JPH0693001A - Benzylated molding material of lignocellulose and its production - Google Patents

Benzylated molding material of lignocellulose and its production

Info

Publication number
JPH0693001A
JPH0693001A JP4102408A JP10240892A JPH0693001A JP H0693001 A JPH0693001 A JP H0693001A JP 4102408 A JP4102408 A JP 4102408A JP 10240892 A JP10240892 A JP 10240892A JP H0693001 A JPH0693001 A JP H0693001A
Authority
JP
Japan
Prior art keywords
benzyl
chip
etherified
molding material
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4102408A
Other languages
Japanese (ja)
Other versions
JPH07121961B2 (en
Inventor
Minoru Kiguchi
口 実 木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORIN SUISANSYO SHINRIN SOGO K
NORIN SUISANSYO SHINRIN SOGO KENKYUSHO
Original Assignee
NORIN SUISANSYO SHINRIN SOGO K
NORIN SUISANSYO SHINRIN SOGO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORIN SUISANSYO SHINRIN SOGO K, NORIN SUISANSYO SHINRIN SOGO KENKYUSHO filed Critical NORIN SUISANSYO SHINRIN SOGO K
Priority to JP4102408A priority Critical patent/JPH07121961B2/en
Publication of JPH0693001A publication Critical patent/JPH0693001A/en
Publication of JPH07121961B2 publication Critical patent/JPH07121961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a raw material capable of developing both performances of a raw material and a plastic using lignocelluloses as raw materials. CONSTITUTION:A benzylated molding material of lignocellulose produced by pretreating a wood having a fiber form or a chip consisting of lignocelluloses such as bamboos with an aqueous solution of sodium hydroxide and then treating the pretreated wood material or chip with benzyl chloride or a mixed liquid of benzyl chloride and xylene by a liquid phase or vapor phase method, forming and thermally compacting the treated material under pressure to cause thermal fusion of chip surface and its production.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、木材、竹材等のリグ
ノセルロース類、すなわちリグニンとセルロースを含む
繊維質を有する植物原材料から得られる新規な植物系成
型材に関し、詳しくはリグノセルロース類が有する固有
の特質を維持し、しかもプラスチック類の性能を具備す
る木質系材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lignocellulosic material such as wood and bamboo, that is, a novel plant-based molding material obtained from a plant raw material having a fiber containing lignin and cellulose. The present invention relates to a wood-based material that maintains the unique characteristics and has the performance of plastics.

【0002】[0002]

【従来の技術】木材、竹材等のいわゆる植物系材料は、
入手および加工の容易さ、優美な質感、暖かみのある感
触・外観、特有の色調、あるいは植栽による原材料の再
生産が可能であること等の理由により、古くから多方面
にわたり利用されてきている。そして、今日では、木材
資源等のより一層の有効利用を図るため、廃材や、製材
品として利用できない小径木等をパーテイ クルボードあ
るいはファイバーボード等に成型して利用している。こ
れらのうちパーテイ クルボードは、木材等を破砕して単
位大きさが木材等の繊維より大きいチップとし、木材等
の組織構造を有しているこれらのチップに熱硬化性接着
剤(フェノールホルムアルデヒド樹脂、ユリアホルムア
ルデヒド樹脂、水性ビニルウレタン樹脂等)を結合剤と
してスプレーして熱圧締により所定の形状に成型固化し
たものである。
2. Description of the Related Art So-called plant materials such as wood and bamboo are
It has been used in many fields since ancient times because it is easy to obtain and process, its elegant texture, warm feeling and appearance, unique color tone, and the fact that it is possible to reproduce the raw materials by planting. . Today, in order to make more effective use of wood resources and the like, waste wood and small-diameter wood that cannot be used as lumber are molded and used as particle boards or fiber boards. Among these, particle boards are made by crushing wood or the like into chips whose unit size is larger than fibers of wood or the like, and thermosetting adhesives (phenol formaldehyde resin, A urea formaldehyde resin, a water-based vinyl urethane resin, etc.) is sprayed as a binder and is molded and solidified into a predetermined shape by hot pressing.

【0003】一方、ファイバーボードは、上記パーテイ
クルボードに使用するチップより更に小さい木材繊維等
を用い、これに結合剤をスプレーして熱圧締する乾式ボ
ードと、繊維を水中に分散させ、紙漉きのように網の上
に堆積させ熱圧締する湿式ボードの2種類がある。さら
にまた、木材資源の有効利用技術の一つとして、繊維形
態を持たなくなった木材廃材をプラスチック化して、汎
用プラスチック製品の代替として利用する技術も提案さ
れている。この技術における木材のプラスチック化は、
従来より公知のベンジルセルロースの製法に準じたもの
である。これらの木質系材は森林資源の有効利用を図る
うえで極めて重要な存在となっている。
On the other hand, the fiberboard has the above-mentioned party.
Use wood fibers, which are smaller than the chips used for the clouboard, and spray them with a binder to heat-press them, and dry-board to disperse the fibers in water and deposit them on a net like a paper strainer. There are two types of wet boards. Furthermore, as one of the technologies for effectively utilizing wood resources, a technology has also been proposed in which wood waste materials that have no fiber form are made into plastics and used as substitutes for general-purpose plastic products. The plasticization of wood in this technology is
This is based on a conventionally known method for producing benzyl cellulose. These wood-based materials are extremely important for effective use of forest resources.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、木材、
竹材、パーテイ クルボード、ファイバーボード等の木質
系材料あるいは上述のようなプラスチック化木材は、利
点を有する一方で、解決を要する種々の問題を抱えてい
る。例えば、パーテイ クルボードは、各チップ間の結合
が接着剤による点接着であるためチップ間の結合力が小
さく、特に厚さ方向の寸法変化が非常に大きくなってし
まう。また、耐水性の低いことも大きな問題となってい
る。すなわち、このようなパーテイ クルボードは、水分
に接触すると大きく膨潤し、このため強度が大幅に低下
してしまう。
However, wood,
While wood-based materials such as bamboo, particle board, fiber board, and plasticized wood as described above have advantages, they have various problems that need to be solved. For example, in a particle board, since the bonding between the chips is point bonding with an adhesive, the bonding force between the chips is small, and the dimensional change particularly in the thickness direction becomes very large. In addition, low water resistance is also a big problem. That is, such a particle board swells significantly when it comes into contact with water, and thus its strength is significantly reduced.

【0005】さらに、高温多湿の環境下では容易に腐朽
してしまい、このためその用途が極めて限られてしまう
という問題もある。ファイバーボードは、繊維を用いる
ためある程度の成型性を有するが、木材固有の色調、木
理などは失われ、質感に乏しく、寸法変化、腐朽などが
容易に生じる。そして、特にパーテイ クルボードの製造
では、チップのフォーミング前に熱硬化性接着剤をチッ
プにスプレーし、フォーミング後に熱圧締してボードに
成型するという工程を要するが、この工程および接着剤
は製品の製造コストに大きな比重を占めている。
Further, there is also a problem that it easily decays in a hot and humid environment, and therefore its use is extremely limited. Fiberboard has some moldability because it uses fibers, but loses the color tone and grain peculiar to wood, is poor in texture, and easily undergoes dimensional changes and decay. In particular, in the manufacture of particle boards, a step of spraying a thermosetting adhesive onto the chips before forming the chips and then heat-pressing and forming into boards after forming is required. It accounts for a large proportion of the manufacturing cost.

【0006】また、木材、竹材等は、寸法変化や腐朽を
生じ、プラスチック、金属材のような熱可塑性を有しな
いために成型性に劣り、優れた性能を有しながら用途が
限定され、資源の有効利用を十分に実現できないでいる
のが実情である。さらに、上記の木材プラスチックは、
性能が通常の汎用プラスチックとなんら変わりなくなっ
てしまい、原料である木材固有の色調や木理、吸放湿
性、温かみのある質感等がすべて失われてしまうという
問題がある。
[0006] Further, wood, bamboo and the like undergo dimensional change and decay, and since they do not have the thermoplasticity of plastics and metal materials, they are inferior in moldability and have limited applications while having excellent performance. The reality is that we have not been able to fully realize the effective use of. In addition, the above wood plastic
The performance is no different from that of ordinary general-purpose plastics, and there is the problem that the color tone, grain, moisture absorption and release, warm texture, etc. peculiar to the raw material wood are lost.

【0007】[0007]

【課題を解決するための手段】この発明は、繊維形態を
有する木材、タケ類等のリグノセルロース類からなるチ
ップを水酸化ナトリウム水溶液で前処理し、塩化ベンジ
ル単独あるいは塩化ベンジルとキシレンとの混合液を用
いて液相または気相法により処理してチップ中の水酸基
をベンジル基に置換した後、処理済みの各チップをフォ
ーミングして熱圧締しチップ表面相互の熱融着作用によ
って、原料であるリグノセルロース類およびプラスチッ
ク類の両方の特質を具えた成型材を製造することにより
上記従来の課題を解決しようとするものである。この発
明において、チップのベンジルエ−テル化工程における
反応時間、反応温度その他を変化させてチップのベンジ
ルエ−テル化度を調整し、原料であるリグノセルロース
類の性能をより多く有する成型材、あるいは逆にプラス
チック類の性能がより多く現出した成型材を任意に得る
ことができる。また、この発明の原料は、木材、タケ
類、サトウキビバガス、ゴムノキ廃材、オイルパーム廃
材、稲わら、麦わら等を始めとするリグニンおよびセル
ロースを含む植物材料である。
According to the present invention, chips made of lignocellulosics such as wood and bamboo having a fiber form are pretreated with an aqueous sodium hydroxide solution, and benzyl chloride alone or a mixture of benzyl chloride and xylene is mixed. After replacing the hydroxyl groups in the chips with benzyl groups by treating with liquid in a liquid phase or vapor phase method, each treated chip is formed and heat-pressed, and the heat fusion action between the chip surfaces causes the raw material It is an object of the present invention to solve the above-mentioned conventional problems by producing a molding material having the characteristics of both lignocelluloses and plastics. In the present invention, the degree of benzyl etherification of the chip is adjusted by changing the reaction time, reaction temperature, etc. in the benzyl etherification step of the chip, and a molding material having more performance of the raw material lignocellulose, or the reverse It is possible to arbitrarily obtain a molding material in which the performance of plastics has been revealed. The raw material of the present invention is a plant material containing lignin such as wood, bamboo, sugar cane bagasse, rubber tree waste material, oil palm waste material, rice straw, and straw, and cellulose.

【0008】[0008]

【作用】リグノセルロース類のチップをベンジルエ−テ
ル化すると、チップ中の水酸基が、分子量が大きく疎水
性で極性の小さいベンジル基に置換され、これによりセ
ルロースの結晶領域が非晶化するためセルロースの熱可
塑性が向上する。さらに、それ自体熱可塑性を持つヘミ
セルロースやリグニンもベンジルエ−テル化されること
により非常に熱可塑性の高い物質になり、これらが内部
可塑剤として働き、総体として木材チップ等が熱溶融性
を有するようになる。また、ベンジル基は、分子量が大
きく末端にベンゼン骨格を有しているため分子運動が容
易であるため熱溶融性が高いものと考えられる。このた
め、熱融着作用によりチップ間の結合力が強固になり、
良好な寸法安定性を得ることができる。
[Function] When a lignocellulosic chip is benzyl etherified, the hydroxyl group in the chip is replaced with a benzyl group having a large molecular weight and being hydrophobic and having a small polarity, whereby the crystalline region of the cellulose is made amorphous so that the cellulose Thermoplasticity is improved. Furthermore, hemicellulose and lignin, which themselves have thermoplasticity, are also made into substances with extremely high thermoplasticity by being benzyl etherified, and these act as internal plasticizers, so that wood chips etc. as a whole have thermal melting properties. become. Further, the benzyl group has a large molecular weight and has a benzene skeleton at the end thereof, so that it is easy for molecular movement, and thus it is considered to have high heat melting property. Therefore, the bonding force between the chips is strengthened by the heat-sealing action,
Good dimensional stability can be obtained.

【0009】また、チップ中において、親水性の水酸基
が疎水性のベンジル基に置換されるため、成型材の耐水
性能は大幅に向上し、水分との接触による膨潤等の問題
点も是正される。さらにまた、ベンジルエ−テル化によ
り、リグノセルロース類の化学構造が変化するため腐朽
菌酵素の分解能が働かなくなり、成型材は高い耐腐朽性
を発現することになる。
In addition, since the hydrophilic hydroxyl group is replaced with the hydrophobic benzyl group in the chip, the water resistance of the molding material is greatly improved, and problems such as swelling due to contact with water are corrected. . Furthermore, since the chemical structure of lignocelluloses is changed by the benzyl ether formation, the decomposing ability of the decay fungal enzyme does not work, and the molding material exhibits high decay resistance.

【0010】なお、一般的にはリグノセルロース類のエ
ーテル化を行なう場合、これらをナトリウム塩の形にし
なければ反応が進行しない。このため、本発明において
は水酸化ナトリウムにより前処理している。以上述べた
本発明のおける作用を示す化学式を木材を例にとり化
1、化2として以下に示す。 水酸化ナトリウムによる前処理
Generally, when etherification of lignocelluloses is carried out, the reaction does not proceed unless these are converted into sodium salt form. Therefore, in the present invention, pretreatment with sodium hydroxide is performed. The chemical formulas showing the action of the present invention described above are shown below as Chemical Formula 1 and Chemical Formula 2 using wood as an example. Pretreatment with sodium hydroxide

【0011】[0011]

【化1】 [Chemical 1]

【0012】ベンジルエ−テル化Benzyl etherification

【化2】 [Chemical 2]

【0013】[0013]

【発明の実施例】次にこの発明の実施例を説明する。 実施例1: a.繊維方向10〜20mm、幅方向5〜15mm、厚
さ0.1〜0.5mmの乾燥アカマツチップ50gを4
0%水酸化ナトリウム中に室温下で2時間浸漬する。 b.浸漬後、圧搾して余剰の水酸化ナトリウム水溶液を
除去し、還流冷却管の付いた3リットル容のセパラブル
フラスコに1リットルの塩化ベンジルを入れ、105℃
の温度に保ち、この中に前記アカマツチップを入れ1時
間反応させる。 c.反応後、余剰の反応液を圧搾により除去し、流水中
で24時間洗浄を行ない、この水洗後、水−メタノ−ル
(1:1v/v)溶液中に24時間浸漬洗浄を行ない、
48時間風乾後、40℃で24時間減圧乾燥を行ない、
ベンジルエ−テル化アカマツチップを調製する。なお、
フラスコの容量の関係上、前述までの操作を数回行な
い、所定量のベンジルエ−テル化チップを調製する。 d.調製整されたチップをそのままフォ−ミングボック
スに入れ、目標寸法が250mm×250mm×4mm
で、目標絶乾比重がそれぞれ0.6,0.8,および
1.0の3種類のボ−ド(成型材)を得るべく、チップ
をフォ−ミングし、150℃、20kg/c で10分
間熱圧締する。 このようにして、この実施例では、ベンジル化度(チッ
プの重量増加率)が21%で、目標絶乾比重が上記のよ
うにそれぞれ異なる3種のボ−ド(成型材)を得た。こ
れらのボ−ドはいずれも、チップの木理が見え、木材の
色調を残す一方、表面は高い光沢と平滑性を示してい
る。
Embodiments of the present invention will be described below. Example 1: a. 50 g of dried red pine chips with a fiber direction of 10 to 20 mm, a width direction of 5 to 15 mm and a thickness of 0.1 to 0.5 mm
Immerse in 0% sodium hydroxide at room temperature for 2 hours. b. After immersion, press to remove excess sodium hydroxide aqueous solution, put 1 liter of benzyl chloride into a 3 liter separable flask equipped with a reflux condenser, and cool to 105 ° C.
The temperature is maintained at 1, and the red pine chips are put in this and reacted for 1 hour. c. After the reaction, the excess reaction solution is removed by squeezing and washed in running water for 24 hours. After this water washing, immersion washing in a water-methanol (1: 1 v / v) solution is performed for 24 hours,
After air-drying for 48 hours, vacuum drying at 40 ° C for 24 hours,
Benzyl etherified red pine chips are prepared. In addition,
Due to the volume of the flask, the above operation is repeated several times to prepare a predetermined amount of benzyl etherified chips. d. The prepared chip is put in the forming box as it is, and the target size is 250 mm × 250 mm × 4 mm.
Then, in order to obtain three types of boards (molding materials) with target specific dry densities of 0.6, 0.8, and 1.0, respectively, the chips were formed, and the chips were formed at 150 ° C. and 20 kg / c for 10 minutes. Heat press for minutes. Thus, in this example, three types of boards (molding materials) having a benzylation degree (weight increase rate of chips) of 21% and different target absolute dry gravities as described above were obtained. In each of these boards, the grain of the chips can be seen and the wood tone is left, while the surface exhibits high gloss and smoothness.

【0014】実施例2: a.繊維方向10〜20mm、幅方向5〜15mm、厚
さ0.1〜0.5mmの乾燥アカマツチップ50gを4
0%水酸化ナトリウム中に室温下で2時間浸漬する。 b.浸漬後、圧搾して余剰の水酸化ナトリウム水溶液を
除去し、還流冷却管の付いた3リットル容のセパラブル
フラスコに1リットルの塩化ベンジルを入れ、110℃
の温度に保ち、この中に前記アカマツチップを入れ1時
間反応させる。 c.反応後、余剰の反応液を圧搾により除去し、流水中
で24時間洗浄を行ない、この水洗後、水−メタノ−ル
(1:1v/v)溶液中に24時間浸漬洗浄を行ない、
48時間風乾後、40℃で24時間減圧乾燥を行ない、
ベンジルエ−テル化アカマツチップを調製する。なお、
フラスコの容量の関係上、前述までの操作を数回行な
い、所定量のベンジルエ−テル化チップを調製する。 d.調製されたチップをそのままフォ−ミングボックス
に入れ、目標寸法が250mm×250mm×4mm
で、目標絶乾比重がそれぞれ0.6,0.8,および
1.0の3種類のボ−ド(成型材)を得るべく、チップ
をフォ−ミングし、150℃、20kg/c で10分
間熱圧締する。 このようにして、この実施例では、ベンジル化度(チッ
プの重量増加率)が38%で、目標絶乾比重が上記のよ
うにそれぞれ異なる3種のボ−ド(成型材)を得た。こ
れらのボ−ドはいずれも、チップの木理が見え、木材の
色調を残す一方、表面は高い光沢と平滑性を示してい
る。
Example 2: a. 50 g of dried red pine chips with a fiber direction of 10 to 20 mm, a width direction of 5 to 15 mm and a thickness of 0.1 to 0.5 mm
Immerse in 0% sodium hydroxide at room temperature for 2 hours. b. After immersion, press to remove excess sodium hydroxide aqueous solution, put 1 liter of benzyl chloride into a 3 liter separable flask equipped with a reflux condenser, and store at 110 ° C.
The temperature is maintained at 1, and the red pine chips are put in this and reacted for 1 hour. c. After the reaction, the excess reaction solution is removed by squeezing and washed in running water for 24 hours. After this water washing, immersion washing in a water-methanol (1: 1 v / v) solution is performed for 24 hours,
After air-drying for 48 hours, vacuum drying at 40 ° C for 24 hours,
Benzyl etherified red pine chips are prepared. In addition,
Due to the volume of the flask, the above operation is repeated several times to prepare a predetermined amount of benzyl etherified chips. d. The prepared chip is put in the forming box as it is, and the target size is 250 mm × 250 mm × 4 mm.
Then, in order to obtain three types of boards (molding materials) with target specific dry densities of 0.6, 0.8, and 1.0, respectively, the chips were formed, and the chips were formed at 150 ° C. and 20 kg / c for 10 minutes. Heat press for minutes. Thus, in this example, three types of boards (molding materials) having a degree of benzylation (weight increase rate of chips) of 38% and different target absolute dry gravities as described above were obtained. In each of these boards, the grain of the chips can be seen and the wood tone is left, while the surface exhibits high gloss and smoothness.

【0015】実施例3: a.繊維方向10〜20mm、幅方向5〜15mm、厚
さ0.1〜0.5mmの乾燥アカマツチップ50gを4
0%水酸化ナトリウム中に室温下で2時間浸漬する。 b.浸漬後、圧搾して余剰の水酸化ナトリウム水溶液を
除去し、還流冷却管の付いた3リットル容のセパラブル
フラスコに1リットルの塩化ベンジルを入れ、120℃
の温度に保ち、この中に前記アカマツチップを入れ1時
間反応させる。 c.反応後、余剰の反応液を圧搾により除去し、流水中
で24時間洗浄を行ない、この水洗後、水−メタノ−ル
(1:1v/v)溶液中に24時間浸漬洗浄を行ない、
48時間風乾後、40℃で24時間減圧乾燥を行ない、
ベンジルエ−テル化アカマツチップを調製する。なお、
フラスコの容量の関係上、前述までの操作を数回行な
い、所定量のベンジルエ−テル化チップを調製する。 d.調製されたチップをそのままフォ−ミングボックス
に入れ、目標寸法が250mm×250mm×4mm
で、目標絶乾比重がそれぞれ0.6,0.8,および
1.0の3種類のボ−ド(成型材)を得るべく、チップ
をフォ−ミングし、150℃、20kg/c で10分
間熱圧締する。 このようにして、この実施例では、ベンジル化度(チッ
プの重量増加率)が51%で、目標絶乾比重が上記のよ
うにそれぞれ異なる3種のボ−ド(成型材)を得た。こ
れらのボ−ドはいずれも、チップの木理が見え、木材の
色調を残す一方、表面は高い光沢と平滑性を示してい
る。上記各実施例において、ベンジルエ−テル化工程で
は液相法を採用したが、気相法でもよいことは勿論であ
る。この場合、前記反応容器を網等で2室に仕切り、塩
化ベンジルまたは塩化ベンジルとキシレンの任意割合の
混合液である反応液を入れ、前記網の上に前処理を施し
たリグノセルロ−ス類を載置し所定温度で所定時間反応
させる。
Example 3: a. 50 g of dried red pine chips with a fiber direction of 10 to 20 mm, a width direction of 5 to 15 mm and a thickness of 0.1 to 0.5 mm
Immerse in 0% sodium hydroxide at room temperature for 2 hours. b. After immersion, press to remove excess sodium hydroxide aqueous solution, put 1 liter of benzyl chloride into a 3 liter separable flask equipped with a reflux condenser, and keep at 120 ° C.
The temperature is maintained at 1, and the red pine chips are put in this and reacted for 1 hour. c. After the reaction, the excess reaction solution is removed by squeezing and washed in running water for 24 hours. After this water washing, immersion washing in a water-methanol (1: 1 v / v) solution is performed for 24 hours,
After air-drying for 48 hours, vacuum drying at 40 ° C for 24 hours,
Benzyl etherified red pine chips are prepared. In addition,
Due to the volume of the flask, the above operation is repeated several times to prepare a predetermined amount of benzyl etherified chips. d. The prepared chip is put in the forming box as it is, and the target size is 250 mm × 250 mm × 4 mm.
Then, in order to obtain three types of boards (molding materials) with target specific dry densities of 0.6, 0.8, and 1.0, respectively, the chips were formed, and the chips were formed at 150 ° C. and 20 kg / c for 10 minutes. Heat press for minutes. In this way, in this example, three types of boards (molding materials) having a degree of benzylation (weight increase rate of chips) of 51% and different target absolute dry gravities as described above were obtained. In each of these boards, the grain of the chips can be seen and the wood tone is left, while the surface exhibits high gloss and smoothness. In each of the above examples, the liquid phase method was adopted in the benzyl etherification step, but it goes without saying that a gas phase method may also be used. In this case, the reaction vessel is partitioned into two chambers with a net or the like, a reaction solution which is benzyl chloride or a mixed solution of benzyl chloride and xylene in an arbitrary ratio is put, and the pretreated lignocelluloses are placed on the net. It is placed and reacted at a predetermined temperature for a predetermined time.

【0016】また、各実施例において、使用する木材は
組織構造を有するチップ形状の大きさのものを使用し
た。これは、非ベンジル化部分に繊維層が残り木材の特
有の性能を維持するためである。次に、上記の各実施例
で得られたボ−ド(成型材)の性質を添付図面に示す線
図を基に説明する。
In each of the examples, the wood used had a chip-like size having a tissue structure. This is because the fibrous layer remains in the non-benzylated portion and maintains the unique performance of the wood. Next, the properties of the board (molding material) obtained in each of the above examples will be described with reference to the diagrams shown in the accompanying drawings.

【0017】図1は、上記各実施例に係るボ−ドおよび
従来技術に係るパーテイ クルボード(樹脂率10%:乾
燥チップに対する結合剤の割合)を25℃の水中に24
時間浸漬した実験における、厚さの膨潤率を示すグラフ
である。各ボ−ドは、絶乾比重が0.6前後のもの、
0.8前後のものおよび1前後のものの3種を使用し
た。なお、図において、PFは従来のボ−ド、WPGは
各実施例に係るボ−ドのベンジル化度(チップの重量増
加率)を示している。実験結果を示す図1のグラフか
ら、ベンジル化度が高く、比重の大きいボ−ド(成型
材)の寸法安定性が向上していることが判明する。すな
わち、WPG(ベンジル化度)51%、比重約1.0で
あるボ−ド(成型材)の厚さ膨潤率は1%以下であり、
この数値は従来技術に係るボ−ドPFの1/20以下で
あり、非常に優れた寸法安定性を現出していることがわ
かる。
FIG. 1 shows the board according to each of the above-mentioned embodiments and the particle board according to the prior art (resin ratio 10%: ratio of binder to dry chips) in water at 25.degree.
It is a graph which shows the swelling rate of thickness in the experiment immersed for time. Each board has an absolute dry specific gravity of around 0.6,
Three types were used, one around 0.8 and one around 1. In the figure, PF is the conventional board, and WPG is the benzylation degree (weight increase rate of the chip) of the board according to each example. From the graph of FIG. 1 showing the experimental results, it is found that the dimensional stability of the board (molding material) having a high degree of benzylation and a large specific gravity is improved. That is, the thickness (swelling rate) of the board (molding material) having a WPG (degree of benzylation) of 51% and a specific gravity of about 1.0 is 1% or less,
This value is 1/20 or less of the board PF according to the prior art, and it can be seen that very excellent dimensional stability is exhibited.

【0018】図2は、上記各実施例に係り、それぞれベ
ンジル化度が異なる3種類のチップで調製したボ−ドお
よび従来技術に係るパーテイ クルボード(樹脂率10
%)において、各ボードの所定比重における曲げ強さを
調べた結果を示すグラフである。なお、図において、P
Fは従来のボ−ド、WPGは各実施例に係るボ−ドのベ
ンジル化度(チップの重量増加率)を示している。実施
例に係る各ボ−ドは、従来のボ−ドに比較して20%程
度低い数値を示しているが、比重0.8以上のものは実
用上十分な強度である20MPa以上の数値を示してい
る。
FIG. 2 relates to each of the above embodiments, and a board prepared from three types of chips each having a different degree of benzylation and a particle board according to the prior art (resin ratio 10).
%) Is a graph showing the results of examining the bending strength of each board at a predetermined specific gravity. In the figure, P
F is the conventional board, and WPG is the benzylation degree (chip weight increase rate) of the board according to each example. Each of the boards according to the examples shows a numerical value that is about 20% lower than that of a conventional board, but those having a specific gravity of 0.8 or more have a numerical value of 20 MPa or more, which is a practically sufficient strength. Shows.

【0019】図3は、上記各実施例に係り、それぞれベ
ンジル化度が異なる3種類のチップで調製したボ−ドお
よび従来技術に係るパーテイ クルボード(樹脂率10
%)において、各ボ−ドの所定比重における内部結合強
さを調べた結果を示すグラフである。なお、図におい
て、PFは従来のボ−ド、WPGは各実施例に係るボ−
ドのベンジル化度(チップの重量増加率)を示してい
る。これによれば、内部結合強さは、チップのベンジル
化度およびボードの比重に比例して増加することがわか
る。WPG51%、比重約1のボ−ドの内部結合強さ
は、従来のボ−ドの約2倍という非常に高い値を示し従
来のパ−テイ クルボ−ドの欠点の一つとされる内部結合
強さを大幅に改善している。
FIG. 3 relates to each of the above-mentioned examples, and a board prepared from three types of chips having different degrees of benzylation and a particle board according to the prior art (resin ratio: 10).
%) Is a graph showing the results of examining the internal bond strength of each board at a predetermined specific gravity. In the figure, PF is a conventional board and WPG is a board according to each embodiment.
3 shows the degree of benzylation (degree of increase in chip weight). This shows that the internal bond strength increases in proportion to the benzylation degree of the chip and the specific gravity of the board. The internal bond strength of a board with WPG 51% and a specific gravity of about 1 is about twice as high as that of the conventional board, which is one of the drawbacks of the conventional particle board. Has significantly improved strength.

【0020】図4は、この発明に係る、ベンジルエ−テ
ル化されたリグノセルロ−ス類の熱軟化性を検証する実
験結果を示すグラフである。この実験ではアカマツ木粉
(16メッシュ程度)を原材として、上述の実施例a、
b、cと同様の条件で3種、すなわちWPG(ベンジル
化度)27%、31%、37%のベンジルエ−テル化木
粉を調製し(16メッシュ程度の木粉をベンジルエ−テ
ル化)、これらと無処理の木粉の熱軟化性を所定の温度
条件で測定した。測定方法は、ペネトレ−ション法、す
なわち、被験対象である各木粉を小容器に詰め、この上
に荷重(25g)をかけた石英の針をあて、温度を変化
させた時の針の侵入度を測定する方法によった。なお、
図においてWPGはベンジル化度を示している。この実
験から、無処理の木粉では木材成分の熱分解点を超える
300℃においても約30%のペネトレ−ションしかな
く、熱溶融しないのに対し、ベンジルエ−テル化木粉は
90℃前後から熱軟化性を示し、かつベンジル化度の高
いものほど温度上昇につれ顕著となり、全てのベンジル
エ−テル化木粉が300℃までに熱溶融していることが
わかる。
FIG. 4 is a graph showing the experimental results for verifying the thermal softening property of benzyl etherified lignocelluloses according to the present invention. In this experiment, red pine wood flour (about 16 mesh) was used as a raw material, and the above-mentioned Example a,
Under the same conditions as in b and c, three kinds of benzyl etherified wood flour, namely WPG (degree of benzylation) of 27%, 31% and 37% were prepared (wood flour of about 16 mesh was benzyl etherified), The thermal softening properties of these and untreated wood flour were measured under a predetermined temperature condition. The measurement method is the penetration method, that is, each of the wood powders to be tested is packed in a small container, and a quartz needle with a load (25 g) is applied onto the small container, and the needle enters when the temperature is changed. It depends on the method of measuring the degree. In addition,
In the figure, WPG indicates the degree of benzylation. From this experiment, untreated wood flour has only about 30% penetration even at 300 ° C, which is higher than the thermal decomposition point of wood components, and does not heat-melt, whereas benzyl etherified wood flour starts at around 90 ° C. It can be seen that the higher the degree of benzylation, the more it shows the heat softening property, the more remarkable it becomes as the temperature rises, and that all the benzyl etherified wood flour is melted by 300 ° C.

【0021】図5は、上述の実施例a、b、cで得たW
PG(ベンジル化度)がそれぞれ21%、38%、51
%と異なる3種のベンジルエ−テル化チップを生成し、
これらを16メッシュ程度の木粉に調製し、図4の場合
と同様のペネトレ−ション法により各木粉の熱溶融性を
検討した実験結果を示すグラフである。全般に木粉をベ
ンジル化した図4の場合に比較し熱溶融性が低いが、こ
れはベンジル化チップを木粉とした図5の場合木粉全体
の中にチップ内部のベンジル化度の低い部分が木粉化さ
れたものも混在するためであり、チップ表面は図4に示
す木粉と同様の熱溶融性を有している。
FIG. 5 shows W obtained in the above-mentioned Examples a, b and c.
PG (degree of benzylation) is 21%, 38%, 51 respectively
3 different benzyl etherified chips were produced,
It is a graph which shows the experimental result which prepared these into about 16 mesh wood flour, and examined the heat melting property of each wood flour by the penetration method similar to the case of FIG. In general, the heat melting property is lower than in the case of benzylating wood flour as shown in FIG. 4, but this is lower in the case of benzylated chips as wood flour in FIG. This is because some of the wood chips are mixed into wood powder, and the chip surface has the same heat melting property as the wood powder shown in FIG.

【0022】次に、この発明に係る成型材の腐朽試験の
結果を次の表1に示す。この試験では、前述の実施例
a、b、cに係る3種のボ−ド(チップのベンジル化度
がそれぞれ21%、38%、51%)、および従来の成
型材(パ−テイ クルボ−ド等)を対象にしてオオウズラ
タケによる腐朽試験を施し、各対象の重量減少率を調べ
た。この表1からあきらかなように、腐朽試験後の重量
減少率はベンジル化度が増加するにつれて低下し、ベン
ジル化度51%のボ−ドの重量減少率は、僅か0.7%
であり、従来技術に係るボ−ドの1/25以下という非
常に優れた耐腐朽性を示している。
Next, the results of the decay test of the molding material according to the present invention are shown in Table 1 below. In this test, the three types of boards according to Examples a, b, and c described above (the benzylation degrees of the chips were 21%, 38%, and 51%, respectively) and the conventional molding material (particulate board) were used. , Etc.) was subjected to a decay test with Pleurotus cornucopiae, and the weight reduction rate of each subject was investigated. As is clear from Table 1, the weight loss rate after the decay test decreases as the benzylation degree increases, and the weight loss rate of the board having a benzylation degree of 51% is only 0.7%.
In other words, it shows a very excellent decay resistance of 1/25 or less of the board according to the prior art.

【0023】[0023]

【表1】 [Table 1]

【0024】ところで、ベンジルエ−テル化反応は、チ
ップ表面から徐々に内部に進行するトポケミカル反応と
考えられる。このため、形状が大きいチップ(特に厚さ
が大きいチップ)と薄いチップとを比べた場合、チップ
表面のベンジル化度は同じでチップ間の熱融着性も同じ
になるが、チップ内部のベンジル化度は大きく異なる。
すなわち、薄いチップは内部までベンジル化され、チッ
プ自体が高い熱溶融性、耐腐朽性、耐水性をもつため、
これによって調製されたボ−ド(成型材)も高い熱溶融
性、寸法安定性、耐腐朽性を示す。一方、形状が大きい
チップの場合、ベンジルエ−テル化の反応条件(温度、
時間、前処理用の水酸化ナトリウムの濃度)が同じであ
れば、薄いチップに比較し内部までベンジル化されない
ため繊維形態がチップ中に保持されチップ自体の強度低
下は小さく、このためこの大きい形状のチップにより調
製したボ−ド(成型材)の力学的性能は高い。そして、
繊維形態の残存によりチップ内部に空隙構造を保持する
ために空気層を保ち、原材である例えば木材に近い熱伝
導率を示して温かみのあるボ−ド(成型材)が得られ
る。
By the way, the benzyl etherification reaction is considered to be a topochemical reaction that gradually progresses from the chip surface to the inside. Therefore, when a chip with a large shape (especially a chip with a large thickness) is compared with a thin chip, the degree of benzylation on the chip surface is the same and the heat fusion property between the chips is the same, but the benzyl inside the chip is the same. The degree of conversion varies greatly.
In other words, thin chips are benzylated to the inside, and the chips themselves have high heat-melting property, decay resistance, and water resistance.
The board (molding material) prepared by this also exhibits high heat melting property, dimensional stability and decay resistance. On the other hand, in the case of a chip with a large shape, reaction conditions for benzyl etherification (temperature,
If the time and the concentration of sodium hydroxide for pretreatment are the same, the fiber form is retained in the tip and the strength of the tip itself is small compared to a thin tip, and the strength of the tip itself is small. The mechanical performance of the board (molded material) prepared by the chips of the above is high. And
Due to the residual fiber form, an air layer is maintained to maintain the void structure inside the chip, and a warm board (molding material) having a thermal conductivity close to that of the raw material, for example, wood, is obtained.

【0025】ここで以上の記述をまとめると、この発明
において、原材のチップの大小、ベンジルエ−テル化の
反応条件(反応温度を高く設定することにより、あるい
は反応時間を長くとることにより、あるいはまた前処理
の溶液濃度を高くすることによりベンジル化度は高ま
る)の選択によりベンジル化度そのものあるいはチップ
におけるベンジルエ−テル化層の深浅の度合い等を調節
することで、得られるボ−ド(成型材)の性質を、原
材、例えば木材の性質を多く有するあるいはプラスチッ
クの性質を多分に具有するといったように必要に応じて
容易に設定することができる。
To summarize the above description, in the present invention, the size of the raw material chips, the reaction conditions for the benzyl etherification (by setting the reaction temperature high, or by increasing the reaction time, or Also, the benzylation degree itself or the depth of the benzyl etherification layer in the chip can be adjusted by selecting the pretreatment solution concentration to increase the benzylation degree). The properties of the mold material) can be easily set as necessary such as having many properties of a raw material, for example, wood, or having many properties of plastic.

【0026】なお、ベンジルエ−テル化したチップの熱
融着性は、チップのベンジル化度に比例するためベンジ
ル化度によっては熱融着性を生じない場合もある。しか
しながら、ベンジル化度の低いチップもチップ中の水酸
基はある程度ベンジル基に置換されており、軽度にベン
ジルエ−テル化したチップに接着剤をスプレ−して熱圧
締により調製したボ−ド(成型材)は、無処理のチップ
を用いた従来のパ−テイ クルボ−ドに比べてボ−ドの寸
法安定性、耐水性、耐腐朽性は向上する。勿論、これら
の性能はベンジル化度の高いチップで熱融着により調製
したボ−ド(成型材)に比較すれば劣るが、逆に吸放湿
性や熱伝導性等木材に近いものが得られる。
Since the heat-fusion property of the benzyl etherified chip is proportional to the benzylation degree of the chip, the heat-fusion property may not occur depending on the benzylation degree. However, even in a chip with a low degree of benzylation, the hydroxyl groups in the chip have been substituted to some extent by benzyl groups, and a chip prepared by heat pressing by spraying an adhesive on the chip that has been mildly benzyl etherified The mold material) has improved dimensional stability, water resistance, and decay resistance of the board as compared with the conventional particle board using untreated chips. Of course, these performances are inferior to those of a board (molding material) prepared by heat-sealing with chips having a high degree of benzylation, but conversely, moisture absorption and desorption, thermal conductivity, etc. similar to wood can be obtained. .

【0027】[0027]

【発明の効果】この発明は、以上述べた構成・作用によ
りリグノセルロ−ス類を原材として熱溶融性の故に成型
性に優れ、また耐腐朽性、耐水性、寸法安定性等に優れ
た新規な成型材を実現できる。そして、原材とプラスチ
ックとの両方の性能を具えたこの成型材はベンジル化条
件の設定を変えることによりいずれかの性能の発現の強
弱を自由に調節することができる。従来、例えば木材の
使用を欲してもその欠点(製品のばらつき、腐りやす
さ、寸法の安定性に欠ける等)のためやむをえずプラス
チック材を使用することが多くあり、木材の持つ質感、
感触、温かみ、色調、吸放湿性等への要求は高く、これ
らの性能を有して、なおかつプラスチック材のような局
面成型性や製品の信頼性が高い素材が需められていた
が、この発明はまさにこのような要望に応えるものであ
る。
EFFECT OF THE INVENTION The present invention is a novel material which is excellent in moldability due to its heat-melting property and is also excellent in decay resistance, water resistance, dimensional stability, etc. by using lignocelluloses as a raw material due to the constitution and operation described above. It can realize various molding materials. Further, this molding material having both the performance as the raw material and the plastic can freely adjust the strength of expression of any performance by changing the setting of the benzylation condition. Conventionally, for example, even if one wants to use wood, it is often unavoidable to use a plastic material because of its drawbacks (variability of products, perishability, lack of dimensional stability, etc.).
There are high demands for feel, warmth, color tone, moisture absorption and desorption, etc., and materials having these properties and having high moldability and product reliability such as plastic materials have been demanded. The invention meets exactly this need.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る成型材の水中におけ
る膨潤率を示す線図である。
FIG. 1 is a diagram showing a swelling ratio in water of a molding material according to an embodiment of the present invention.

【図2】この発明の一実施例に係る成型材の曲げ破壊実
験の結果を示す線図である。
FIG. 2 is a diagram showing a result of a bending fracture test of a molding material according to an example of the present invention.

【図3】この発明の一実施例に係る成型材における比重
と内部結合力の関係を示す線図である。
FIG. 3 is a diagram showing a relationship between specific gravity and internal bonding force in a molded material according to an embodiment of the present invention.

【図4】ベンジルエ−テル化したアカマツ木粉の加熱に
よる熱軟化度の変化を示す線図である。
FIG. 4 is a diagram showing changes in the degree of thermal softening due to heating of benzyl etherified red pine wood flour.

【図5】粉化したベンジルエ−テル化チップの加熱にと
もなう熱軟化度の変化を示す線図である。
FIG. 5 is a diagram showing a change in thermal softening degree with heating of powdered benzyl etherified chips.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 木材、竹材その他のリグノセルロース類
からなる原材料を破砕して形成した複数のチップを熱圧
締により所望の形状に成型してなり、前記各チップはベ
ンジルエ−テル化された表面が相互に熱融着することに
より強固に結合してなることを特徴とするリグノセルロ
ースのベンジルエーテル化成型材。
1. A plurality of chips formed by crushing raw materials such as wood, bamboo and other lignocelluloses are molded into a desired shape by hot pressing, and each chip is a benzyl etherified surface. A lignocellulosic benzyl etherified molding material characterized in that the two are strongly bonded to each other by heat fusion.
【請求項2】 請求項1において、各チップはほぼ表層
のみがベンジルエ−テル化されて内部には原料であるリ
グノセルロース類の繊維形態をなお保持していることを
特徴とするリグノセルロースのベンジルエーテル化成型
材。
2. The lignocellulosic benzyl derivative according to claim 1, wherein each chip is benzyl etherified almost only in its surface layer and still retains the fibrous form of the lignocellulose as a raw material inside. Etherified molding material.
【請求項3】 請求項2において、各チップの結合はチ
ップ相互の熱融着と接着剤とによるものであることを特
徴とするリグノセルロースのベンジルエーテル化成型
材。
3. The lignocellulosic benzyl etherified molding material according to claim 2, wherein the bonding of the respective chips is performed by thermal fusion of the chips and an adhesive.
【請求項4】(イ)リグノセルロース類からなる木材、
竹材等の原材料を破砕してチップ化する工程、(ロ)前
記各チップを水酸化ナトリウム水溶液で前処理する工
程、(ハ)前処理された各チップをベンジルエ−テル化
する工程、(ニ)ベンジルエ−テル化の反応終了に、各
チップから余剰な反応液を除去し、エーテルあるいはア
ルコール類で洗浄後、水洗し風乾する工程、(ホ)乾燥
した前記各チップを所望の大きさ、比重となるようフォ
ーミングし、熱圧締することにより各チップ表面相互を
熱融着させ所定形状のリグノセルロース成型材を得る工
程、 以上の工程からなるリグノセルロースのベンジルエーテ
ル化成型材の製造方法。
4. A wood comprising (a) lignocelluloses,
A step of crushing raw materials such as bamboo into chips, (b) a step of pretreating each of the chips with an aqueous sodium hydroxide solution, (c) a step of converting each of the pretreated chips into a benzyl ether, (d) At the end of the benzyl etherification reaction, a step of removing excess reaction liquid from each chip, washing with ether or alcohol, then washing with water and air-drying, (e) drying each of the chips to a desired size and specific gravity A step of forming a lignocellulosic molding material having a predetermined shape by heat-bonding the respective chip surfaces to each other by forming and heat-pressing as described above, and the method for producing a benzyl etherified molding material of lignocellulose comprising the above steps.
【請求項5】 請求項4において、各チップのベンジル
エ−テル化は塩化ベンジルを用い、液相法によってなす
ことを特徴とするリグノセルロースのベンジルエーテル
化成型材の製造方法。
5. The method for producing a benzyl etherified molding material of lignocellulose according to claim 4, wherein benzyl etherification of each chip is performed by a liquid phase method using benzyl chloride.
【請求項6】 請求項4において、各チップのベンジル
エ−テル化は塩化ベンジルを用い、気相法によってなす
ことを特徴とするリグノセルロースのベンジルエーテル
化成型材の製造方法。
6. The method for producing a benzyl etherified molding material of lignocellulose according to claim 4, wherein benzyl etherification of each chip is performed by a gas phase method using benzyl chloride.
【請求項7】 請求項4において、各チップのベンジル
エ−テル化は塩化ベンジルとキシレンとの混合液を用
い、液相法によってなすことを特徴とするリグノセルロ
ースのベンジルエーテル化成型材の製造方法。
7. The method for producing a benzyl etherified molding material of lignocellulose according to claim 4, wherein the benzyl etherification of each chip is performed by a liquid phase method using a mixed solution of benzyl chloride and xylene.
【請求項8】 請求項4において、各チップのベンジル
エ−テル化は塩化ベンジルとキシレンとの混合液を用
い、気相法によってなすことを特徴とするリグノセルロ
ースのベンジルエーテル化成型材の製造方法。
8. The method for producing a benzyl etherified molding material of lignocellulose according to claim 4, wherein the benzyl etherification of each chip is performed by a gas phase method using a mixed solution of benzyl chloride and xylene.
【請求項9】 請求項5において、各チップのベンジル
エ−テル化は加熱および加圧下においてなすことを特徴
とするリグノセルロースのベンジルエーテル化成型材の
製造方法。
9. The method for producing a benzyl etherified molding material of lignocellulose according to claim 5, wherein the benzyl etherification of each chip is performed under heating and pressure.
【請求項10】 請求項5において、各チップのベンジ
ルエ−テル化は常圧下において加熱してなすことを特徴
とするリグノセルロースのベンジルエーテル化成型材の
製造方法。
10. The method for producing a benzyl etherified molding material of lignocellulose according to claim 5, wherein the benzyl etherification of each chip is performed by heating under normal pressure.
【請求項11】 請求項4において、各チップはほぼ表
層のみをベンジルエ−テル化し、内部には原料であるリ
グノセルロース類の繊維形態をなお保持させるととも
に、チップをフォーミングする際に接着剤を散布して熱
圧締するようにしたことを特徴とするリグノセルロース
のベンジルエーテル化成型材の製造方法。
11. The chip according to claim 4, wherein substantially only the surface layer of each chip is benzyl etherified, the inside thereof retains the fiber form of the lignocellulosics as a raw material, and an adhesive is sprayed when the chip is formed. A method for producing a benzyl etherified molded material of lignocellulose, which is characterized in that it is heat pressed.
JP4102408A 1992-03-30 1992-03-30 Lignocellulosic benzyl ether molded material and method for producing the same Expired - Lifetime JPH07121961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4102408A JPH07121961B2 (en) 1992-03-30 1992-03-30 Lignocellulosic benzyl ether molded material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4102408A JPH07121961B2 (en) 1992-03-30 1992-03-30 Lignocellulosic benzyl ether molded material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0693001A true JPH0693001A (en) 1994-04-05
JPH07121961B2 JPH07121961B2 (en) 1995-12-25

Family

ID=14326620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4102408A Expired - Lifetime JPH07121961B2 (en) 1992-03-30 1992-03-30 Lignocellulosic benzyl ether molded material and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07121961B2 (en)

Also Published As

Publication number Publication date
JPH07121961B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US5134026A (en) Process for manufacturing a compression-moulded synthetic resin object and fabricated material for use in said process
Hashim et al. Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk
Kelly Critical literature review of relationships between processing parameters and physical properties of particleboard
JP3352093B2 (en) Phenol formaldehyde steam press method for wafer board
US4510278A (en) Manufacture of chipboard and a novel suitable bonding agent
US4627951A (en) Process for manufacturing composite products from lignocellulosic materials
CN103108933B (en) Soy adhesives and composites made from the adhesives
CA1053558A (en) Manufacture of multilayer panels using polyisocyanate: formaldehyde binder system
CA2595316A1 (en) Wood and non-wood plant fibers hybrid composition and uses thereof
JPS60206604A (en) Conversion of lignocellulose material into recomposed compound
US4364979A (en) Composition board
WO2003092972A1 (en) Method for making dimensionally stable composite products from lignocellulosic material
JPH02220807A (en) Solidified body of cellulose fiber and manufacture thereof
Widyorini et al. Manufacture and properties of citric acid-bonded composite board made from salacca frond: Effects of Maltodextrin Addition, Pressing Temperature, and Pressing Method
US2485587A (en) Sheet lumber
JPH10305409A (en) Board made of grass lignin and manufacture thereof
US2553412A (en) Molding fiber composition
Eshraghi et al. Waste paperboard in composition panels
GB2142943A (en) Process for manufacturing composite products from lignocellulosic materials
Awang et al. Medium density fibreboard (MDF) from oil palm fibre: a review
JPH0693001A (en) Benzylated molding material of lignocellulose and its production
CA1211913A (en) Process for manufacturing composite products from lignocellulosic materials
RU2166521C2 (en) Method of manufacturing wood particle boards
Zainuddin et al. The effects of pressure and pressing time on the mechanical and physical properties of oil palm empty fruit bunch medium density fibreboard.
Ng et al. The study on the effects of sodium silicate on particleboard made from sugarcane bagasse

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960702

EXPY Cancellation because of completion of term