不
揃いを少なくして見栄えをよくすることができる二重鋼
管型の構造材のためのコンパクトな接合装置を提案する
こと、二重鋼管型の構造材を使用するうえで回避するこ
とのできない曲げ抵抗鋼管の存在しない部分における鋼
管構造部材の降伏後の塑性変形の安定化を図ること、構
造材における多重化を避けて軽量で曲げ抵抗を大きくす
ることができること、などを実現する二重鋼管型トラス
構造物用構造材およびその接合方法、ならびに、大スパ
ン構造物もしくは塔状構造物等におけるトラス構築方法
を提供することである。
The present invention has been made in view of the above problems, and an object thereof is a double steel pipe type in which the outer diameter dimension is smaller than that of a single pipe, the plastic deformation amount is large, and the proof stress can be increased. The structural materials of 1) can be used in truss structures together with other single steel pipe type structural members, etc., and the unevenness of the thickness of many structural members that make up the truss structure can be reduced to improve the appearance. Proposal of a compact joining device for double steel pipe type structural material, which is inevitable when using double steel pipe type structural material A structural material for a double steel pipe truss structure that realizes stabilization of plastic deformation after yielding, that it is possible to increase the bending resistance while avoiding duplication in the structural material, and Joining method, as well, to provide a truss construction method in large-span structure or tower-like structure or the like.

【0008】[0008]

【課題を解決するための手段】本発明は、鋼管構造部材
の端部を節点部材に接続する接合ボルトを、該接合ボル
トに形成したねじ部の径より大きい断面を有するボス部
の外面に係合して回転力を伝達するとともに、接合ボル
トの軸方向変位を可能にしたスリーブ体の回転によっ
て、前記節点部材に形成したねじ孔に送りこむことがで
きるようになっており、かつ、鋼管構造部材に作用する
軸圧縮力が直ちに伝わらないように鋼管構造部材より短
くされている曲げ抵抗鋼管が鋼管構造部材に内挿され、
曲げ抵抗鋼管の外径はその外面が鋼管構造部材の内周面
と可及的に小さい隙間を隔てて対向する寸法に選定さ
れ、鋼管構造部材に軸圧縮力が作用して鋼管構造部材が
変形しはじめたとき、その鋼管構造部材がその軸線に対
して直角方向へ撓むのを曲げ抵抗鋼管によって抑制する
ことができるようになっているトラス鋼構造物用の二重
鋼管型構造部材に適用される。その特徴とするところ
は、図1を参照して、鋼管構造部材23の端部に取りつ
けられ軸線25mの方向へ延びるねじ孔25aの形成し
たエンド部材25は、鋼管構造部材23の端面に当接し
てその鋼管構造部材23の開口23bを覆うカバー部2
5Aと、そのカバー部25Aより小さい外径を有してカ
バー部25Aの裏面25bに連なり鋼管構造部材23内
へ突入するガイド部25Bとを備える。接合ボルト26
のボス部26Aの一方側には節点部材21(図2参照)
のねじ孔21aに噛みあう接合用雄ねじ26aが形成さ
れるとともに、他方側にはエンド部材25のねじ孔25
aに噛みあい接合用雄ねじ26aと同一ピッチの逆方向
螺旋とした接続用雄ねじ26bが形成される。その接合
用雄ねじ26bには、節点部材21のねじ孔21aとの
噛みあいに必要なねじ込み長さL1 のねじ部が確保され
る一方、接続用雄ねじ26bには、エンド部材25に設
けたねじ孔25aとの噛みあいに必要なねじ込み長さL
2 のねじ部が確保される。スリーブ体27の長さL
S は、接合ボルト26の全長Lから接合用雄ねじ26a
の全長L11と接続用雄ねじ26bの全長L22とを差し引
いた寸法よりも長く設定される。鋼管構造部材23に内
挿される曲げ抵抗鋼管24は、その軸線24mの方向に
おける中央部位が鋼管構造部材23の軸線23mの方向
における中央部位で固定される(図2中の溶接点32を
参照)。上記のガイド部25Bの外周面25cと鋼管構
造部材23の内周面23aとの間には、曲げ抵抗鋼管2
4の先端部位が挿入されるとともに、曲げ抵抗鋼管24
の端面24aとカバー部25Aの裏面25bとの間に、
鋼管構造部材23が座屈したとき曲げ抵抗鋼管24の端
部がカバー部25Aの裏面25bに向けて相対的に変位
することができる座屈許容長さL33の1/2より長い変
位用隙間29を確保したガイド空間28が形成される。
また、図5に示すように、座屈許容長さL33の1/2
と、鋼管構造部材23が軸引張力を受けた場合に曲げ抵
抗鋼管24の一方の端面24aが反カバー部側へ相対的
に離隔する設計上の許容引張変位量δt との和を、ガイ
ド空間28の全長Lt から差し引いた長さL66は、曲げ
抵抗鋼管24の内径D24の1倍ないし4倍とされる。図
1に戻って、ボス部26Aの接合用雄ねじ26a寄りの
部位には、ボス部26Aの外面に係合させたスリーブ体
27の脱落を阻止するとともに、鋼管構造部材23を節
点部材21に接合するために接合ボルト26を回転させ
た際に破断しもしくは簡単に外すことができる脱落防止
部材30を取りつけておくとよい。
According to the present invention, a joining bolt for connecting an end portion of a steel pipe structural member to a nodal point member is attached to an outer surface of a boss portion having a cross section larger than a diameter of a screw portion formed on the joining bolt. By rotating the sleeve body that enables the joint bolt to transmit the rotational force and axially displaces the joining bolt, it can be fed into the screw hole formed in the node member, and the steel pipe structural member A bending resistance steel pipe that is shorter than the steel pipe structural member is inserted into the steel pipe structural member so that the axial compressive force acting on is not immediately transmitted.
The outer diameter of the bending-resistant steel pipe is selected so that its outer surface faces the inner peripheral surface of the steel pipe structural member with a gap as small as possible, and the axial compressive force acts on the steel pipe structural member to deform the steel pipe structural member. Applied to double steel pipe type structural members for truss steel structures, in which the bending resistance steel pipe can prevent the steel pipe structural members from bending in the direction perpendicular to the axis of the steel pipe structure. To be done. The feature is that, with reference to FIG. 1, the end member 25, which is attached to the end portion of the steel pipe structural member 23 and has a screw hole 25a extending in the direction of the axis 25m, abuts on the end surface of the steel pipe structural member 23. Cover 2 for covering the opening 23b of the steel pipe structural member 23
5A and a guide portion 25B having an outer diameter smaller than that of the cover portion 25A and continuing to the back surface 25b of the cover portion 25A and protruding into the steel pipe structural member 23. Joining bolt 26
The node member 21 (see FIG. 2) is provided on one side of the boss portion 26A.
A male screw 26a for joining that meshes with the screw hole 21a of the end member 25 is formed on the other side.
A connecting male screw 26b is formed in a. The connecting male screw 26a is formed in a reverse spiral having the same pitch as the meshing male screw 26a. The joining male screw 26b has a threaded portion having a screw-in length L 1 necessary for meshing with the screw hole 21a of the node member 21, while the connecting male screw 26b has a screw thread provided on the end member 25. Screw-in length L required for engagement with hole 25a
2 threads are secured. Length L of sleeve 27
S is the total length L of the joining bolt 26 and the joining male screw 26a
Is set longer than the size obtained by subtracting the total length L 11 of the above and the total length L 22 of the connecting male screw 26b. The bending resistance steel pipe 24 inserted into the steel pipe structural member 23 is fixed at the central portion in the direction of the axis 24m thereof at the central portion in the direction of the axis 23m of the steel pipe structural member 23 (see welding point 32 in FIG. 2). . Between the outer peripheral surface 25c of the guide portion 25B and the inner peripheral surface 23a of the steel pipe structural member 23, the bending resistance steel pipe 2
Bend resistance steel pipe 24
Between the end surface 24a of the and the back surface 25b of the cover portion 25A,
When the steel pipe structural member 23 is buckled, the end portion of the bending resistant steel pipe 24 can be relatively displaced toward the back surface 25b of the cover portion 25A. A displacement gap longer than 1/2 of the allowable buckling length L 33. The guide space 28 in which 29 is secured is formed.
Also, as shown in FIG. 5, 1/2 of the allowable buckling length L 33
And a designed allowable tensile displacement amount δ t at which one end surface 24a of the bending resistant steel pipe 24 is relatively separated from the cover portion side when the steel pipe structural member 23 receives an axial tensile force, The length L 66 subtracted from the total length L t of the space 28 is set to 1 to 4 times the inner diameter D 24 of the bending resistance steel pipe 24. Returning to FIG. 1, the sleeve body 27 engaged with the outer surface of the boss portion 26A is prevented from falling off at a portion of the boss portion 26A near the male screw 26a for joining, and the steel pipe structural member 23 is joined to the nodal member 21. For this purpose, it is advisable to attach a fall-off prevention member 30 that can be broken or easily removed when the joining bolt 26 is rotated.

【0009】接合方法においては、図6に示すように、
まず、接続用雄ねじ26bを、その全長L22から接合用
雄ねじ26aのねじ込み長さL1 を差し引いた長さにほ
ぼ等しい長さL3 分だけエンド部材25のねじ孔25a
に予め噛みあわせる。次に、スリーブ体27の回転によ
って接合ボルト26を回転させながら摺動変位させ、接
合用雄ねじ26aを節点部材21のねじ孔21aに送り
込むとともに、接続用雄ねじ26bをエンド部材25の
ねじ孔25aに送り込む(図7参照)。スリーブ体27
の一方端27a(図8参照)が節点部材21の接合面2
1pに当接し、かつ、他方端27bがエンド部材25の
外端面25pに当接した時点で、増し締めするようにし
ている。トラス構築方法の発明にあっては、接合装置2
0を備えた二重鋼管型の構造材22を順次節点部材21
に接合する。節点部材21,21の芯間距離が定まった
以後は、接合ボルト37(例えば図12参照)に形成し
たねじ部37aの径より大きい断面外形を有するボス部
37Aの外面に係合して回転力を伝達するとともに、接
合ボルト37の軸方向変位を可能にしたスリーブ体34
を備え、接合ボルト37が構造部材35側へ後退してス
リーブ体34内に退避できるとともに(図13参照)、
その後に接合ボルト37をスリーブ体34から進出させ
ることができる接合装置36によって、節点部材21,
21間に一重鋼管型の構造部材35を順次接合するよう
にしたことである。
In the joining method, as shown in FIG.
First, the connection male thread 26b, of approximately equal length L 3 minutes only the end member 25 to the length obtained by subtracting the threaded length L 1 of the joining external thread 26a from its entire length L 22 screw holes 25a
Engage in advance. Next, the joint bolt 26 is slidably displaced by the rotation of the sleeve body 27 while being rotated, and the joining male screw 26a is fed into the screw hole 21a of the node member 21 and the connecting male screw 26b is fitted into the screw hole 25a of the end member 25. Send in (see FIG. 7). Sleeve body 27
One end 27a (see FIG. 8) is the joint surface 2 of the node member 21.
When the other end 27b comes into contact with the outer end surface 25p of the end member 25, the additional tightening is performed. In the invention of the truss construction method, the joining device 2
The double steel pipe type structural material 22 with the
To join. After the distance between the cores of the node members 21 and 21 is determined, the rotational force is generated by engaging with the outer surface of the boss portion 37A having a cross-sectional outer shape larger than the diameter of the screw portion 37a formed in the joining bolt 37 (see, for example, FIG. 12). The sleeve body 34 that transmits the force and enables the joint bolt 37 to be displaced in the axial direction.
And the joint bolt 37 can be retracted to the structural member 35 side and retracted into the sleeve body 34 (see FIG. 13).
After that, by the joining device 36 that can advance the joining bolt 37 from the sleeve body 34,
That is, the single steel pipe type structural member 35 is sequentially joined between the two.

【0010】[0010]

【作用】まず、鋼管構造部材23よりは短い曲げ抵抗鋼
管24を鋼管構造部材23内へ挿入し、その曲げ抵抗鋼
管24の中央部位と鋼管構造部材23の中央部位とを固
定し(図2参照)、曲げ抵抗鋼管24が鋼管構造部材2
3の中で動かないようにしておく。そして、エンド部材
25を、そのガイド部25Bが鋼管構造部材23の開口
23bを覆うように、鋼管構造部材23に取りつける。
これによって、ガイド部25Bの外周面25cと鋼管構
造部材23の内周面23aとの間にガイド空間28が形
成され、曲げ抵抗鋼管24の先端部位はガイド空間28
に挿入配置される。このとき、曲げ抵抗鋼管24の端面
24aとカバー部25Aとの間に、設計上予め決められ
た座屈許容長さL33の1/2より少し長い変位用隙間2
9が確保される。次に、接合ボルト26の接続用雄ねじ
26bをエンド部材25に設けたねじ孔25aに挿入
し、接続用雄ねじ26bが、その全長L22から接合用雄
ねじ26aのねじ込み長さL1 を差し引いた長さにほぼ
等しい長さL3 分だけねじ孔25aに噛みあわされる。
接合ボルト26のボス部26Aにスリーブ体27を嵌め
(図6参照)、二重鋼管型の構造材22を節点部材21
に接近させて、接合ボルト26の接合用雄ねじ26aを
節点部材21のねじ孔21aに臨ませる。接続用雄ねじ
26bは接合用雄ねじ26aと同一ピッチの逆ねじであ
り、スリーブ体27を回転させると(図7参照)、接合
用雄ねじ26aが節点部材21に送り込まれると同時
に、接続用雄ねじ26bも同じ量だけエンド部材25の
ねじ孔25aに送り込まれる。接続用雄ねじ26bは予
め長さL3 だけねじ孔25aに挿入されているので、ス
リーブ体27を回転して接合用雄ねじ26aがねじ孔2
1aとの噛みあいに必要なねじ込み長さL1 分挿入され
ると、接続用雄ねじ26bもねじ孔25aとの噛みあい
に必要なねじ込み長さL2 を達成する(図8参照)。ス
リーブ体27の長さLs は、接合ボルト26の全長Lか
ら接合用雄ねじ26aの全長L11と接続用雄ねじ26b
の全長L22とを差し引いた寸法よりも長いため、接合用
雄ねじ26aがねじ込み長さL1 を、接合用雄ねじ26
aもねじ込み長さL2 を達成した時点で、スリーブ体2
7の両端27a,27bが節点部材21とエンド部材2
5に当接する。その状態でスリーブ体27を増し締めす
れば、大きい軸力が作用しても十分な接合強度を備えた
接合状態が実現される。
First, the bending resistance steel pipe 24 shorter than the steel pipe structural member 23 is inserted into the steel pipe structural member 23, and the central portion of the bending resistance steel pipe 24 and the central portion of the steel pipe structural member 23 are fixed (see FIG. 2). ), The bending resistance steel pipe 24 is the steel pipe structural member 2
Keep it stationary in 3. Then, the end member 25 is attached to the steel pipe structural member 23 so that the guide portion 25B covers the opening 23b of the steel pipe structural member 23.
As a result, a guide space 28 is formed between the outer peripheral surface 25c of the guide portion 25B and the inner peripheral surface 23a of the steel pipe structural member 23, and the tip end portion of the bending resistance steel pipe 24 is the guide space 28.
Is inserted and placed. At this time, the displacement gap 2 which is slightly longer than 1/2 of the allowable buckling length L 33 , which is predetermined in design, between the end surface 24a of the bending resistance steel pipe 24 and the cover portion 25A.
9 is secured. Next, the connecting male screw 26b of the joining bolt 26 is inserted into the screw hole 25a provided in the end member 25, and the connecting male screw 26b has a length obtained by subtracting the screw-in length L 1 of the joining male screw 26a from the total length L 22 thereof. The length L 3 substantially equal to the length is engaged with the screw hole 25a.
The sleeve body 27 is fitted to the boss portion 26A of the joining bolt 26 (see FIG. 6), and the double steel pipe type structural material 22 is attached to the node member 21.
And the male screw 26a for joining the joining bolt 26 is exposed to the screw hole 21a of the node member 21. The connecting male screw 26b is a reverse screw having the same pitch as the joining male screw 26a, and when the sleeve body 27 is rotated (see FIG. 7), the joining male screw 26a is fed into the node member 21 and at the same time, the connecting male screw 26b is also The same amount is fed into the screw hole 25a of the end member 25. Since the connecting male screw 26b is inserted into the screw hole 25a by a length L 3 in advance, the sleeve body 27 is rotated and the connecting male screw 26a is screwed into the screw hole 2a.
When the screwing length L 1 required for engagement with 1a is inserted, the connecting male screw 26b also achieves the screwing length L 2 required for engagement with the screw hole 25a (see FIG. 8). The length L s of the sleeve body 27 is from the total length L of the connecting bolt 26 to the total length L 11 of the connecting male screw 26a and the connecting male screw 26b.
Is longer than the total length L 22 of the joining male screw 26a, the joining male screw 26a has a screwing length L 1 of the joining male screw 26a.
When a also reaches the screwed length L 2 , the sleeve body 2
Both ends 27a and 27b of 7 are the node member 21 and the end member 2
Abut 5. If the sleeve body 27 is further tightened in this state, a joined state with sufficient joining strength is realized even if a large axial force acts.

【0011】上記のように接合してトラス構造物に組み
込まれた二重鋼管型の構造材22に圧縮荷重が作用した
場合、節点部材2から伝達される圧縮力は、接合用雄ね
じ26aから接続用雄ねじ26bを介して鋼管構造部材
23へ伝達される。その際に曲げが生じようとしても、
鋼管構造部材23は曲げ抵抗鋼管24によって補強され
ており、簡単に曲がることはない。その軸圧縮力が大き
ければ、鋼管構造部材23は降伏し塑性変形を始める。
しかし、ガイド空間28には曲げ抵抗鋼管24の先端部
位が挿入されており(図1参照)、かつ、その端面24
aとカバー部25Aの裏面25bとの間にも、エンド部
材24のガイド部25Bが位置しているので、鋼管構造
部材23の座屈変形はエンド部材25の近くで外方に膨
らむ軸対称形をした安定なものとなる(図4参照)。鋼
管構造部材23の座屈によって、曲げ抵抗鋼管24の端
部24aがガイド空間28を鋼管構造部材23に対して
相対的に変位し、鋼管構造部材23が座屈許容長さL33
分短くなると、曲げ抵抗鋼管24の端面24aがエンド
部材25の裏面25aに当接する。この時点で鋼管構造
部材23の座屈は止まり、鋼管構造部材23と曲げ抵抗
鋼管24の座屈耐力が軸圧縮力に対抗する。その対抗力
は鋼管構造部材23のみの場合よりも大きいので、その
後の圧縮力に対して二重鋼管型の構造材22は緩やかな
変形となる。
When a compressive load is applied to the double steel pipe type structural member 22 which is joined to the truss structure by joining as described above, the compressive force transmitted from the node member 2 is connected from the joining male screw 26a. It is transmitted to the steel pipe structural member 23 via the external male screw 26b. Even if bending is going to occur at that time,
The steel pipe structural member 23 is reinforced by the bending-resistant steel pipe 24 and does not easily bend. If the axial compressive force is large, the steel pipe structural member 23 will yield and start plastic deformation.
However, the tip portion of the bending resistant steel pipe 24 is inserted into the guide space 28 (see FIG. 1), and the end face 24 thereof is
Since the guide portion 25B of the end member 24 is also located between a and the back surface 25b of the cover portion 25A, the buckling deformation of the steel pipe structural member 23 is an axially symmetrical shape in which the steel pipe structural member 23 bulges outward near the end member 25. It is stable and stable (see Fig. 4). Due to the buckling of the steel pipe structural member 23, the end portion 24a of the bending resistant steel pipe 24 is relatively displaced in the guide space 28 with respect to the steel pipe structural member 23, and the steel pipe structural member 23 has an allowable buckling length L 33.
When the length is shortened, the end surface 24a of the bending resistance steel pipe 24 contacts the back surface 25a of the end member 25. At this point, the buckling of the steel pipe structural member 23 stops, and the buckling resistance of the steel pipe structural member 23 and the bending resistant steel pipe 24 opposes the axial compression force. Since the opposing force is larger than that of the steel pipe structural member 23 alone, the double steel pipe type structural member 22 is gently deformed by the subsequent compressive force.

【0012】二重鋼管型の構造材22に引張荷重が作用
した場合には、その引張力が曲げ抵抗鋼管24に及ぶこ
とはなく、設計上許容される大きさの引張力を受けたと
きには、鋼管構造部材23の片側において許容引張変位
量δt (図5参照)の伸びが発生する。その結果、曲げ
抵抗鋼管24の端面24aが反カバー部側へその変位量
δt だけ余分に離隔する。しかし、その時点で、座屈許
容長さL33の1/2と許容引張変位量δt との和を、ガ
イド空間28の全長Lt から差し引いた長さL66が、曲
げ抵抗鋼管24の内径D24の1倍ないし4倍確保されて
いると、二重鋼管型の構造材22に引張荷重が作用した
直後に圧縮荷重が作用して圧縮降伏したとしても、鋼管
構造部材23の端部に生じる座屈変形は軸対称形に保持
され、最初に圧縮荷重が作用したときと同じ挙動を呈し
た安定なものとなる。ちなみに、ボス部26Aの接合用
雄ねじ26a寄りに脱落防止部材30(図1参照)を取
りつけておくと、二重鋼管型の構造材22をトラス構築
中の節点部材21の位置へ運ぶまでに、ボス部26Aの
外面26mに係合させたスリーブ体27を脱落させない
ようにしておくことができる。その脱落防止部材30
は、構造材22を節点部材21に接合するために接合ボ
ルト26を回転させた際、スリーブ体27との相対移動
でもって破断したり、簡単に手で外すことができ、接合
作業に支障をきたすことはない。
When a tensile load is applied to the double steel pipe type structural material 22, the tensile force does not reach the bending resistance steel pipe 24, and when a tensile force of a design allowable level is applied, An elongation of the allowable tensile displacement amount δ t (see FIG. 5) occurs on one side of the steel pipe structural member 23. As a result, bending the end surface 24a of the resistance steel pipe 24 is excessively separated by the displacement amount [delta] t to the opposite cover portion. However, at that time, the sum of half the allowable tensile displacement [delta] t of buckling allowable length L 33, the length L 66 minus the total length L t of the guide space 28, the bending resistance steel tube 24 If 1 to 4 times the inner diameter D 24 is secured, even if a compressive load acts immediately after a tensile load acts on the double steel pipe type structural material 22 to cause compressive yield, the end portion of the steel pipe structural member 23 The buckling deformation that occurs in is kept axisymmetric, and becomes stable with the same behavior as when the compressive load is first applied. By the way, if the fall prevention member 30 (see FIG. 1) is attached to the boss portion 26A near the joining male screw 26a, the double steel pipe type structural member 22 is transported to the position of the node member 21 during truss construction. It is possible to prevent the sleeve body 27 engaged with the outer surface 26m of the boss portion 26A from falling off. The fall prevention member 30
When the joining bolt 26 is rotated to join the structural member 22 to the node member 21, the joining bolt 26 is broken due to relative movement with the sleeve body 27, or can be easily removed by hand, which hinders joining work. It won't come.

【0013】トラス構築方法においては、接合装置20
を備えた二重鋼管型の構造材22を順次節点部材21に
接合すると(図11参照)、節点部材21,21の芯間
距離が定まる。それ以後は、接合ボルト37(図12参
照)が構造部材35側へ後退してスリーブ体34内に退
避できるとともに、その後に、接合ボルト37をスリー
ブ体34から進出させることができる接合装置36によ
って、その節点部材21,21間に構造部材35を順次
接合する。二重鋼管型の構造材22の断面外形寸法は、
同等の耐力を発揮させようとする一重管を採用した場合
よりも著しく小さく、トラス構造物中の荷重が大きく作
用しない個所に適用された構造部材35との太さの不揃
いが抑制される。加えて、二重鋼管型の構造材22では
コンパクトな接合装置20によって節点部材21に接合
でき、一つの節点部材21に一重鋼管型の他の多くの構
造部材35とともに接合する場合でも、接合装置相互の
干渉を回避しやすくなる。
In the truss construction method, the joining device 20 is used.
When the double-steel pipe type structural material 22 having the above is sequentially joined to the nodal members 21 (see FIG. 11), the inter-center distance between the nodal members 21 and 21 is determined. After that, the joining bolt 37 (see FIG. 12) can be retracted to the structural member 35 side and retracted into the sleeve body 34, and thereafter, the joining bolt 37 can be advanced from the sleeve body 34 by the joining device 36. The structural member 35 is sequentially joined between the node members 21 and 21. The cross-sectional external dimensions of the double steel pipe type structural material 22 are
It is significantly smaller than the case where a single pipe for exerting equivalent yield strength is adopted, and unevenness in thickness with the structural member 35 applied to a portion in the truss structure where a large load does not act is suppressed. In addition, the double steel pipe type structural material 22 can be joined to the nodal member 21 by the compact joining device 20, and even when joining to one nodal member 21 together with many other single steel pipe type structural members 35, the joining device It becomes easier to avoid mutual interference.

【0014】[0014]

【発明の効果】本発明によれば、接合ボルトのボス部の
一方側に節点部材と接合する接合用雄ねじが、他方側に
鋼管構造部材の端部のエンド部材に接続する接続用雄ね
じが形成されているので、厚肉鋼管に代わる二重鋼管型
の構造材を、大スパン構造物もしくは塔状構造物等のト
ラス鋼構造物に採用することができる。その結果、中実
材などを使用した場合に必要とされるボルトの溶接作業
などが不要となり、構造部材の製作が簡便化される。そ
して、接合装置のコンパクト化も図られる。トラスの組
立作業においては長尺で重量の大きい構造部材を回転さ
せる必要もなく接合作業が容易となる。加えて、スリー
ブ体を用いて、逆ねじ構成の接合用雄ねじと接続用雄ね
じとを同時に節点部材とエンド部材に送り込むことがで
きるので、スリーブ体による増し締めもより一層精度よ
いものとなり、大きな締めつけトルクを与えた剛性の高
い接合部を形成させることができる。二重鋼管型の構造
材の採用が可能になると、断面耐力の大きい部材によっ
て小径化が図られ、また、荷重が大きく作用しない他の
個所に接合される一重管などと太さの揃ったものでトラ
スを構成させることができ、その見栄えも著しく向上す
る。二重鋼管型の構造材が圧縮荷重を受けても、曲げ抵
抗鋼管によって補強されて曲げ剛性が大きくなってお
り、曲がるような挙動が生じにくくなる。鋼管構造部材
が圧縮力によって降伏した後に生じる座屈変形は、鋼管
構造部材が曲げ抵抗鋼管とエンド部材のガイド部で拘束
され、外方に膨らんだ軸対称形となって安定したものと
なる。曲げ抵抗鋼管の端面がエンド部材のカバー部の裏
面に当接すると鋼管構造部材の座屈は止まり、鋼管構造
部材の耐力と曲げ抵抗鋼管の耐力とでもって軸圧縮力に
対抗することができ、その後の圧縮力に対して構造材の
変形は緩やかとなる。したがって、トラス構造物の急激
な倒壊は回避され、建物の中にいる人々は最初の大きい
変形の時点で危険に気づき、その後の緩やかな変形の間
に屋外へ脱出する時間的な余裕が確保される。ボス部の
接合用雄ねじ寄りの部位に脱落防止部材を取りつけてお
けば、構築中のトラス構造の所定位置まで二重鋼管型の
構造材を運搬する間に構造材の姿勢が水平でなくなって
も、ボス部の外面に係合させたスリーブ体を脱落させな
くて済む。二重鋼管型の構造材を節点部材に接合するた
めにスリーブ体を回転して接合ボルトを相対的に変位さ
せたときには脱落防止部材は簡単に破断され、また、手
作業などで容易に取り除くことができ、接合作業の円滑
化が促進される。
According to the present invention, the joining male screw for joining the nodal member is formed on one side of the boss portion of the joining bolt, and the connecting male screw for connecting to the end member of the end portion of the steel pipe structural member is formed on the other side. Therefore, a double steel pipe type structural material that replaces the thick steel pipe can be adopted for a truss steel structure such as a large span structure or a tower structure. As a result, the work of welding the bolts, which is required when using a solid material or the like, becomes unnecessary, and the manufacturing of the structural member is simplified. Also, the joining device can be made compact. In the truss assembling work, it is not necessary to rotate a long and heavy structural member, which facilitates the joining work. In addition, by using the sleeve body, it is possible to simultaneously feed the male threads for joining and the male threads for connection of the reverse thread configuration to the node member and the end member, so the tightening by the sleeve body will be even more precise and a large tightening will be possible. It is possible to form a highly rigid joint portion to which torque is applied. If it becomes possible to use double steel pipe type structural material, the diameter will be reduced by the member with large cross-sectional strength, and the thickness will be the same as that of a single pipe that is joined to other places where large load does not act. The truss can be configured with and its appearance will be significantly improved. Even if the double steel pipe type structural material receives a compressive load, it is reinforced by the bending resistance steel pipe and the bending rigidity is increased, so that a bending behavior is less likely to occur. The buckling deformation that occurs after the steel pipe structural member yields due to the compressive force is stable because the steel pipe structural member is constrained by the bending resistance steel pipe and the guide portion of the end member, and becomes an axially symmetric shape that bulges outward. When the end surface of the bending-resistant steel pipe comes into contact with the back surface of the cover part of the end member, the buckling of the steel pipe structural member stops, and the axial compressive force can be countered by the proof strength of the steel pipe structural member and the proof stress of the bending-resistant steel pipe. The deformation of the structural material becomes gentle with respect to the subsequent compressive force. Therefore, a sudden collapse of the truss structure is avoided, people inside the building become aware of the danger at the time of the first major deformation and allow time to escape to the outdoors during the subsequent gentle deformation. It Even if the posture of the structural material is not horizontal while transporting the double steel pipe type structural material to the predetermined position of the truss structure under construction, by attaching the fall prevention member to the part of the boss near the external thread for joining. The sleeve body engaged with the outer surface of the boss does not have to be dropped. When the sleeve body is rotated to relatively displace the joining bolts in order to join the double steel pipe type structural material to the nodal point member, the fall prevention member is easily broken, and it can be easily removed manually. Therefore, the smoothing of the joining work is promoted.

【0015】接合方法の発明によれば、二重鋼管型の構
造材を節点部材に迅速かつ確実に接合することができ、
また、スリーブ体を増し締めして強固な接合を達成する
ことができる。トラス構築方法では、二重鋼管型の構造
材をその接合装置で順次節点部材に接合し、節点部材の
芯間距離が定まった後は、接合ボルトのスリーブ体内へ
の退避とスリーブ体外への進出が可能な接合装置を用い
て、荷重が大きく作用しない個所に適用される一重管を
節点部材間に接合すれば、大スパン構造物もしくは塔状
構造物等のトラス鋼構造物における構造部材の太さが比
較的揃いやすく、見栄えがよくなる。それのみならず、
接合装置もコンパクト化され、一つの節点部材に二重鋼
管型の構造材や一重鋼管型の構造部材を幾つも接合する
ときの接合装置の相互の干渉が回避され、所望する本数
の構造部材を配置することができるようになる。
According to the invention of the joining method, the double steel pipe type structural material can be joined to the nodal member quickly and reliably,
In addition, the sleeve body can be tightened to achieve a strong joint. In the truss construction method, double steel pipe type structural materials are sequentially joined to the nodal members by the joining device, and after the intercenter distance of the nodal members is determined, the joint bolts are retracted into the sleeve body and advanced out of the sleeve body. If a single pipe, which is applied to a place where a large load does not act, is joined between the nodal members using a joining device that can be used, it is possible to increase the thickness of structural members in a truss steel structure such as a large span structure or tower structure. It's relatively easy to align and looks good. Not only that,
The joining device has also been made compact, and mutual interference of the joining devices when joining multiple double steel pipe type structural materials and single steel pipe type structural members to one node member is avoided, and the desired number of structural members is provided. You will be able to arrange.

【0016】[0016]

【実施例】以下に、本発明に係る二重鋼管型トラス構造
物用構造材やそれを用いた接合方法などを、図面をもと
にして詳細に説明する。図2は、接合装置20,20を
用いて、二つの節点部材21,21の間に一本の二重鋼
管型の構造材22を接合するときの全体図である。その
接合装置20は個々に接合ボルト26を備えており、そ
の接合ボルト26は、後で詳しく述べるが、それ自体が
両端部に有するねじ部の径より大きい六角の断面外形を
したボス部を備えている。そして、その外面に係合して
回転力を伝達するとともに、その接合ボルト26の軸方
向変位を可能にしたスリーブ体27の回転によって、節
点部材21に形成したねじ孔21aに接合ボルト26を
噛みあわせ、二重鋼管型の構造材22を節点部材21に
強固に接合することができるようになっている。上記の
構造材22は次に述べるごとく二重鋼管構造であり、そ
れを接合する節点部材21は、例えば周囲の四個所およ
び前後の各面に接合面21p,21pを形成しており、
何本かの構造材22を放射状に接合することができる多
面体となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A structural material for a double steel pipe type truss structure and a joining method using the same according to the present invention will be described below in detail with reference to the drawings. FIG. 2 is an overall view of joining one double steel pipe type structural member 22 between two node members 21 and 21 using the joining devices 20 and 20. Each of the joining devices 20 is provided with a joining bolt 26, which will be described in detail later, and is provided with a boss portion having a hexagonal cross-sectional outer shape larger than the diameter of the threaded portion itself at both ends. ing. Then, the joint bolt 26 is engaged with the outer surface thereof to transmit the rotational force, and the joint bolt 26 is engaged with the screw hole 21a formed in the nodal member 21 by the rotation of the sleeve body 27 which enables the joint bolt 26 to be displaced in the axial direction. In addition, the double steel pipe type structural material 22 can be firmly joined to the node member 21. The above-mentioned structural material 22 is a double steel pipe structure as described below, and the nodal member 21 that joins it has, for example, joint surfaces 21p and 21p formed at four peripheral positions and front and rear surfaces,
It is a polyhedron capable of radially joining some structural members 22.

【0017】図1は接合装置20を含む構造材22の片
側における縦断面図であり、外管としての鋼管構造部材
23と内管としての曲げ抵抗鋼管24とで二重管を構成
している。その曲げ抵抗鋼管24は、鋼管構造部材23
に作用する軸圧縮力Pが直ちに伝わらないように、鋼管
構造部材23より短くされている。その外径は、外面2
4cが鋼管構造部材23の内周面23aと可及的に小さ
い隙間αを隔てて対向する寸法に選定されている。具体
的には、例えば、外径60.5mmで厚み3.2mmの
鋼管構造部材23と、外径53.6mmといった曲げ抵
抗鋼管24とが採用され、周囲の隙間αは0.25mm
が確保される。このように小さな隙間αが設けられてい
るのは、曲げ抵抗鋼管24を鋼管構造部材23に挿入で
きるようにするためと、鋼管構造部材23に軸圧縮力が
作用して変形しはじめたとき、誇張して示す図3のよう
に、その鋼管構造部材23がその軸線23mに対して直
角方向へ撓もうとするのを抑制するように機能させるた
めである。なお、曲げ抵抗鋼管24として引抜鋼管を採
用すれば、その所要の内外径寸法を得るための加工は容
易となる。図1に戻って、鋼管構造部材23の端部に
は、軸線25mの方向へ延びる左螺旋のねじ孔25aを
形成したエンド部材25が溶接などによって固定され
る。これは、鋼管構造部材23の端面に当接してその開
口23bを覆うカバー部25Aと、そのカバー部25A
より小さい外径を有してカバー部25Aの裏面25bに
連なり、鋼管構造部材23内へ突入するガイド部25B
とを備えている。
FIG. 1 is a longitudinal sectional view on one side of a structural member 22 including a joining device 20, wherein a steel pipe structural member 23 as an outer pipe and a bending resistance steel pipe 24 as an inner pipe constitute a double pipe. . The bending resistance steel pipe 24 is the steel pipe structural member 23.
It is made shorter than the steel pipe structural member 23 so that the axial compressive force P acting on is not immediately transmitted. Its outer diameter is the outer surface 2
4c is selected so as to face the inner peripheral surface 23a of the steel pipe structural member 23 with a gap α as small as possible. Specifically, for example, a steel pipe structural member 23 having an outer diameter of 60.5 mm and a thickness of 3.2 mm and a bending resistance steel pipe 24 having an outer diameter of 53.6 mm are adopted, and the clearance α around the periphery is 0.25 mm.
Is secured. Such a small clearance α is provided so that the bending resistance steel pipe 24 can be inserted into the steel pipe structural member 23, and when the steel pipe structural member 23 starts to be deformed by the axial compressive force. This is because, as shown in FIG. 3 exaggeratedly, the steel pipe structural member 23 is made to function so as to suppress the bending of the steel pipe structural member 23 in the direction perpendicular to the axis 23m. If a drawn steel pipe is used as the bending resistance steel pipe 24, the processing for obtaining the required inner and outer diameter dimensions becomes easy. Returning to FIG. 1, an end member 25 having a screw hole 25a of a left spiral extending in the direction of the axis 25m is fixed to the end of the steel pipe structural member 23 by welding or the like. This includes a cover portion 25A that abuts on the end surface of the steel pipe structural member 23 and covers the opening 23b, and the cover portion 25A.
A guide portion 25B that has a smaller outer diameter and is continuous with the back surface 25b of the cover portion 25A and that projects into the steel pipe structural member 23.
It has and.

【0018】そのエンド部材25に取りつけられる接合
装置20は、接合ボルト26とスリーブ体27とからな
っている。その接合ボルト26には、その軸方向の略中
央部位にボス部26Aが形成され、そのボス部26Aの
一方側すなわち左側には節点部材21(図2参照)のね
じ孔21aに噛みあう右ねじの接合用雄ねじ26aが形
成される。そして、右側は、エンド部材25の中心部位
に形成したねじ孔25aに噛みあい接合用雄ねじ26a
と同一ピッチの左ねじの接続用雄ねじ26bとなってい
る。上記の接合用雄ねじ26aには、節点部材21のね
じ孔21aとの噛みあいに必要なねじ込み長さL1 のね
じ部が確保される一方、接続用雄ねじ26bには、ねじ
孔25aとの噛みあいに必要なねじ込み長さL2 のねじ
部が確保される。そして、接合用雄ねじ26aはねじ込
み長さL1 より少し長い全長L11を備え、接続用雄ねじ
26bはねじ込み長さL2 より長い全長L22となってい
る。なお、上記した接合用雄ねじ26aのねじ込み長さ
1 は、接続用雄ねじ26bのねじ込み長さL2 よりも
短い。これは、一般的に、節点部材21の材料強度が鋼
管構造部材23と曲げ抵抗鋼管24とをあわせた強度よ
り大きいので、接続用雄ねじ26bのねじ込み長さL2
を長くしておくことが好ましいことに基づいている。し
かし、本発明においては、後述するごとく、構造材22
を節点部材21に接合するに先だち、エンド部材25に
接合ボルト26を予めある程度噛みあわせておく必要が
あるために、接続用雄ねじ26bのねじ込み長さL2
接合用雄ねじ26aのねじ込み長さL1 よりも必然的に
長くなっている。
The joining device 20 attached to the end member 25 comprises a joining bolt 26 and a sleeve body 27. A boss portion 26A is formed on the joining bolt 26 at a substantially central portion in the axial direction, and a right-hand screw that engages with a screw hole 21a of the node member 21 (see FIG. 2) on one side, that is, the left side of the boss portion 26A. Male screw 26a for joining is formed. The right side engages with the screw hole 25a formed in the central portion of the end member 25 and is the male screw 26a for joining.
And a left-handed connecting male screw 26b having the same pitch. The male thread 26a for joining has a threaded portion having a screw-in length L 1 necessary for meshing with the screw hole 21a of the node member 21, while the male thread 26b for connection has a threaded portion with the screw hole 25a. By the way, a threaded portion having a required screw-in length L 2 is secured. The male screw 26a for joining has a total length L 11 slightly longer than the screw-in length L 1 , and the male screw 26b for connection has a total length L 22 longer than the screw-in length L 2 . The screwing length L 1 of the male screw 26a for joining described above is shorter than the screwing length L 2 of the male screw 26b for connection. This is because the material strength of the node member 21 is generally larger than the combined strength of the steel pipe structural member 23 and the bending resistance steel pipe 24, so the screwing length L 2 of the male screw 26b for connection is set.
Based on the fact that it is preferable to keep it longer. However, in the present invention, as will be described later, the structural material 22
Since it is necessary to engage the joining bolt 26 with the end member 25 in advance to some extent before joining the connecting member 21 to the node member 21, the screwing length L 2 of the connecting male screw 26b is the screwing length L of the joining male screw 26a. Inevitably longer than 1 .

【0019】上記したごとく接合用雄ねじ26aの節点
部材21との噛みあいに必要な長さがL1 であり、接続
用雄ねじ26bの全長はL22とされているので、当初に
接合ボルト26がエンド部材25に取りつけられると
き、接続用雄ねじ26bがねじ孔25aと噛みあわされ
る長さL3 は、L22−L1 かそれより少し短く選定され
る(図6参照)。この長さL3 に、スリーブ体27の回
転によって接続用雄ねじ26bをねじ孔25aに噛みあ
わせた長さL1 を加えると、エンド部材25のねじ孔2
5aとの噛みあいに必要な接続用雄ねじ26bのねじ込
み長さL2 が達成される(図8参照)。その結果、トラ
ス構造が組みあがった後に設計上の最大軸力が材料強度
の大きい節点部材21から構造材22に伝達されたとし
ても、それに十分耐えることができる接合強度を確保す
ることができる。なお、図6と同じ状態にある図1にお
いて、接合用雄ねじ26aの先端からスリーブ体27の
一方端27aまでの距離L4 を、接合用雄ねじ26aの
必要ねじ込み長さL1 の二倍とすべく、接続用雄ねじ2
6bがねじ孔25aに噛みあわされる。その結果、接合
用雄ねじ26aが節点部材21のねじ孔21aに所望量
送り込まれた時点で、図8のように、スリーブ体27の
一方端27aが節点部材21の接合面21pに当接し、
また、他方端27bもエンド部材25の外端面25pに
当接することになる。
As described above, since the length required for the male screw 26a for joining with the node member 21 to mesh is L 1 and the total length of the male screw 26b for connecting is L 22 , the joining bolt 26 is initially when attached to the end member 25, the length L 3 which is summed chewing the connecting male screw 26b threaded hole 25a is, L 22 -L 1 or greater than the selected bit shorter (see FIG. 6). This length L 3, the addition of the length L 1 to suit biting into the screw hole 25a for connection external thread 26b by the rotation of the sleeve body 27, threaded end member 25 hole 2
The screw-in length L 2 of the male screw 26b for connection required for the engagement with the 5a is achieved (see FIG. 8). As a result, even if the maximum design axial force is transmitted from the node member 21 having a large material strength to the structural material 22 after the truss structure is assembled, it is possible to secure the joining strength capable of sufficiently withstanding it. In FIG. 1 in the same state as FIG. 6, the distance L 4 from the tip of the male screw 26a for joining to the one end 27a of the sleeve body 27 is set to be twice the required screw-in length L 1 of the male screw 26a for joining. Therefore, connecting male screw 2
6b is engaged with the screw hole 25a. As a result, when the desired amount of the male screw 26a for joining is fed into the screw hole 21a of the node member 21, one end 27a of the sleeve body 27 abuts the joining surface 21p of the node member 21, as shown in FIG.
The other end 27b also comes into contact with the outer end surface 25p of the end member 25.

【0020】接合装置20を構成するスリーブ体27の
外面には、接合ボルト26のボス部26Aを回転するた
め回転力作用部33(図1参照)が断面六角形に形成さ
れ、その内面はボス部26Aの外面26mに係合して回
転力を伝達し、かつ、接合ボルト26が軸方向に摺動し
ながら変位することができる六角状の挿入孔27nを備
えている。そして、スリーブ体27の長さLs は、接合
ボルト26の全長Lから接合用雄ねじ26aの全長L11
と接続用雄ねじ26bの全長L22とを差し引いた寸法よ
りも少し長く選定される。このスリーブ体27は、構造
材22を節点部材21に接合するに先だち接合ボルト2
6に嵌め込まれる。そして、スリーブ体27を回転させ
れば、図7を経て図8のように、接合ボルト26を軸方
向へ変位させながら、接合用雄ねじ26aを節点部材2
1に噛みあわせ、同時に接続用雄ねじ26bもエンド部
材25のねじ孔25aに送り込むことができる。なお、
エンド部材25のねじ孔25aには接続用雄ねじ26b
を後述する長さL3 だけ予め挿入して接合ボルト26が
取りつけられる(図6参照)。このようにして接合ボル
ト26を取りつけた構造材22は節点部材21の位置す
るところまで移動される。しかし、クレーンなどによる
運搬の途中で構造材22が水平に保たれないこともある
のを考慮して、接合ボルト26に外挿したスリーブ体2
7が簡単に脱落するのを防止するために、図1に示すよ
うな脱落防止部材30が装着される。この脱落防止部材
30は、構造材22を節点部材21に接合するために接
合ボルト26を回転させ、スリーブ体27が節点部材2
1に接近した時点で破断したり脱落させまた手で簡単に
外すことができるようにするために、ボス部26Aの接
合用雄ねじ26a寄りの部位に取りつけられる。これ
は、例えば短いプラスチック製のピン30aであり、ボ
ス部26Aに設けた小さな孔に立てておけばよい。もし
くは、ボス部26Aの180度隔てた個所に孔を形成
し、それに図示しないがC形のフックを係止させたよう
なものでもよい。
A rotating force acting portion 33 (see FIG. 1) for rotating the boss portion 26A of the joining bolt 26 is formed on the outer surface of the sleeve body 27 which constitutes the joining device 20, and has a hexagonal cross section. It is provided with a hexagonal insertion hole 27n that engages with the outer surface 26m of the portion 26A to transmit a rotational force and allows the joining bolt 26 to be displaced while sliding in the axial direction. The length L s of the sleeve body 27 is from the total length L of the connecting bolt 26 to the total length L 11 of the connecting male screw 26a.
It is selected to be slightly longer than the size obtained by subtracting the total length L 22 of the connecting male screw 26b. The sleeve body 27 is provided with the joining bolt 2 before joining the structural member 22 to the node member 21.
It fits in 6. Then, when the sleeve body 27 is rotated, as shown in FIG. 8 through FIG. 7, while the joining bolt 26 is displaced in the axial direction, the joining male screw 26a is attached to the nodal member 2.
1, the male screw 26b for connection can be fed into the screw hole 25a of the end member 25 at the same time. In addition,
A male screw 26b for connection is provided in the screw hole 25a of the end member 25.
Is inserted in advance by a length L 3 to be described later, and the joining bolt 26 is attached (see FIG. 6). In this way, the structural member 22 to which the joining bolt 26 is attached is moved to the position of the node member 21. However, in consideration of the fact that the structural material 22 may not be kept horizontal during transportation by a crane or the like, the sleeve body 2 externally inserted in the joining bolt 26 is considered.
In order to prevent the 7 from falling off easily, a falling prevention member 30 as shown in FIG. 1 is attached. The drop-preventing member 30 rotates the joining bolt 26 to join the structural member 22 to the node member 21, and the sleeve body 27 moves the node member 2 to the node member 2.
It is attached to a portion of the boss portion 26A near the male screw 26a for joining so that it can be broken or fallen off when it approaches 1 and can be easily removed by hand. This is, for example, a short plastic pin 30a and may be set up in a small hole provided in the boss portion 26A. Alternatively, a hole may be formed in the boss portion 26A at a position separated by 180 degrees, and a C-shaped hook (not shown) may be engaged with the hole.

【0021】二重鋼管型の構造材22は、上記した鋼管
構造部材23と曲げ抵抗鋼管24、鋼管構造部材23の
端部に固定したエンド部材25と、そのエンド部材25
に取りつけられる接合装置20とから構成されるが、そ
の接合装置20に使用される接合ボルト26としては、
二重鋼管型の構造材22を節点部材21に接合するに適
した高力ボルトが採用される。二重管を形成する鋼管構
造部材23と曲げ抵抗鋼管24とは、曲げ抵抗鋼管24
の軸線24mの方向における中央部位と、鋼管構造部材
23の軸線23mの方向の中央部位とで固定される。こ
れは、図2に示すようにプラグ溶接32などによって達
成される。その場合、鋼管構造部材23に孔が設けら
れ、その孔に溶接肉盛りするようにして、曲げ抵抗鋼管
24を鋼管構造部材23に一体化させることができる。
もちろん、上記の孔にねじを刻設しておき、図示しない
が、そのねじ孔にボルトを挿入して曲げ抵抗鋼管24の
周上の例えば三個所を強く押さえたり、曲げ抵抗鋼管2
4に設けたねじ孔にねじ込んだりする形態を採ることも
できる。これは、構造材22の取付姿勢の如何によら
ず、初期状態においては、次に述べるガイド空間28
(図1参照)が左右同じ長さとなり、また、鋼管構造部
材23が軸圧縮力を受けたり軸引張力を受けて軸方向の
長さが変化しても、中央部位における相対変位が生じな
いようにして、左右における相対的な変化が同一となる
ようにするためである。上記したエンド部材25のガイ
ド部25Bは後述するがカバー部25Aよりも長く設定
されており、そのガイド部25Bの外周面25cと鋼管
構造部材23の内周面23aとの間には、ガイド空間2
8がリング状に形成される。このガイド空間28には、
上記の曲げ抵抗鋼管24の先端部位が挿入されるが、そ
の内面24bとガイド部25Bの外周面25cとの隙間
γは可及的に小さくされている。そして、曲げ抵抗鋼管
24の端面24aとカバー部25Aの裏面25bとの間
には、少なくとも鋼管構造部材23が座屈したとき曲げ
抵抗鋼管24の端部がカバー部25Aの裏面25bに向
けて相対的に変位することができる座屈許容長さL33
半分、もしくはそれより少し長い変位用隙間29が確保
されている。ちなみに、その座屈許容長さL33は、構造
材22が例えば2mの場合10mm程度に、3mの場合
15mm程度に選定される。
The double steel pipe type structural material 22 includes the above-mentioned steel pipe structural member 23, the bending resistance steel pipe 24, the end member 25 fixed to the end of the steel pipe structural member 23, and the end member 25 thereof.
The joining bolts 26 used in the joining device 20 include:
A high-strength bolt suitable for joining the double steel pipe type structural material 22 to the node member 21 is adopted. The steel pipe structural member 23 and the bending resistance steel pipe 24 forming the double pipe are the bending resistance steel pipe 24.
Are fixed at the central portion in the direction of the axis 24m and the central portion in the direction of the axis 23m of the steel pipe structural member 23. This is accomplished by plug welding 32 or the like as shown in FIG. In that case, a hole is formed in the steel pipe structural member 23, and the bending resistant steel pipe 24 can be integrated with the steel pipe structural member 23 by welding and overlaying the hole.
Of course, although not shown in the drawing, a screw is formed in the above hole, and a bolt is inserted into the screw hole to strongly press, for example, three places on the circumference of the bending resistance steel pipe 24, or to bend the bending resistance steel pipe 2.
It is also possible to adopt a form of screwing into the screw hole provided in 4. This is, regardless of the mounting posture of the structural member 22, in the initial state the guide space 28 described below.
(See FIG. 1) has the same length on the left and right, and even if the steel pipe structural member 23 receives an axial compressive force or an axial tensile force to change the axial length, relative displacement does not occur at the central portion. This is to make the relative changes on the left and right the same. Although described later, the guide portion 25B of the end member 25 is set longer than the cover portion 25A, and a guide space is provided between the outer peripheral surface 25c of the guide portion 25B and the inner peripheral surface 23a of the steel pipe structural member 23. Two
8 is formed in a ring shape. In this guide space 28,
Although the tip end portion of the bending resistance steel pipe 24 is inserted, the gap γ between the inner surface 24b and the outer peripheral surface 25c of the guide portion 25B is made as small as possible. Then, between the end surface 24a of the bending resistance steel pipe 24 and the back surface 25b of the cover portion 25A, at least when the steel pipe structural member 23 buckles, the end portion of the bending resistance steel pipe 24 faces toward the back surface 25b of the cover portion 25A. A displacement gap 29 that is half of the allowable buckling length L 33 that can be dynamically displaced or slightly longer than that is secured. Incidentally, the allowable buckling length L 33 is selected to be about 10 mm when the structural member 22 has a length of 2 m, and about 15 mm when the structural member 22 has a length of 3 m.

【0022】上記の曲げ抵抗鋼管24は、構造材22が
圧縮荷重を受けたとき、鋼管構造部材23の曲げ剛性の
強化を図るとともに、鋼管構造部材23の降伏後の塑性
変形を安定した軸対称形となるように案内する機能を有
している。すなわち、鋼管構造部材23に軸圧縮力Pが
作用して座屈荷重が作用すると、前述したが、曲げ抵抗
鋼管24は図3に示す状態で曲げ防止作用を発揮する。
それのみならず、鋼管構造部材23が降伏した後の座屈
変形において、エンド部材25の近傍の鋼管構造部材2
3の周囲が、図4に示すように、均等に外方へ膨らみや
すいように誘導する。そのような曲げ抵抗鋼管24の機
能をより一層効果的なものとするために、上記のガイド
空間28は、曲げ抵抗鋼管24の先端部位が鋼管構造部
材23に対して相対的に動くための空間の確保と曲げ抵
抗鋼管24の相対変位のためのガイディングを提供す
る。なお、ガイド空間28は、少なくとも上記した座屈
許容長さL33の1/2と曲げ抵抗鋼管24の内径D24
1倍ないし4倍の長さとを加えた長さを備えている。ち
なみに、構造材22は圧縮荷重を受けるだけでなく引張
荷重も作用することを考慮しておけば、ガイド空間28
の長さを、図5に示すように、上記した寸法に鋼管構造
部材23が軸引張力を受けた場合に曲げ抵抗鋼管24の
一方の端面24aが反カバー部側へ相対的に離隔する設
計上の許容引張変位量δt を加えたものにしておくとよ
い。この場合、座屈許容長さL33の1/2と許容引張変
位量δt との和をガイド空間28の全長Lt から差し引
いた長さL66も、曲げ抵抗鋼管24の内径D24の1倍な
いし4倍とされる。なお、以上のいずれの図において
も、長さL66は内径D24の約1倍の寸法で表されてい
る。
The above bending-resistant steel pipe 24 enhances the bending rigidity of the steel pipe structural member 23 when the structural material 22 receives a compressive load, and at the same time, axisymmetrically stabilizes the plastic deformation of the steel pipe structural member 23 after yielding. It has the function of guiding you to take shape. That is, when the axial compressive force P acts on the steel pipe structural member 23 and the buckling load acts, the bending resistance steel pipe 24 exerts the bending preventing action in the state shown in FIG. 3, as described above.
Not only that, but in buckling deformation after the steel pipe structural member 23 yields, the steel pipe structural member 2 near the end member 25
As shown in FIG. 4, the periphery of 3 is uniformly guided so as to easily bulge outward. In order to make the function of the bending-resistant steel pipe 24 more effective, the guide space 28 is a space for the tip portion of the bending-resistant steel pipe 24 to move relative to the steel pipe structural member 23. Of the bending resistance steel pipe 24 and the relative displacement of the bending resistant steel pipe 24. The guide space 28 has a length that is at least 1/2 of the above-described allowable buckling length L 33 and 1 to 4 times the inner diameter D 24 of the bending resistance steel pipe 24. Incidentally, considering that the structural material 22 not only receives a compressive load but also a tensile load, the guide space 28
As shown in FIG. 5, when the steel pipe structural member 23 is subjected to an axial tensile force, one end surface 24a of the bending resistance steel pipe 24 is relatively separated to the opposite cover portion side as shown in FIG. It is better to add the above allowable tensile displacement amount δ t . In this case, half the allowable tensile displacement δ length L 66 minus the total length L t of the sum of the t guide space 28 of the buckling allowable length L 33 also, the inner diameter D 24 of the bending resistance steel tube 24 It is 1 to 4 times. In any of the above figures, the length L 66 is represented by a size that is about one time the inner diameter D 24 .

【0023】上記したように、鋼管構造部材23に軸対
称形の変形が生じやすくさせているのは、大きい圧縮荷
重が作用した場合に、図20の破線Bで示すように、そ
の軸方向に大きい塑性変形を実現し、地震などによって
大きい荷重が作用したとき、トラス構造物が大きく変形
するのを許容するためである。しかし、その後も大きな
荷重が作用するときには、曲げ抵抗鋼管24の端面24
aがエンド部材25に当接し、鋼管構造部材23の耐力
と曲げ抵抗鋼管24の耐力との和でもってその荷重に対
抗させ、上記の破線Bの右端のほぼ平らな部分Baのよ
うに変形を持続させ、トラス構造物の急激な倒壊を防止
することができる。ちなみに、上記の接合ボルト26は
エンド部材25のカバー部25Aとガイド部25Bとを
貫通したねじ孔25aに噛みあわされているが、図示し
ないが、エンド部材25のカバー部25Aには、その中
央部位に接続用雄ねじ26bより大きい孔をあけてお
き、その接続用雄ねじ26bが噛みあうねじ孔を形成し
た別体のガイド部25Bをカバー部25Aの裏面25b
に溶接するなどして一体化させておいてもよい。その場
合には、ガイド部25Bとして六角ナットのようなもの
を採用することができる。
As described above, the reason why the axisymmetric deformation of the steel pipe structural member 23 is apt to occur is that when a large compressive load is applied, as shown by the broken line B in FIG. This is because a large plastic deformation is realized and the truss structure is allowed to largely deform when a large load is applied by an earthquake or the like. However, when a large load is applied thereafter, the end surface 24 of the bending resistance steel pipe 24
a comes into contact with the end member 25, the load is counteracted by the sum of the proof stress of the steel pipe structural member 23 and the proof stress of the bending resistant steel pipe 24, and the deformation is performed as in the substantially flat portion Ba at the right end of the broken line B. It can be sustained and prevent the truss structure from collapsing rapidly. Incidentally, although the joining bolt 26 is meshed with the screw hole 25a penetrating the cover portion 25A and the guide portion 25B of the end member 25, although not shown, the cover portion 25A of the end member 25 has a central portion thereof. A hole larger than the connecting male screw 26b is made in the portion, and a separate guide portion 25B having a screw hole with which the connecting male screw 26b engages is provided on the back surface 25b of the cover portion 25A.
It may be integrated by welding to, for example. In that case, something like a hexagon nut can be adopted as the guide portion 25B.

【0024】以上のような構成によれば、次のようにし
て、二重鋼管型の構造材22を節点部材21に強固に高
力ボルト26を用いて接合することができる。まず、鋼
管構造部材23よりは短い曲げ抵抗鋼管24を鋼管構造
部材23内へ挿入し、その曲げ抵抗鋼管24の中央部位
が鋼管構造部材23の軸方向中央部位に一致するように
配置する。そして、双方の中央部位を溶接もしくはねじ
止めなどによって、曲げ抵抗鋼管24を鋼管構造部材2
3の中で動かないように固定する(図2参照)。次に、
軸線25mの方向へ延びるねじ孔25aを形成したカバ
ー部25Aと、そのカバー部25Aより小さい外径を有
してカバー部25Aの裏面25bに連なり鋼管構造部材
23内へ突入するガイド部25Bとを備えるエンド部材
25を、そのカバー部25Aが鋼管構造部材23の端部
に当接してその開口23bを覆うように、溶接などによ
って取りつける。これによって、ガイド部25Bの外周
面25cと鋼管構造部材23の内周面23aとの間には
ガイド空間28が形成される。なお、曲げ抵抗鋼管24
の先端部位は、そのガイド空間28に挿入された恰好と
なる。そして、曲げ抵抗鋼管24の端面24aとカバー
部25Aの裏面25bとの間には、設計上予め決められ
た座屈許容長さL33の1/2より長い変位用隙間29が
確保される。
According to the above construction, the double steel pipe type structural member 22 can be firmly joined to the node member 21 by using the high strength bolt 26 as follows. First, a bending resistance steel pipe 24 shorter than the steel pipe structural member 23 is inserted into the steel pipe structural member 23, and the bending resistance steel pipe 24 is arranged so that the central portion thereof coincides with the axial central portion of the steel pipe structural member 23. Then, the bending resistance steel pipe 24 is attached to the steel pipe structural member 2 by welding or screwing both central portions.
It is fixed so that it does not move in 3 (see Fig. 2). next,
A cover portion 25A having a screw hole 25a extending in the direction of the axis 25m and a guide portion 25B having an outer diameter smaller than that of the cover portion 25A and being continuous with the back surface 25b of the cover portion 25A and protruding into the steel pipe structural member 23 are provided. The end member 25 provided is attached by welding or the like so that the cover portion 25A abuts the end portion of the steel pipe structural member 23 and covers the opening 23b. As a result, a guide space 28 is formed between the outer peripheral surface 25c of the guide portion 25B and the inner peripheral surface 23a of the steel pipe structural member 23. Bending resistance steel pipe 24
The distal end portion of is the shape that is inserted into the guide space 28. Further, between the end surface 24a of the bending resistance steel pipe 24 and the back surface 25b of the cover portion 25A, a displacement gap 29 longer than 1/2 of the buckling allowable length L 33 predetermined in design is secured.

【0025】トラス構築現場の地上などにおいて、節点
部材21のねじ孔21aに噛みあう接合用雄ねじ26a
が形成されている接合ボルト26を、接続用雄ねじ26
bを介してエンド部材25に設けたねじ孔25aに噛み
あわせる。このとき、接合ボルト26のボス部26Aを
手でエンド部材25に向かって左回転させ、接続用雄ね
じ26bを長さL3 だけエンド部材25のねじ孔25a
に挿入する(図1参照)。そして、スリーブ体27をボ
ス部26Aの外面26mに係合させ、その他方端27b
がエンド部材25の外端面25pに当接するようにす
る。そして、スリーブ体27の一方端27aに接触する
程度の近い個所に脱落防止用のピン30aを立てる。上
記の接続用雄ねじ26bを長さL3 だけねじ孔25aに
挿入する作業、接合ボルト26をエンド部材25に仮止
めする作業、さらには、接合ボルト26にスリーブ体2
7を嵌めた後にピン30aを取りつける作業は、構造材
22を出荷する時点で行っておけば、作業現場での手間
を省くことができる。構造材22の輸送中にスリーブ体
27が左回転しようとしてもピン30aによって接合ボ
ルト26の進出が阻止され、接続用雄ねじ26bのねじ
孔25aとの所定の噛みあい長さL3 は維持される。一
方、スリーブ体27が右に回転すれば接続用雄ねじ26
bのねじ孔25aとの噛みあい長さはL3 より少なくな
るが、その回転量が多くないかぎりは、構造材22の姿
勢が水平に保持されていなくても、スリーブ体27はピ
ン30aによってその脱落が防止される。なお、輸送中
にスリーブ体27が少し右回転している場合には、スリ
ーブ体27がエンド部材25の外端面25pかピン30
aのいずれか一方から離れているので、接続用雄ねじ2
6bのねじ孔25aとの噛みあい長さがL3 より少なく
なっていることが一目で分かる。その場合には、節点部
材21に接合する直前にスリーブ体27を手で左回転し
てやれば、所定の噛みあい長さL3 は簡単に再現され
る。
A male screw 26a for joining that meshes with the screw hole 21a of the node member 21 on the ground at the truss construction site.
The connecting bolt 26 in which the
It engages with the screw hole 25a provided in the end member 25 via b. At this time, the boss portion 26A of the joining bolt 26 is manually rotated counterclockwise toward the end member 25, and the connecting male screw 26b is length L 3 of the screw hole 25a of the end member 25.
(See FIG. 1). Then, the sleeve body 27 is engaged with the outer surface 26m of the boss portion 26A, and the other end 27b
Touches the outer end surface 25p of the end member 25. Then, a drop-preventing pin 30a is set up at a position close to the one end 27a of the sleeve body 27. Operation of inserting only the threaded hole 25a length L 3 of the connection the external thread 26b of the work of temporarily stopping the fastening bolt 26 to the end member 25, furthermore, fastening bolt 26 to the sleeve member 2
If the work of attaching the pin 30a after fitting 7 is performed at the time of shipping the structural material 22, the labor at the work site can be saved. Even if the sleeve body 27 tries to rotate counterclockwise during the transportation of the structural material 22, the advancing of the joining bolt 26 is prevented by the pin 30a, and the predetermined engagement length L 3 with the screw hole 25a of the male screw 26b for connection is maintained. . On the other hand, if the sleeve body 27 rotates to the right, the connecting male screw 26
engagement length and b of the screw hole 25a is less than L 3, as long as the amount of rotation is not much, without orientation of the structural member 22 is not held horizontally, the sleeve member 27 by a pin 30a The dropout is prevented. In addition, when the sleeve body 27 rotates a little to the right during transportation, the sleeve body 27 may rotate the outer end surface 25p of the end member 25 or the pin 30.
Since it is separated from either one of a, male screw for connection 2
It can be seen at a glance that the engagement length with the screw hole 25a of 6b is less than L 3 . In that case, if the sleeve body 27 is manually rotated to the left just before being joined to the node member 21, the predetermined engagement length L 3 can be easily reproduced.

【0026】二重管の両端に接合装置20を装着したも
のを、トラス構築中の節点部材21の位置までクレーン
などで移動し、図6に示すように、節点部材21のねじ
孔21aに接合ボルト26の接合用雄ねじ26aの先端
を臨ませる。接続用雄ねじ26bは接合用雄ねじ26a
と同一ピッチの逆ねじであり、スリーブ体27の回転力
作用部33にレンチなどを掛けて、図7のように右回転
させる。挿入孔27nを介して接合ボルト26は回転
し、接合用雄ねじ26aが節点部材21のねじ孔21a
内に送り込まれる。これと同時に、接合用雄ねじ26a
と同一ピッチを有する左ねじの接続用雄ねじ26bも同
じ量だけエンド部材25のねじ孔25a内に送り込まれ
る。この間に、ピン30aはスリーブ体27の一方端2
7aによって破断され、接合ボルト26はスリーブ体2
7の挿入孔27n内で軸方向へ摺動変位する。接続用雄
ねじ26bは予め長さL3 だけねじ孔25aに挿入され
ているので、スリーブ体27を回転して接合用雄ねじ2
6aがねじ孔21aとの噛みあいに必要なねじ込み長さ
1 分挿入されると(図8参照)、接続用雄ねじ26b
はねじ孔25aにL3 +L1 の長さすなわち噛みあいに
必要なねじ込み長さL2 の噛みあわせを達成する。スリ
ーブ体27の長さLs は、接合ボルト26の全長Lから
接合用雄ねじ26aの全長L11と接続用雄ねじ26bの
全長L22とを差し引いた寸法よりも少し長く選定されて
いる。その結果、上記したねじ込み長さL1 だけ接合ボ
ルト26を送り込んだ時点で、スリーブ体27の一方端
27aが節点部材21の平坦な接合面21pに当接する
と同時に、他方端27bがエンド部材25の外端面25
pに当接する。この図8の状態において、スリーブ体2
7に大きいトルクを作用させて増し締めすることがで
き、構造材22は剛性の高い接合部を介して節点部材2
1に強固に接合される。
The double pipe with the joining devices 20 attached to both ends is moved to the position of the node member 21 during construction of the truss by a crane or the like, and is joined to the screw hole 21a of the node member 21 as shown in FIG. The tip of the joining male screw 26a of the bolt 26 is exposed. The connecting male screw 26b is the joining male screw 26a.
It is a reverse screw with the same pitch as the above, and a wrench or the like is hooked on the rotational force acting portion 33 of the sleeve body 27 to rotate it clockwise as shown in FIG. 7. The joining bolt 26 rotates through the insertion hole 27n, and the joining male screw 26a becomes the screw hole 21a of the node member 21.
Sent in. At the same time, the male screw for joining 26a
The left-handed connecting male screw 26b having the same pitch as is also fed into the screw hole 25a of the end member 25 by the same amount. During this time, the pin 30a is attached to the one end 2 of the sleeve body 27.
7a, and the joint bolt 26 is broken by the sleeve body 2
7 slides in the insertion hole 27n in the axial direction. Since the connecting male screw 26b has been inserted into the screw hole 25a by the length L 3 in advance, the sleeve body 27 is rotated and the joining male screw 2b is rotated.
When 6a is inserted by a screw-in length L 1 required for engagement with the screw hole 21a (see FIG. 8), the connecting male screw 26b
Achieves the engagement of the length L 3 + L 1 in the screw hole 25a, that is, the screw-in length L 2 required for engagement. The length L s of the sleeve body 27 is selected to be slightly longer than the total length L of the joining bolt 26 minus the total length L 11 of the joining male screw 26a and the total length L 22 of the connecting male screw 26b. As a result, at the time when the joining bolt 26 is fed by the screwing length L 1 described above, the one end 27a of the sleeve body 27 abuts on the flat joining surface 21p of the node member 21, and at the same time, the other end 27b thereof ends. Outer surface 25
abut p. In the state of FIG. 8, the sleeve body 2
7 can be tightened by applying a large torque, and the structural member 22 is connected to the node member 2 through the joint having high rigidity.
1 is firmly joined.

【0027】このようにして、構造材22を節点部材2
1に接合すれば、例えば図9の矢印の方向へ順次構造材
22を組立てていくことができる。ちなみに、このよう
にして一列に接合されたものを柱にして、後述するが、
その各節点部材21に他の形式の接合装置36を用いて
鋼管などの構造部材35を図10に示すごとく多数接合
すれば、所望する形状のトラスを構築することができ
る。図6から図8までの動きから分かるように、接合ボ
ルト26を固定して眺めると、二重管は左行する一方、
節点部材21が右行するように挙動し、両者間の距離が
スリーブ体27の長さLs となる。実際には、節点部材
21の位置が定まっていることが多く、スリーブ体27
の回転につれて構造材22が移動することになる。しか
し、構造材22はクレーンなどで吊り下げられた状態に
あり、その動きは何ら阻害されることがない。ところ
で、スリーブ体27の長さはもちろんのこと、エンド部
材25の外端面25pから他方のエンド部材25の外端
面25pまでの寸法は、現在の加工技術をもってすれば
極めて正確に所望長さとすることができる。したがっ
て、構造材22を節点部材21に接合した時点では、構
造材22の左右の節点部材21,2間の距離は計画どお
りのものとなる。二重鋼管型の構造材22は非常に大き
な断面耐力を有するが、それに対応して大きい荷重の伝
達を可能にする接合装置をコンパクトに形成することが
できる。それと同時に、大きな力が作用する部分に一重
鋼管を採用するとその外径は大きくなるが、同等かそれ
以上の耐力を発揮するにもかかわらず小さな断面外形を
した二重鋼管型の構造材の使用が可能となる。従前にお
いて中実材などを採用しようとすると、高力ボルトを溶
接しておかなければならなかったが、エンド部材にねじ
孔加工を施しておくだけでよく、構造材の製造が簡便で
輸送も容易なものとなる。それのみならず、節点部材と
の接合においては長尺な構造材自体を回転させる必要が
なく、接合作業の簡便化も図られ、所望するトルクを接
合部位に作用させることが極めて容易となる。
In this way, the structural member 22 is connected to the nodal member 2
If joined to 1, the structural material 22 can be sequentially assembled in the direction of the arrow in FIG. 9, for example. By the way, as will be described later, the columns joined in this way are described below.
A truss of a desired shape can be constructed by joining a large number of structural members 35 such as steel pipes to the respective node members 21 by using another type of joining device 36 as shown in FIG. As can be seen from the movements of FIGS. 6 to 8, when the joining bolt 26 is fixed and viewed, the double pipe moves leftward,
The node member 21 behaves so as to move to the right, and the distance between them becomes the length L s of the sleeve body 27. In practice, the position of the node member 21 is often fixed, and the sleeve body 27
The structural material 22 moves with the rotation of. However, the structural member 22 is in a state of being suspended by a crane or the like, and its movement is not hindered at all. By the way, not only the length of the sleeve body 27, but also the dimension from the outer end surface 25p of the end member 25 to the outer end surface 25p of the other end member 25 should be extremely accurately the desired length with the current processing technology. You can Therefore, when the structural member 22 is joined to the node member 21, the distance between the left and right node members 21 and 2 of the structural member 22 is as planned. Although the double steel pipe type structural material 22 has a very large cross-sectional proof stress, a joining device that allows correspondingly large load transmission can be formed compactly. At the same time, if a single steel pipe is adopted in a portion where a large force acts, its outer diameter will increase, but the use of a double steel pipe type structural material with a small cross-sectional outer shape despite exhibiting the same or higher yield strength. Is possible. In the past, when trying to adopt solid materials etc., it was necessary to weld high strength bolts, but it is only necessary to process the end members with screw holes, the structure material is easy to manufacture and transport It will be easy. Not only that, it is not necessary to rotate the long structural member itself in joining with the node member, the joining work is simplified, and it becomes extremely easy to apply a desired torque to the joining portion.

【0028】ちなみに、ボス部26Aの長さは図1に示
したごとくスリーブ体27の長さに近いものである必要
はない。当初に接合ボルト26を二重管に組み込んだ時
点でボス部26Aの外面26mにスリーブ体27を係合
させることができれば、二点鎖線で示したような短いも
のであってもよい。接合装置においては、それに使用さ
れる接合ボルト26に形成したボス部26Aの形状も前
述した六角断面に限られることはなく、トルク伝達の可
能な多角形を採用することができる。その場合、スリー
ブ体27の中に形成される挿入孔27nも、その形に見
あったものにしておけばよいことは言うまでもない。ま
た、接合ボルト26の接合用雄ねじ26aと接続用雄ね
じ26bとは同一ピッチの逆ねじであれば、その径は同
じである必要がない。したがって、節点部材21の大き
さや鋼管構造部材23などの断面寸法を勘案して、接続
用雄ねじ26bに所望するねじ径を与えておけばよい。
Incidentally, the length of the boss portion 26A need not be close to the length of the sleeve body 27 as shown in FIG. As long as the sleeve body 27 can be engaged with the outer surface 26m of the boss portion 26A when the joining bolt 26 is initially assembled in the double pipe, it may be a short one as shown by the chain double-dashed line. In the joining device, the shape of the boss portion 26A formed on the joining bolt 26 used for the joining device is not limited to the hexagonal cross section described above, and a polygon capable of transmitting torque can be adopted. In that case, it goes without saying that the insertion hole 27n formed in the sleeve body 27 may also have a shape that matches the shape. The diameters of the joining male screw 26a and the connecting male screw 26b of the joining bolt 26 need not be the same as long as they are reverse screws having the same pitch. Therefore, a desired screw diameter may be given to the connecting male screw 26b in consideration of the size of the node member 21 and the sectional dimensions of the steel pipe structural member 23 and the like.

【0029】上記のように接合してトラス構造物に組み
込まれた二重鋼管型の構造材22に圧縮荷重が作用した
場合、節点部材2から伝達される圧縮力は、接合用雄ね
じ26aから接続用雄ねじ26bを介して鋼管構造部材
23へ伝達される。その際に曲げ力が作用しても、鋼管
構造部材23は曲げ抵抗鋼管24によって補強されてお
り、簡単に曲がることはない。その圧縮力が大きけれ
ば、鋼管構造部材23は降伏し塑性変形を始める。しか
し、ガイド空間28には曲げ抵抗鋼管24の先端部位が
挿入されており、かつ、その端面24aとカバー部25
Aの裏面25bとの間にもエンド部材24のガイド部2
5Bが位置しているので、鋼管構造部材23の座屈変形
は、図4に示すように、エンド部材25の近くで外方に
膨らむ軸対称形をした安定なものとなる。鋼管構造部材
23の座屈によって、曲げ抵抗鋼管24の端部が変位用
隙間29を鋼管構造部材23に対して相対的に移動し、
鋼管構造部材23が座屈許容長さL33分短くなると、曲
げ抵抗鋼管24の端面24aがエンド部材25の裏面2
5aに当接する(図4参照)。この時点で鋼管構造部材
23の軸対称形した座屈変形は止まり、鋼管構造部材2
3と曲げ抵抗鋼管24の座屈耐力が軸圧縮力に対抗す
る。その対抗力は鋼管構造部材23のみの場合よりも大
きいので、その後の圧縮力に対して二重鋼管型の構造材
22は極めて緩やかな変形となる(図20の破線Ba参
照)。したがって、トラス構造物の急激な倒壊は回避さ
れ、建物の中にいる人々は最初の大きい変形の時点で危
険に気づき、その後の緩やかな変形の間に屋外へ脱出す
ることができる。なお、二重鋼管型の構造材22に引張
荷重が作用した場合には、その引張力が曲げ抵抗鋼管2
4に及ぶことはない。設計上許容される大きさの引張力
を受けたときには、鋼管構造部材23の片側において許
容引張変位量δt の伸びが生じ、その結果、曲げ抵抗鋼
管24の一方の端面24aが反カバー部側へ許容引張変
位量δt だけ離隔する。しかし、その時点で、図5に示
すように、座屈許容長さL33と許容引張変位量δt との
和を、ガイド空間28の全長Lt から差し引いた長さL
66が、曲げ抵抗鋼管24の内径D24の1倍ないし4倍分
確保されていると、二重鋼管型の構造材22に引張荷重
が作用した直後に圧縮荷重が作用して降伏したとして
も、鋼管構造部材23の端部に生じる座屈変形は軸対称
形に保持され、最初から圧縮荷重が作用したときと同じ
挙動を呈した安定したものとなる。
When a compressive load is applied to the double steel pipe type structural member 22 assembled into the truss structure by joining as described above, the compressive force transmitted from the node member 2 is connected from the joining male screw 26a. It is transmitted to the steel pipe structural member 23 via the external male screw 26b. At that time, even if a bending force is applied, the steel pipe structural member 23 is reinforced by the bending resistance steel pipe 24 and is not easily bent. If the compressive force is large, the steel pipe structural member 23 will yield and start plastic deformation. However, the tip portion of the bending-resistant steel pipe 24 is inserted in the guide space 28, and the end face 24a and the cover portion 25 are inserted.
The guide portion 2 of the end member 24 is also provided between the back surface 25b of A and the back surface 25b.
Since 5B is located, the buckling deformation of the steel pipe structural member 23 becomes a stable axially symmetrical shape that bulges outward near the end member 25, as shown in FIG. Due to the buckling of the steel pipe structural member 23, the end portion of the bending resistant steel pipe 24 moves relatively in the displacement gap 29 with respect to the steel pipe structural member 23,
When the steel pipe structural member 23 is shortened by the allowable buckling length L 33 , the end face 24a of the bending resistance steel pipe 24 becomes the back face 2 of the end member 25.
5a (see FIG. 4). At this point, the axially symmetric buckling deformation of the steel pipe structural member 23 stops, and the steel pipe structural member 2
3, and the buckling resistance of the bending resistance steel pipe 24 opposes the axial compression force. Since the counter force is larger than that of the steel pipe structural member 23 alone, the double steel pipe type structural member 22 is extremely gently deformed with respect to the subsequent compressive force (see the broken line Ba in FIG. 20). Thus, a sudden collapse of the truss structure is avoided, people inside the building are aware of the danger at the time of the first major deformation and can escape to the outdoors during subsequent gentle deformation. When a tensile load is applied to the double steel pipe type structural material 22, the tensile force is applied to the bending resistance steel pipe 2.
No more than four. When a tensile force of a design-permitted amount is applied, elongation of the allowable tensile displacement amount δ t occurs on one side of the steel pipe structural member 23, and as a result, one end surface 24a of the bending resistance steel pipe 24 is opposite to the cover portion side. Separate the allowable tensile displacement δ t . However, at that time, as shown in FIG. 5, the sum of the allowable tensile displacement [delta] t and buckling allowable length L 33, a length obtained by subtracting from the total length L t of the guide space 28 L
If 66 is secured for 1 to 4 times the inner diameter D 24 of the bending resistance steel pipe 24, even if a compressive load acts immediately after a tensile load acts on the double steel pipe type structural member 22, the yield will be yielded. The buckling deformation occurring at the end of the steel pipe structural member 23 is maintained in an axially symmetrical shape, and the behavior becomes the same as that when the compressive load is applied from the beginning.

【0030】図11は、上記した接合装置20でもって
二重鋼管型の構造材22,22を、塔状構造物の柱に使
用した場合の例である。図中の太い部材が二重管であ
り、中太もしくは細く示した部材が一重管の構造部材3
5である。その薄肉管などの構造部材35は、トラス構
造のなかでも大きい力の作用しないところに採用され、
一般的には構造材22よりも細いパイプとなっている。
しかも、構造材22を配置した後は、その構造材22の
長さに規定されて、両端に位置する節点部材21,21
間の芯間距離が定まっていることが多い。そこで、その
構造部材35には、従来技術のところで少し触れたが、
特開昭63−51539号公報に記載の構造、すなわち
図12のごとく、接合ボルト37に形成したねじ部37
aの径より大きい断面を有するボス部37Aの外面に係
合して回転力を伝達するとともに、その接合ボルト37
の軸方向変位を可能にしたスリーブ体34を備え、接合
ボルト37を構造部材35側へ押し込みスリーブ体34
内に完全に退避させることができる接合装置を採用した
り、実開平2−18003号公報に記載の構造すなわち
図14に示す接合装置39や、図示しないが実開平2−
125102号公報にあるような接合装置を採用すると
よい。
FIG. 11 shows an example in which the double steel pipe type structural members 22 and 22 are used for the columns of the tower-like structure by the above-mentioned joining device 20. The thick member in the figure is a double pipe, and the member shown in the middle or thin is a single pipe structural member 3
It is 5. The structural member 35 such as the thin-walled pipe is adopted in a truss structure where a large force does not act,
Generally, the pipe is thinner than the structural member 22.
Moreover, after the structural material 22 is arranged, the nodal members 21 and 21 located at both ends are defined by the length of the structural material 22.
The distance between cores is often fixed. So, I touched on the structural member 35 a little in the prior art.
The structure described in JP-A-63-51539, that is, as shown in FIG. 12, the screw portion 37 formed on the joining bolt 37.
While engaging the outer surface of the boss portion 37A having a cross section larger than the diameter of a to transmit the rotational force, the joint bolt 37
Is provided with a sleeve body 34 capable of axial displacement, and the joint bolt 37 is pushed toward the structural member 35 side.
A joining device that can be completely retracted inside is used, or the structure described in Japanese Utility Model Laid-Open No. 2-180303, that is, the bonding device 39 shown in FIG.
It is advisable to employ a joining device as disclosed in Japanese Patent No. 125102.

【0031】前者は、スリーブ体34内に位置する接合
ボルト37の背部、すなわち、ボス部37Aと構造部材
35側の端面35pとの間にスプリング38を介在させ
ている。そして、そのスプリング38の弾力を利用して
接合ボルト37を構造部材35側へ押し込み、スリーブ
体34内に完全に退避させることができるような接合装
置36となっている。したがって、図13のように接合
ボルト37の先端を節点部材21の接合面21pに接触
させればスプリング38が縮んで接合ボルト37が後退
し、その接合ボルト37が節点部材21のねじ孔21a
に臨むと、ねじ部37aがスプリング38の弾発力で復
元される。その先端はねじ孔21aに呼び込まれ、以後
スリーブ体34を回転させれば、接合ボルト37が前進
して、構造部材35を節点部材21に強固に接合するこ
とができる(図12参照)。上記した図14の接合装置
39では、接合ボルト40にスリーブ体41の回転によ
って正逆の送りを可能にする変位用ねじ42が形成され
ている。ちなみに、この接合装置39では、薄肉鋼管4
3の端部にエンド部材43Aが固定され、それに噛みあ
わせて固定した支持筒43Bに、上記の変位用ねじ42
が螺合されている。したがって、構造部材43を節点部
材へ運ぶ前に、ボス部40Aを介したスリーブ体41の
逆回転により、図示のごとく、変位用ねじ42を支持筒
43B内へ進入させて接合ボルト40を後退させてお
き、その接合ボルト40のねじ部40aを節点部材のね
じ孔に臨ませた後にスリーブ体41を正回転させると、
接合ボルト40が前進して強固な接合が達成されるよう
になっている。上記したいずれもが、二つの節点部材の
芯間距離が定まった後に構造部材を配置することができ
るようにしているので、図10や図11に示すように、
一重管などの構造部材35と二重鋼管型の構造材22と
を混在して、トラス構造物全体を組み立てることができ
る。中実材と同じ耐力を発揮する中空の一重管は極めて
大きい径となるが、それに代えて二重管を採用すると、
一重管よりは細い構造材22とすることができるので、
他の構造部材35などとの太さのばらつきも少なくな
り、トラス構造物の見栄えもよくなる。接合装置20は
上述したようにコンパクト化されており、他の接合装置
36とともに節点部材21に取りつける際の相互の干渉
も少なく、所望する耐力を備えた構造材22や構造部材
35を配置することができる。
In the former case, the spring 38 is interposed between the back portion of the joining bolt 37 located in the sleeve body 34, that is, between the boss portion 37A and the end surface 35p on the side of the structural member 35. Then, the joining device 36 is configured such that the joining bolt 37 is pushed toward the structural member 35 side by utilizing the elasticity of the spring 38 and can be completely retracted into the sleeve body 34. Therefore, when the tip of the joining bolt 37 is brought into contact with the joining surface 21p of the node member 21 as shown in FIG. 13, the spring 38 contracts and the joining bolt 37 retracts, and the joining bolt 37 is screwed into the screw hole 21a of the node member 21.
Then, the screw portion 37a is restored by the elastic force of the spring 38. When the sleeve body 34 is rotated thereafter, the joining bolt 37 advances and the structural member 35 can be firmly joined to the node member 21 (see FIG. 12). In the joining device 39 of FIG. 14 described above, the joining bolt 40 is formed with the displacement screw 42 that enables forward and reverse feeding by rotation of the sleeve body 41. By the way, in this joining device 39, the thin steel pipe 4
An end member 43A is fixed to an end portion of the screw 3, and the displacement screw 42 is attached to the support cylinder 43B fixed by meshing with the end member 43A.
Are screwed together. Therefore, before carrying the structural member 43 to the nodal member, the displacement screw 42 is advanced into the support cylinder 43B to retract the joining bolt 40 by reverse rotation of the sleeve body 41 via the boss portion 40A, as shown in the figure. If the threaded portion 40a of the joining bolt 40 is exposed to the threaded hole of the node member and the sleeve body 41 is normally rotated,
The joining bolt 40 is advanced to achieve a strong joining. In any of the above, since the structural member can be arranged after the inter-center distance between the two node members is determined, as shown in FIG. 10 and FIG.
The entire truss structure can be assembled by mixing the structural member 35 such as a single pipe and the double steel pipe type structural material 22. A hollow single pipe that has the same yield strength as a solid material has an extremely large diameter, but if a double pipe is adopted instead,
Since the structure material 22 can be made thinner than the single pipe,
Variations in thickness with other structural members 35 and the like are reduced, and the appearance of the truss structure is improved. The joining device 20 is made compact as described above, and there is little mutual interference when it is attached to the node member 21 together with the other joining device 36, and the structural member 22 or the structural member 35 having a desired proof strength is arranged. You can

【0032】図15は、トラス構造物の支持点44,4
4が対向する二辺にのみに存在する場合の例であり、図
16は、支持点45,45が四隅のみにある場合の平面
図である。ちなみに、図17および図18は図15の正
面矢視および側面矢視を示している。図中の二本線で示
した個所が二重管の構造材22であり、一本線で示した
ところが一重管の構造部材35である。これらの場合
は、いずれも二本線で示す構造材22に作用する応力
が、他の個所の構造部材35などに比べ極端に大きくな
る。そのような個所に本発明の接合装置20を採用した
耐力の大きな構造材22を使用すればよいことが分か
る。以上の説明からも分かるように二重鋼管型の構造材
22およびそれに採用された接合装置20は、非常に大
きな力が作用する例えば塔状構造物の柱などに適用する
ことが好適であり、中空材もしくは薄肉管を用いた構造
部材と混在して使用しても、トラス鋼構造物に採用され
る構造部材の太さの不揃いが軽減され、その見栄えもよ
いものとなる。
FIG. 15 shows the support points 44, 4 of the truss structure.
FIG. 16 is an example in which 4 is present only on two opposite sides, and FIG. 16 is a plan view when the support points 45, 45 are only at four corners. Incidentally, FIGS. 17 and 18 show the front view and the side view of FIG. 15, respectively. The double-lined portion in the figure is the double-tube structural member 22, and the single-lined portion is the single-tube structural member 35. In any of these cases, the stress acting on the structural member 22 indicated by the double line is extremely large as compared with the structural member 35 at other points. It will be understood that the structural material 22 having a large yield strength, which employs the joining apparatus 20 of the present invention, may be used in such a place. As can be seen from the above description, the double steel pipe type structural material 22 and the joining device 20 adopted therein are preferably applied to, for example, columns of a tower-shaped structure on which a very large force acts, Even when used in combination with a structural member using a hollow material or a thin-walled pipe, the unevenness of the thickness of the structural member adopted for the truss steel structure is reduced, and the appearance thereof is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】 接合装置を備えた本発明に係る二重鋼管型ト
ラス構造物用構造材の端部における拡大縦断面図。
FIG. 1 is an enlarged vertical cross-sectional view of an end portion of a structural material for a double steel pipe type truss structure according to the present invention including a joining device.

【図2】 一つの構造材を左右の節点部材に接合する状
態の全体図。
FIG. 2 is an overall view of a state in which one structural member is joined to left and right node members.

【図3】 曲げ変形しようとする状態にある二重鋼管型
構造材の誇張した模式図。
FIG. 3 is an exaggerated schematic view of a double steel pipe type structural material in a state of being bent and deformed.

【図4】 鋼管構造部材が軸対称形に塑性変形した場合
の構造材の部分断面図。
FIG. 4 is a partial cross-sectional view of a structural material when a steel pipe structural member is plastically deformed in an axially symmetric shape.

【図5】 最初に軸引張力を受けた後に軸圧縮力を受け
るときの二重鋼管型構造材の端部構成を示す断面図。
FIG. 5 is a cross-sectional view showing an end structure of the double steel pipe type structural material when it is first subjected to an axial tensile force and then an axial compressive force.

【図6】 接合ボルトを節点部材に噛みあわせる直前の
設置状態図。
FIG. 6 is an installation state diagram immediately before the joining bolt is engaged with the node member.

【図7】 スリーブ体を回転させて接合ボルトを節点部
材およびエンド部材に噛みあわせている途中の動作図。
FIG. 7 is an operation diagram in the middle of rotating the sleeve body and engaging the joining bolt with the node member and the end member.

【図8】 接合装置によって二重管を節点部材に完全に
接合した後の接合状態図。
FIG. 8 is a joining state diagram after the double tube is completely joined to the node member by the joining device.

【図9】 二重鋼管の構造材を一方向へ延びるように接
合した場合の接合状態図。
FIG. 9 is a joining state diagram when joining the structural materials of the double steel pipe so as to extend in one direction.

【図10】 一つの節点部材に二重鋼管構造材と一重鋼
管型の構造部材とを放射状に接合したときの節点部材近
傍における拡大図。
FIG. 10 is an enlarged view in the vicinity of a node member when a double steel pipe structural member and a single steel pipe type structural member are radially joined to one node member.

【図11】 塔状構造物の柱に二重鋼管型の構造材を適
用した場合のトラス構造の部分図。
FIG. 11 is a partial view of a truss structure in which a double steel pipe type structural material is applied to columns of a tower-shaped structure.

【図12】 スプリングの伸縮で接合ボルトが進退可能
となっている接合装置の構成断面図。
FIG. 12 is a structural cross-sectional view of a joining device in which a joining bolt can be moved back and forth by expansion and contraction of a spring.

【図13】 接合ボルトがスリーブ体内に退避した状態
の動作説明図。
FIG. 13 is an operation explanatory view in which the joining bolt is retracted into the sleeve body.

【図14】 接合ボルトに形成した変位用ねじによって
接合ボルトの進退動作を可能にした接合装置の構成断面
図。
FIG. 14 is a cross-sectional view of a configuration of a joining device in which the joining bolt can be moved back and forth by a displacement screw formed on the joining bolt.

【図15】 支持点が両側に設けられている場合のトラ
ス構造物であって、二重鋼管型構造材の取付個所を説明
する平面図。
FIG. 15 is a plan view illustrating a truss structure in which supporting points are provided on both sides, which is a mounting location of a double steel pipe type structural material.

【図16】 支持点が四隅とした場合のトラス構造物で
あって、二重鋼管構造材の取付個所を説明する平面図。
FIG. 16 is a plan view illustrating a truss structure in which the support points are four corners, and where the double steel pipe structural material is attached.

【図17】 図15のXVII−XVII線矢視図。17 is a view taken along the line XVII-XVII in FIG.

【図18】 図15の XVIII−XVIII 線矢視図。18 is a view taken along the line XVIII-XVIII in FIG.

【図19】 先行技術の二重管を節点部材に接合した状
態の説明図。
FIG. 19 is an explanatory view showing a state in which a double pipe of a prior art is joined to a node member.

【図20】 先行技術における二重管および本発明に係
る二重鋼管型構造材の弾塑性変形を説明するグラフ。
FIG. 20 is a graph illustrating elasto-plastic deformation of a double pipe in the prior art and a double steel pipe type structural material according to the present invention.

【符号の説明】[Explanation of symbols]

21…節点部材、21a…ねじ孔、21p…接合面、2
2…二重鋼管型の構造材、23…鋼管構造部材、23a
…内周面、23b…開口、23m…軸線、24…曲げ抵
抗鋼管、24a…端面、24c…外面、24m…軸線、
25…エンド部材、25A…カバー部、25B…ガイド
部、25a…ねじ孔、25b…裏面、25c…外周面、
25m…軸線、25p…外端面、26…接合ボルト、2
6A…ボス部、26a…接合用雄ねじ、26b…接続用
雄ねじ、26m…外面、27…スリーブ体、27a…一
方端、27b…他方端、28…ガイド空間、29…変位
用隙間、30…脱落防止部材、35…一重管の構造部
材、D24…曲げ抵抗鋼管の内径、L…接合ボルトの全
長、L1 …接合用雄ねじが節点部材のねじ孔との噛みあ
いに必要なねじ込み長さ、L2 …接続用雄ねじがエンド
部材に設けたねじ孔との噛みあいに必要なねじ込み長
さ、L11…接合用雄ねじの全長、L22…接続用雄ねじの
全長、L3 (≒L22−L1 )…当初に接続用雄ねじがね
じ孔に噛みあわされる長さ、L33…座屈許容長さ、L66
…長さ、Ls …スリーブ体の長さ、Lt …ガイド空間の
全長、P…軸圧縮力、α…隙間、δt …許容引張変位
量。
21 ... Nodal member, 21a ... Screw hole, 21p ... Joining surface, 2
2 ... Double steel pipe type structural material, 23 ... Steel pipe structural member, 23a
... inner peripheral surface, 23b ... opening, 23m ... axis, 24 ... bending resistance steel pipe, 24a ... end surface, 24c ... outer surface, 24m ... axis,
25 ... end member, 25A ... cover part, 25B ... guide part, 25a ... screw hole, 25b ... back surface, 25c ... outer peripheral surface,
25m ... Axis line, 25p ... Outer end face, 26 ... Joining bolt, 2
6A ... Boss portion, 26a ... Male thread for joining, 26b ... Male thread for connection, 26m ... Outer surface, 27 ... Sleeve body, 27a ... One end, 27b ... Other end, 28 ... Guide space, 29 ... Displacement gap, 30 ... preventing member, 35 ... single tube structure members, D 24 ... bending the inner diameter of the resistance steel, L ... overall length of fastening bolt, L 1 ... joining male thread needs to engagement with the screw hole of the joint member screwing length, L 2 … The screwing length required for the male screw for connection to engage with the screw hole provided in the end member, L 11 … The total length of the male screw for joining, L 22 … The total length of the male screw for connection, L 3 (≈L 22 − L 1 ) ... the length at which the male screw for connection is initially engaged with the screw hole, L 33 ... allowable buckling length, L 66
... Length, L s ... Length of sleeve body, L t ... Total length of guide space, P ... axial compression force, α ... gap, δ t ... allowable tensile displacement amount.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 各鋼管構造部材の端部を節点部材に接続
する接合ボルトを、該接合ボルトに形成したねじ部の径
より大きい断面を有するボス部の外面に係合して回転力
を伝達するとともに接合ボルトの軸方向変位を可能にし
たスリーブ体の回転によって、前記節点部材に形成した
ねじ孔に送りこむことができるようになっており、か
つ、上記鋼管構造部材に作用する軸圧縮力が直ちに伝わ
らないように該鋼管構造部材より短くされている曲げ抵
抗鋼管が上記鋼管構造部材に内挿され、該曲げ抵抗鋼管
の外径はその外面が上記鋼管構造部材の内周面と可及的
に小さい隙間を隔てて対向する寸法に選定され、上記鋼
管構造部材に軸圧縮力が作用して該鋼管構造部材が変形
しはじめたとき、その鋼管構造部材がその軸線に対して
直角方向へ撓むのを前記曲げ抵抗鋼管によって抑制する
ことができるようになっているトラス鋼構造物用の二重
鋼管型構造部材において、 上記鋼管構造部材の端部に取りつけられ軸線方向へ延び
るねじ孔の形成されたエンド部材は、該鋼管構造部材の
端面に当接してその鋼管構造部材の開口を覆うカバー部
と、該カバー部より小さい外径を有してカバー部の裏面
に連なり鋼管構造部材内へ突入するガイド部とを備え、 前記接合ボルトのボス部の一方側には前記節点部材のね
じ孔に噛みあう接合用雄ねじが形成されるとともに、他
方側には前記エンド部材のねじ孔に噛みあい上記接合用
雄ねじと同一ピッチの逆方向螺旋とした接続用雄ねじが
形成され、 上記接合用雄ねじには、前記節点部材のねじ孔との噛み
あいに必要なねじ込み長さのねじ部が確保される一方、
前記接続用雄ねじには、前記エンド部材に設けたねじ孔
との噛みあいに必要なねじ込み長さのねじ部が確保さ
れ、 前記スリーブ体の長さは、前記接合ボルトの全長から前
記接合用雄ねじの全長と接続用雄ねじの全長とを差し引
いた寸法よりも長く設定され、 前記鋼管構造部材に内挿される前記曲げ抵抗鋼管は、そ
の軸線方向における中央部位が該鋼管構造部材の軸線方
向における中央部位で固定され、 前記ガイド部の外周面と前記鋼管構造部材の内周面との
間には、前記曲げ抵抗鋼管の先端部位が挿入されるとと
もに、該曲げ抵抗鋼管の端面と前記カバー部の裏面との
間に、前記鋼管構造部材が座屈したとき曲げ抵抗鋼管の
端部が該カバー部の裏面に向けて相対的に変位すること
ができる座屈許容長さの1/2より長い変位用隙間を確
保したガイド空間が形成されていることを特徴とする二
重鋼管型トラス構造物用構造材。
1. A rotating bolt is transmitted by engaging a joining bolt for connecting an end portion of each steel pipe structural member to a node member with an outer surface of a boss portion having a cross section larger than a diameter of a screw portion formed on the joining bolt. With the rotation of the sleeve body that enables axial displacement of the joining bolt, it can be fed into the screw hole formed in the node member, and the axial compressive force acting on the steel pipe structural member is A bending resistance steel pipe shorter than the steel pipe structural member so as not to be transmitted immediately is inserted into the steel pipe structural member, and the outside diameter of the bending resistance steel pipe is as large as possible with the inner peripheral surface of the steel pipe structural member. When the steel pipe structural member begins to deform due to an axial compressive force acting on the steel pipe structural member, the steel pipe structural member bends in a direction perpendicular to its axis. In front of A double steel pipe type structural member for a truss steel structure which can be restrained by a bending resistance steel pipe, wherein an end having a threaded hole extending in the axial direction attached to the end of the steel pipe structural member is formed. The member has a cover portion that abuts on an end surface of the steel pipe structural member and covers the opening of the steel pipe structural member, and a guide that has an outer diameter smaller than that of the cover portion and that is connected to the back surface of the cover portion and that projects into the steel pipe structural member. And a male screw for joining to a screw hole of the node member is formed on one side of the boss portion of the joining bolt, and a male screw for engaging the screw hole of the end member on the other side. A male thread for connection is formed with a reverse spiral having the same pitch as the male thread, and the male thread for joining is secured with a threaded portion having a screwing length necessary for meshing with the screw hole of the node member.
The connecting male screw has a threaded portion having a screwing length necessary for meshing with a screw hole provided in the end member, and the length of the sleeve body is from the entire length of the joining bolt to the joining male screw. Of the bending resistance steel pipe inserted into the steel pipe structure member, the central portion in the axial direction of the bending resistance steel pipe is set to be longer than the dimension obtained by subtracting the total length of the steel pipe structural member and the total length of the connecting male screw. The tip end portion of the bending resistance steel pipe is inserted between the outer peripheral surface of the guide portion and the inner peripheral surface of the steel pipe structural member, and the end surface of the bending resistance steel pipe and the back surface of the cover portion are fixed. For a displacement longer than 1/2 of the allowable buckling length by which the end portion of the bending resistant steel pipe can be relatively displaced toward the back surface of the cover portion when the steel pipe structural member is buckled. Secure a gap Double Tube-shaped truss structure for structural member, wherein the guide space is formed.
【請求項2】 前記座屈許容長さの1/2と、前記鋼管
構造部材が軸引張力を受けた場合に上記曲げ抵抗鋼管の
一方の端面が反カバー部側へ相対的に離隔する設計上の
許容引張変位量との和を、前記ガイド空間の全長から差
し引いた長さは、前記曲げ抵抗鋼管の内径の1倍ないし
4倍となっていることを特徴とする請求項1に記載され
た二重鋼管型トラス構造物用構造材。
2. A design in which one end surface of the bending resistant steel pipe is relatively separated from the opposite cover portion side when the buckling allowable length is 1/2 and the steel pipe structural member receives an axial tensile force. The length obtained by subtracting the sum of the above allowable amount of tensile displacement from the total length of the guide space is 1 to 4 times the inner diameter of the bending resistant steel pipe. Structural material for double steel tube type truss structure.
【請求項3】 前記ボス部の前記接合用雄ねじ寄りの部
位には、該ボス部の外面に係合させたスリーブ体の脱落
を阻止するとともに、前記鋼管構造部材を節点部材に接
合するために接合ボルトを回転させた際に破断しもしく
は簡単に外すことができる脱落防止部材が取りつけられ
ていることを特徴とする請求項1に記載された二重鋼管
型トラス構造物用構造材。
3. A portion of the boss portion near the male screw for joining is used to prevent the sleeve body engaged with the outer surface of the boss portion from falling off and to join the steel pipe structural member to the nodal member. The structural material for a double steel pipe type truss structure according to claim 1, further comprising a fall-off preventing member that is broken or easily removed when the joining bolt is rotated.
【請求項4】 請求項1に記載された二重鋼管型トラス
構造物用構造材において、 前記接続用雄ねじを、その全長(L22)から前記接合用
雄ねじのねじ込み長さ(L1 )を差し引いた長さにほぼ
等しい長さ(L3 )分だけ前記エンド部材に形成したね
じ孔に予め噛みあわせ、 前記スリーブ体の回転によって接合ボルトを回転させな
がら摺動変位させ、上記接合用雄ねじを前記節点部材の
ねじ孔に送り込むとともに、上記接続用雄ねじを前記エ
ンド部材のねじ孔に送り込み、 上記スリーブ体の一方端が前記節点部材の接合面に当接
し、かつ、他方端が前記エンド部材の外端面に当接した
時点で、増し締めするようにしたことを特徴とする二重
鋼管型トラス構造物用構造材の接合方法。
4. The structural material for a double steel pipe type truss structure according to claim 1, wherein the connecting male screw has a screwing length (L 1 ) of the connecting male screw from its entire length (L 22 ). The threaded hole formed in the end member is pre-engaged with a length (L 3 ) substantially equal to the subtracted length, and the sleeve bolt is slidably displaced by the rotation of the sleeve body, whereby the male thread for joining is screwed. While feeding into the screw hole of the node member, the connecting male screw is fed into the screw hole of the end member, one end of the sleeve body abuts on the joint surface of the node member, and the other end of the end member A joining method for a structural material for a double steel pipe type truss structure, characterized in that it is retightened when it comes into contact with the outer end surface.
【請求項5】 請求項1に記載された二重鋼管型トラス
構造物用構造材を順次節点部材に接合し、該節点部材の
芯間距離が定まった以後は、接合ボルトに形成したねじ
部の径より大きい断面を有するボス部の外面に係合して
回転力を伝達するとともに該接合ボルトの軸方向変位を
可能にしたスリーブ体を備え、接合ボルトが構造部材側
へ後退してスリーブ体内に退避できるとともに、その後
に接合ボルトをスリーブ体から進出させることができる
接合装置によって、上記節点部材間に一重鋼管型の構造
部材を順次接合するようにしたことを特徴とする大スパ
ン構造物もしくは塔状構造物等におけるトラス構築方
法。
5. The screw member formed on the joint bolt after the structural members for the double steel pipe type truss structure according to claim 1 are sequentially joined to the nodal members and the intercenter distance of the nodal members is determined. A sleeve body that engages an outer surface of a boss portion having a cross section larger than the diameter of the boss portion to transmit a rotational force and enables axial displacement of the joining bolt, and the joining bolt retracts toward the structural member side A large span structure characterized in that a single steel pipe type structural member is sequentially joined between the node members by a joining device capable of retreating to the Truss construction method for tower structures.
JP26938092A 1992-09-11 1992-09-11 Structural material for double steel tube truss structure and joining method thereof Expired - Lifetime JPH0811891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26938092A JPH0811891B2 (en) 1992-09-11 1992-09-11 Structural material for double steel tube truss structure and joining method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26938092A JPH0811891B2 (en) 1992-09-11 1992-09-11 Structural material for double steel tube truss structure and joining method thereof

Publications (2)

Publication Number Publication Date
JPH0693654A true JPH0693654A (en) 1994-04-05
JPH0811891B2 JPH0811891B2 (en) 1996-02-07

Family

ID=17471605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26938092A Expired - Lifetime JPH0811891B2 (en) 1992-09-11 1992-09-11 Structural material for double steel tube truss structure and joining method thereof

Country Status (1)

Country Link
JP (1) JPH0811891B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021297A1 (en) * 2012-07-30 2014-02-06 Jfeシビル株式会社 Pin-joint-shaped double steel pipe buckling restraining structural member
WO2015177987A1 (en) * 2014-05-19 2015-11-26 Jfeスチール株式会社 Brace member
CN117248636A (en) * 2023-11-09 2023-12-19 山东省建筑设计研究院有限公司 Connecting device for steel structure nodes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021297A1 (en) * 2012-07-30 2014-02-06 Jfeシビル株式会社 Pin-joint-shaped double steel pipe buckling restraining structural member
KR20150036625A (en) 2012-07-30 2015-04-07 제이에프이 시빌 가부시키가이샤 A pin joint type structural member made of double steel pipe for restaining buckling therrof
JPWO2014021297A1 (en) * 2012-07-30 2016-07-21 Jfeシビル株式会社 Pin joint type double steel pipe buckling constrained structural material
TWI547628B (en) * 2012-07-30 2016-09-01 杰富意土木股份有限公司 Pin joint type structural member made of double steel pipe for restraining buckling thereof
US9879412B2 (en) 2012-07-30 2018-01-30 Jfe Civil Engineering & Construction Corporation Pin joint type structural member made of double steel pipe for restraining buckling thereof
WO2015177987A1 (en) * 2014-05-19 2015-11-26 Jfeスチール株式会社 Brace member
JP2015218498A (en) * 2014-05-19 2015-12-07 Jfeスチール株式会社 Brace member
CN117248636A (en) * 2023-11-09 2023-12-19 山东省建筑设计研究院有限公司 Connecting device for steel structure nodes
CN117248636B (en) * 2023-11-09 2024-05-24 山东省建筑设计研究院有限公司 Connecting device for steel structure nodes

Also Published As

Publication number Publication date
JPH0811891B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
TWI504800B (en) Brace member
JP2652506B2 (en) Double steel pipe type structural member for truss structure
JP2015017371A (en) Buckling stiffening brace
US20050204690A1 (en) Method of reinforcing opening of steel frame girder
JP2007063806A (en) Screw joint structure of metal tube
JPH0693654A (en) Double steel pipe truss structure service structural material and joint method thereof
JP5409472B2 (en) Bracing and seismic structure
JP3246656B2 (en) Double steel pipe type structural material
JP3702818B2 (en) Double steel pipe type earthquake-resistant structural material
CN211059597U (en) Buckling constraint device for composite material pipe
JP2000045395A (en) Connection type single pipe type structural member
JPH09221871A (en) Brace material, structure for fitting brace material to structural system, and manufacture of brace material
JP2003504540A (en) Coaxial joining system
JP2006028737A (en) Triple pipe vibration control brace having length adjusting mechanism
JPH0693655A (en) Joint device and joint method for structural member using solid material or thick walled pipe
JP3702363B2 (en) Articulated earthquake-resistant structural material
JP2005171646A (en) Brace structure of building
GB2276429A (en) Joints for spaceframes
JP2006169911A (en) Triple wall pipe seismic response control brace having clearance adjusting member
JPH08128115A (en) Spherical joint for space truss and member-jointed space truss structure using the joint
JP2673773B2 (en) Plane cross brace structure made of solid material such as tower-like structure or thick steel pipe
JP2781959B2 (en) Structural member with adjustable length clevis joint
JP2597936B2 (en) Joining apparatus and joining method for structural member using solid material or thick tube
JP2006299577A (en) Gap adjusted triple pipe damping brace
JPS6128645A (en) Brace connecting metal fittings

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080207

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 17