JPH0692996A - Protein constituting hepatitis c virus particle and its manifestation - Google Patents

Protein constituting hepatitis c virus particle and its manifestation

Info

Publication number
JPH0692996A
JPH0692996A JP35963691A JP35963691A JPH0692996A JP H0692996 A JPH0692996 A JP H0692996A JP 35963691 A JP35963691 A JP 35963691A JP 35963691 A JP35963691 A JP 35963691A JP H0692996 A JPH0692996 A JP H0692996A
Authority
JP
Japan
Prior art keywords
hcv
amino acid
hepatitis
protein
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35963691A
Other languages
Japanese (ja)
Inventor
Kunitada Shimotoono
邦忠 下遠野
Makoto Hijikata
誠 土方
Noriyuki Kato
宣之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35963691A priority Critical patent/JPH0692996A/en
Publication of JPH0692996A publication Critical patent/JPH0692996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PURPOSE:To identify an envelope protein to become a target of a neutralizing antibody, existing on the surface of hepatitis C virus(HCV) particle and to utilize the protein for trial preparation of vaccine usable for diagnosis of infection with virus and prevention of crisis. CONSTITUTION:An envelope protein of two HCVs is processed from N end 980 amino acid residue to be encoded in a transcription decoding frame of HCV genome and has an amino acid sequence from N end 192th to 383rd of the transcription decoding frame of HCV genome and about 35,000 molecular weight and an amino acid sequence of about 350 starting from 384th and about 79,000 molecular weight. A core protein of HCV has an amino acid sequence from N end 1st to 191st and about 22,000 molecular weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輸血後非A非B型肝炎
の主要な原因ウィルスであり、肝ガン発症と密接に関連
することが明らかになってきているC型肝炎ウィルス
(HCV;以下HCVという)粒子を構成する蛋白質お
よびその発現、同定に関する。詳しくは、本発明はクロ
ーン化したHCVゲノムのcDNAを用いてウィルス蛋
白質をin vitroで発現させることにより、ウィ
ルス粒子表面に存在し、中和抗体の標的となるエンベロ
ープ蛋白質を同定し、ひいてはこれをウィルス感染の診
断と発症予防に利用するワクチン試作に役立てようとす
るものである。
BACKGROUND OF THE INVENTION The present invention is a major causative virus of post-transfusion non-A non-B hepatitis, and it has become clear that hepatitis C virus (HCV; (Hereinafter referred to as HCV) Proteins constituting particles and their expression and identification. More specifically, the present invention identifies an envelope protein present on the surface of virus particles and targeted by neutralizing antibodies by expressing a viral protein in vitro using a cloned HCV genomic cDNA, and thus It is intended to be used for trial production of vaccines used for diagnosis and prevention of viral infections.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】C型肝炎
(hepatitis C)は輸血後肝炎を構成するウ
ィルス性肝炎の1種である。C型肝炎の原因ウィルスで
あるHCVは、感染者が多く問題化している。HCV感
染は、これまでアルコール性、自己免疫性と考えられて
いた肝炎、肝硬変や原発性胆汁性肝硬変にも多く見られ
ることがわかり、B型肝炎(HBV)同様、慢性肝炎か
ら肝硬変への移行や、さらには肝細胞ガン発生のリスク
が高いことが明らかになってきた。肝ガン患者のうち約
3分の2以上にHCV抗体あるいはHCVのゲノムRN
Aが検出されている。現在、かかるC型肝炎自体の治療
には、インターフェロン(IFN)が有効であることが
わかり、ウィルス消失データもあるが、いわゆる特効薬
としては難しい面もあり、その診断、治療薬、輸血用血
液の浄化剤、ワクチン等の開発が望まれている状況であ
る。
BACKGROUND OF THE INVENTION Hepatitis C is one of viral hepatitis that constitutes post-transfusion hepatitis. HCV, which is a causative virus of hepatitis C, has become a problem in many infected people. HCV infection was found to be common in hepatitis, liver cirrhosis and primary biliary cirrhosis, which were previously thought to be alcoholic and autoimmune, and, like hepatitis B (HBV), transition from chronic hepatitis to cirrhosis. Moreover, it has become clear that the risk of developing hepatocellular carcinoma is high. About two-thirds or more of liver cancer patients have HCV antibody or HCV genomic RN
A is detected. At present, it is known that interferon (IFN) is effective for the treatment of such hepatitis C itself, and there is virus elimination data, but it is also difficult as a so-called specific drug, and its diagnosis, therapeutic drug, blood transfusion The development of purifying agents, vaccines, etc. is desired.

【0003】C型肝炎は、最近になりようやくその原因
となるウィルス遺伝子が発見され、診断と予防に道が開
かれつつある。HCVの遺伝子の一部分は、1989年
米国カイロン社により分離された [Choo et al., Scien
ce, 244, 359 (1984)]。その情報が基となってHCVの
研究が加速化し、わが国においては日本人患者血清から
cDNAが分離され、そのクローン化が行われ、日本人
に特有のHCV遺伝子配列が明らかにされた。本発明者
らは、日本人の非A非B型慢性患者に多いHCV(HC
V−J)の遺伝子を解析し、その全構造を明らかにして
いる [Kato etal. Proc. Acad. Natl. Sci. USA 87, 9
524 (1990)]。それによるとHCVは約10KbのRN
Aウィルスであり、当該一本鎖RNAは約9500塩基
から成り、アミノ酸に読み取られる領域(転写解読枠:
ORF)が9030塩基で、アミノ酸数は3010であ
る。しかしながら、このようにHCVは遺伝子の全容は
明らかになっているものの、ウィルス粒子は認められて
おらず、ウィルス粒子を構成する蛋白質の同定・解析に
は至っていない。
[0003] Hepatitis C has only recently been found to have a viral gene that causes it, and it is now open to diagnosis and prevention. A portion of the HCV gene was isolated by Chiron, USA in 1989 [Choo et al., Scien.
ce, 244, 359 (1984)]. Based on this information, research on HCV was accelerated, and in Japan, cDNA was isolated from the serum of Japanese patients and cloned to clarify the HCV gene sequence unique to Japanese. The present inventors have found that HCV (HC
VJ) gene has been analyzed and the entire structure has been clarified [Kato et al. Proc. Acad. Natl. Sci. USA 87 , 9
524 (1990)]. According to it, HCV has an RN of about 10 Kb.
A virus, the single-stranded RNA consists of about 9500 bases, and is a region read by amino acids (transcriptional frame:
The ORF is 9030 bases and the number of amino acids is 3010. However, as described above, although the entire gene of HCV has been clarified, no virus particle has been recognized, and the identification and analysis of the protein constituting the virus particle has not been achieved.

【0004】したがって、本発明の課題は、HCVの感
染細胞への作用のあり方を、ウィルスの産生蛋白質レベ
ルで究明するために、ウィルス粒子を構成する蛋白質、
就中、ウィルス表面に存在し、中和抗体の標的となるエ
ンベロープ蛋白質に注目し、その同定・解析をおこなう
ことにある。
Therefore, the object of the present invention is to analyze the action of HCV on infected cells at the level of virus-produced proteins, and
In particular, the focus is on the envelope protein, which is present on the surface of the virus and is the target of neutralizing antibodies, for its identification and analysis.

【0005】[0005]

【課題を解決するための手段】本発明者らは、当該目的
を達成するために種々の研究を重ねてきたところ、クロ
ーン化したHCVゲノムのcDNAを用いてウィルス蛋
白質をin vitroで発現させることにより、HC
V遺伝子にコードされているHCVタンパク質のうち、
ウィルス粒子を構成する蛋白質、就中、ウィルス表面に
存在し、中和抗体の標的となるエンベロープ蛋白質が正
確にプロセシングされて産生されることを見い出した。
すなわち、このプロセシングにはミクロソーム膜画分に
存在するシグナレースの作用が必須であり、ウィルス粒
子の膜蛋白質として2種類の蛋白質が発現されることを
発見し、さらにウィルスコア蛋白質も本プロセシング作
用により産生されることを明らかにし、これらウィルス
粒子構成蛋白質をコードするHCV遺伝子上の領域を同
定した。
[Means for Solving the Problems] The inventors of the present invention have conducted various studies in order to achieve the above-mentioned object and found that a viral protein is expressed in vitro using a cloned HCV genomic cDNA. By HC
Among the HCV proteins encoded by the V gene,
We have found that the proteins that make up the virus particles, especially the envelope proteins that are present on the surface of the virus and that are the target of neutralizing antibodies, are processed and produced accurately.
That is, it was discovered that the action of signalase existing in the microsomal membrane fraction is essential for this processing, and two types of proteins are expressed as membrane proteins of virus particles. Furthermore, the viral core protein is also expressed by this processing action. It was revealed that they were produced, and the regions on the HCV gene encoding these viral particle constituent proteins were identified.

【0006】本発明は、クローン化したHCVゲノムの
cDNAを用いてウィルス蛋白質をin vitroで
発現させることにより、HCVゲノムの転写解読枠にコ
ードされるN末端980アミノ酸残基からプロセシング
されるHCV粒子を構成する主要蛋白質うち、HCVゲ
ノムの転写解読枠のN末端1番目から191番目までの
アミノ酸配列を有する、分子量が約22000のHCV
のコア蛋白質(p22)、HCVゲノムの転写解読枠の
N末端192番目から383番目までのアミノ酸配列を
有する、分子量が約35000の、及び384番から始
まり、約350のアミノ酸配列を有する、分子量が約7
0000の二つのHCVのエンベロープ蛋白質(gp3
5,gp70)を同定した(後記図8参照)。
[0006] The present invention is an HCV particle processed from the N-terminal 980 amino acid residues encoded by the transcription frame of the HCV genome by expressing a viral protein in vitro using the cloned HCV genomic cDNA. HCV having a molecular weight of about 22000, which has an amino acid sequence from the N-terminal 1st to 191st of the HCV genome open reading frame
Core protein (p22), which has an amino acid sequence from the N-terminal 192nd to 383rd of the open reading frame of the HCV genome, has a molecular weight of about 35,000, and starts from the 384th and has an amino acid sequence of about 350. About 7
Two HCV envelope proteins of 0000 (gp3
5, gp70) was identified (see FIG. 8 below).

【0007】本発明においては、HCVの推定される構
造蛋白質のプロセシングを、in vitro発現系を用いて調
べた。すなわち、ウィルスポリタンパク前駆体のN末端
980残基をコードする領域を含むcDNAから無細胞
系翻訳に用いるRNA転写物を調製し、続いてミクロソ
ーム膜存在下で翻訳させた(in vitro転写/翻訳)。in
vitro翻訳産物のプロセシングは、ミクロソーム膜存在
下で共翻訳的に(翻訳とともに)進み、4つの主要な産
物(p22,gp35,gp70,p19)を生じた。
なお、p19は、in vitro翻訳系に用いたmR
NAの3’末端が人工的に切断された結果の産物であ
る。当該産物は、N末端980残基より短い型(欠失
体)のcDNA構築物から同様にして翻訳され、プロセ
シングされた蛋白の分析との比較により、ポリタンパク
前駆体のN末端からNH2-p22-gp35-gp70-p19-COOHの順序
で配列されていることが示唆された。プロセシング後の
蛋白分析にはポリアクリルアミドゲル電気泳動(SDS
−PAGE)後、フルオログラフィーを用いて行うこと
ができる。また、N末端アミノ酸配列決定は、エドマン
法により行う。
In the present invention, processing of putative structural proteins of HCV was investigated using an in vitro expression system. That is, an RNA transcript used for cell-free translation was prepared from a cDNA containing a region encoding the N-terminal 980 residue of a viral polyprotein precursor, and subsequently translated in the presence of a microsomal membrane (in vitro transcription / translation). ). in
Processing of in vitro translation products proceeded co-translationally (with translation) in the presence of microsomal membranes, yielding four major products (p22, gp35, gp70, p19).
Note that p19 is the mR used in the in vitro translation system.
It is the product resulting from the artificial cleavage of the 3'end of NA. The product was similarly translated from a cDNA construct shorter than the N-terminal 980 residues (deletion form) and compared with the analysis of the processed protein from the N-terminus of the polyprotein precursor to NH 2 -p22. -It was suggested that they are arranged in the order of gp35-gp70-p19-COOH. For protein analysis after processing, polyacrylamide gel electrophoresis (SDS
-PAGE) followed by fluorography. The N-terminal amino acid sequence is determined by the Edman method.

【0008】各翻訳産物が、ウィルスエンベロープ蛋白
質またはウィルスコア蛋白質であると推定・解析するに
は、他の類似フラビウィルスのゲノム上の遺伝子構成お
よびアミノ酸配列の親水性プロフィールの比較、糖鎖付
加シグナル(N−X−T/S)の在否などから可能であ
る。
In order to predict and analyze each translation product as a virus envelope protein or a virus core protein, gene constitution on the genome of other similar flaviviruses, comparison of hydrophilicity profiles of amino acid sequences, glycosylation signal This is possible based on the presence or absence of (N−X−T / S).

【0009】シグナル配列に相当する部分は、gp35
およびgp70にN末端上流に見出された[J. Mol. Bio
l.184, 99-105 (1985)] 。また疎水性アミノ酸配列が続
く領域に対して膜貫通部分があることにより、gp35
及びgp70のC末端上流領域に膜貫通部分を推定し
た。かかる膜貫通部分はこれを介してgp35及びgp
70を小胞体内へ送り込む役割を果たしていると考えら
れる。さらにN−X−T/S配列に対してN位糖鎖付加
が起こりやすい部位があることによりグリコシレーショ
ンの可能性のある部位を判断した。
The portion corresponding to the signal sequence is gp35
And found in the N-terminal upstream of gp70 [J. Mol. Bio
l. 184, 99-105 (1985)]. In addition, due to the presence of a transmembrane region in the region where the hydrophobic amino acid sequence continues,
And a transmembrane portion was deduced in the C-terminal upstream region of gp70. Through this, the transmembrane portion is gp35 and gp
It is considered to play a role of sending 70 into the endoplasmic reticulum. Furthermore, the site having a possibility of glycosylation was judged because there is a site where N-glycosylation is likely to occur with respect to the NXT / S sequence.

【0010】[0010]

【発明の効果】本発明は、HCV粒子表面に存在し、中
和抗体の標的となるエンベロープ蛋白質を同定し、ひい
てはウィルス感染の診断と発症予防に利用するワクチン
試作に役立てようとするものである。
INDUSTRIAL APPLICABILITY The present invention is intended to identify an envelope protein that is present on the surface of HCV particles and is a target of neutralizing antibodies, and to utilize it for trial production of a vaccine used for diagnosis and prevention of viral infection. .

【0011】[0011]

【実施例】【Example】

実施例1 (1)発現プラスミドの構築 HCV cDNA配列の81塩基対の5’非コード領域
と2940塩基対のコード領域を含む、すなわちHCV
の転写解読枠(ORF)のN末端980残基をコードす
る発現ベクターpC980、その一連の欠失変異株を以
下のように構築した。まず、HCV−Jクローン2 [Ka
to, N. et al. Proc. Natl.Acad. Sci.USA 87, 9524-95
28 (1990)] の EcoRI断片をマルチクローニング領域の
すぐ上流にT7ファージプロモーターを含有するpTZ
18Uベクター [東洋紡(株)]の EcoRI部位にサブク
ローンして、発現ベクターpC163を構築した。次
に、pC163のNarI- HindIII 断片をHCV−Jクロ
ーン3(同上)のNarI- HindIII で置換し、pC511
を作製した。pC511のMluI-HindIII断片をHCV−
J(同上)に対するcDNAクローンの一部を含むクロ
ーン33(同上)のMluI-HindIII断片で置換し、pC74
0を得た。そしてpC740のBssHII-HindIII断片をH
CV−Jクローン6(同上)のBssHII-HindIII断片で置
換し、pC980を構築した。pC980からNruI-Cla
I 断片およびSmaI-BamHI断片をそれぞれ欠失し、DNA
ポリメラーゼIのクレノウ断片を用いて制限酵素切断突
出末端を埋めた後、Sph-I リンカー(宝酒造社製)を用
いて結合して、pN124およびpN340を構築し
た。pN124はさらにSphIで切断して187 塩基対の
3’末端を欠失させた。尚、pC980の構築図を図
1、図2に示す。
Example 1 (1) Construction of expression plasmid The 81-bp 5'non-coding region of the HCV cDNA sequence and the 2940-bp coding region are contained, that is, HCV.
The expression vector pC980 encoding the N-terminal 980 residues of the open reading frame (ORF) of E. coli, and a series of deletion mutants thereof were constructed as follows. First, HCV-J clone 2 [Ka
to, N. et al. Proc. Natl. Acad. Sci. USA 87, 9524-95
28 (1990)] was added to pTZ containing the T7 phage promoter immediately upstream of the multiple cloning region.
An expression vector pC163 was constructed by subcloning the 18U vector [Toyobo Co., Ltd.] into the EcoRI site. Next, the NarI-HindIII fragment of pC163 was replaced with NarI-HindIII of HCV-J clone 3 (same as above) to obtain pC511.
Was produced. The MluI-HindIII fragment of pC511 was HCV-
Replaced with the MluI-HindIII fragment of clone 33 (Id.) Containing part of the cDNA clone for J (Id.), PC74
I got 0. Then, the BssHII-HindIII fragment of pC740 was set to H
It was replaced with the BssHII-HindIII fragment of CV-J clone 6 (Id.) To construct pC980. pC980 to NruI-Cla
I fragment and SmaI-BamHI fragment were deleted,
The Klenow fragment of polymerase I was used to fill in the restriction enzyme-cutting protruding ends, and then the fragments were ligated using Sph-I linker (Takara Shuzo) to construct pN124 and pN340. pN124 was further digested with SphI to delete the 3'end of 187 base pairs. The construction diagram of pC980 is shown in FIGS. 1 and 2.

【0012】(2)in vitro転写 すべての精製したプラスミドを、挿入cDNAの下流に
あるマルチクローニング領域の唯一のHindIII で部位で
切断するか、または挿入物内の適当な制限酵素部位で切
断して、直鎖状にした。これらをin vitro転写用の鋳型
として用いた。既報に従いT7RNAポリメラーゼ(Uni
ted States Biochemical) を用いてin vitroでRNA転
写物を合成した[Hijikata et al., J. Virol. 64, 4632
-4639 (1990)] 。BamHI またはHincIIで短くしたpC5
11と、BssHIIまたはNotIで短くしたpN340を鋳型
として使用し、in vitroで転写して、C281, C38
1, N340B, N340Nを得た。上記の処理で得ら
れ、in vitroプロセシング分析に用いる各欠失
構築物の地図および発現プラスミド構築方策の一覧図を
図3に示す。
(2) In Vitro Transcription All purified plasmids were cleaved at the unique HindIII site of the multicloning region downstream of the inserted cDNA or at appropriate restriction enzyme sites in the insert. , Straightened. These were used as templates for in vitro transcription. According to previous reports, T7 RNA polymerase (Uni
ed States Biochemical) to synthesize RNA transcripts in vitro [Hijikata et al., J. Virol. 64 , 4632].
-4639 (1990)]. PC5 shortened with BamHI or HincII
11 and pN340 shortened with BssHII or NotI as a template and transcribed in vitro to give C281, C38
1, N340B and N340N were obtained. A map of each deletion construct obtained by the above-mentioned treatment and used in the in vitro processing analysis and a list of the expression plasmid construction strategies are shown in FIG.

【0013】(3)in vitroプロセシングアッ
セイと蛋白分析 イヌ膵臓ミクロソーム膜(Promega)の存在下または非存
在下で、標識用に[35S] メチオニン(Amersham)を加え、
ウサギ網状赤血球溶解物(Amersham)を使用して、pC9
80の転写物を翻訳した。そして翻訳混合物試料を界面
活性剤(1%デオキシコール酸ナトリウム/1%トライ
トンX−100)の存在下または非存在下で0℃にて30
分間プロテイナーゼK(200 μg/ml)で処理した。
混合物を10,000×g にて20分間遠心分離後、沈澱および
上清の試料をSDS/PAGE後、フルオログラフィー
で分析した。
(3) In vitro processing assay and protein analysis [ 35 S] methionine (Amersham) for labeling was added in the presence or absence of canine pancreatic microsomal membrane (Promega),
Using rabbit reticulocyte lysate (Amersham), pC9
80 transcripts were translated. Then, the translation mixture sample was subjected to 30 ° C. at 0 ° C. in the presence or absence of a surfactant (1% sodium deoxycholate / 1% Triton X-100).
Treatment with proteinase K (200 μg / ml) for minutes.
After centrifugation of the mixture at 10,000 xg for 20 minutes, samples of the precipitate and supernatant were analyzed by fluorography after SDS / PAGE.

【0014】pC980を用いたin vitroプロセシング
アッセイの結果を図4に示す。in vitroでの翻訳中にミ
クロソーム膜が存在しているときだけ、pC980の翻
訳産物(C980)はプロセシングされ、a(最大70 k
Da),b(35 kDa),c(22kDa),d(19 kDa)の4
つの主要分解産物を生じた(図4、レーン5)。ミクロ
ソーム非存在下で合成されたプロセシングされない型
は、ゲルの泳動開始点に留まりうる型として以外には検
出されなった(図4、レーン3)。これらの4つの主要
産物a,b,c,dは沈澱したミクロソーム膜分画にす
べて見られた。産物a,bはプロテイナーゼK処理に耐
性であったが、産物c,dは当該酵素で分解された(図
4、レーン7)。プロテイナーゼ処理に対する耐性は界
面活性剤処理により失われ(図4、レーン9)、これは
産物aおよびbはミクロソーム内に移動することを示唆
している。
The results of the in vitro processing assay using pC980 are shown in FIG. The translation product of pC980 (C980) is processed and a (up to 70 k) only when the microsomal membrane is present during translation in vitro.
Da), b (35 kDa), c (22 kDa), d (19 kDa) 4
Two major degradation products were produced (Fig. 4, lane 5). The unprocessed form synthesized in the absence of microsomes was not detected except as a form that could remain at the migration start of the gel (Fig. 4, lane 3). These four major products a, b, c, d were all found in the precipitated microsomal membrane fraction. Products a and b were resistant to proteinase K treatment, while products c and d were degraded by the enzyme (Fig. 4, lane 7). Resistance to proteinase treatment was lost by detergent treatment (Fig. 4, lane 9), suggesting that products a and b migrate into microsomes.

【0015】(4)プロセシングされた産物のHCVゲ
ノム上における遺伝子マッピング HCV ORFにコードされた4つのプロセシングされ
た産物の配列順序を決定するため、上記(2)で得られ
たC980の種々の欠失変異体を用い、(3)と同様に
して前駆体タンパクのin vitroプロセシングを行った。
すなわち、C980の種々の欠失変異体の各転写物をミ
クロソーム膜存在下または非存在下にinvitroで翻訳
し、反応生成物のプロテイナーゼKに対する感受性を調
べた(図5)。in vitroの翻訳産物であるC740,C
511,C381,C281,C163はC980の一
連のC末端欠失を有し、それぞれ740,511,38
1,281,163残基のN末端配列を含んでいた。p
N124およびpN340の翻訳産物であるN124お
よびN340は、C980の123および339残基の
N末端配列がアミノ酸配列Met-Pro と置換されている。
pN124−ORFはpC980の59C末端残基に対
する塩基配列を欠いている。また、N340BとN34
0Nは、それぞれN340の252,438残基のC末
端配列を欠いていた。
(4) Gene Mapping of Processed Products on the HCV Genome To determine the sequence order of the four processed products encoded by the HCV ORF, various deletions of C980 obtained in (2) above were determined. Using the demutated mutant, the precursor protein was processed in vitro in the same manner as in (3).
That is, each transcript of various deletion mutants of C980 was translated in vitro in the presence or absence of microsome membrane, and the sensitivity of the reaction product to proteinase K was examined (FIG. 5). In vitro translation products C740, C
511, C381, C281, C163 have a series of C-terminal deletions of C980, 740, 511, 38, respectively.
It contained an N-terminal sequence of 1,281,163 residues. p
N124 and N340, which are translation products of N124 and pN340, have the N-terminal sequences of residues 123 and 339 of C980 substituted with the amino acid sequence Met-Pro.
pN124-ORF lacks the base sequence for the 59C-terminal residue of pC980. Also, N340B and N34
0N lacked the C-terminal sequence of residues 252 and 438 of N340, respectively.

【0016】プロテイナーゼ耐性産物a(70 kDa) は、
C740,N124,N340,N340Bのプロセシ
ングされた型においてのみ検出されたので(図5、レー
ン3,18,21,24)、この蛋白質はHCV ORFのN
末端残基おおよそ340から740に位置し、その領域
は当該蛋白のシグナル配列になりうる配列を含む。ま
た、別のプロテイナーゼ耐性産物b(35 kDa) は、C2
81,C163,N340,N340B,N340Nの
プロセシングされた型の中で検出されず(図5、レーン
12, 15,21, 24, 27)、それより小さいプロテイナーゼ
耐性産物(30 kDa) がC281のプロセシングされた型
の中で検出されたことにより、この蛋白質は、HCV
ORFのN末端残基おおよそ163から381に位置す
ることを示す。産物c(22 kDa) に対するバンドはN−
末端欠失変異株であるN124,N340,N340
B,N340Nのプロセシングされた型には失われてい
たので(図5、レーン17,20,23,26) 、この蛋白質は
HCV ORFのN末端由来である。産物d(19 kDa)
は、C980およびC980と同じC末端配列を有する
N340のプロセシングされた型においてのみ検出され
たことは(図5、レーン20) 、この蛋白質がC980−
ORFのC末端領域にコードされていることを示唆す
る。これらの結果からHCV ORFにおけるプロセシ
ングされた蛋白質の配列順序は、NH2-c(22 kDa)-b
(35 kDa)-a(70 kDa)-d(19 kDa)-COOHであると結論
づけられる。
The proteinase resistance product a (70 kDa) is
Since this protein was detected only in the processed form of C740, N124, N340, N340B (FIG. 5, lanes 3, 18, 21, 24), this protein was identified in the HCV ORF N
The terminal residues are located at approximately 340 to 740, and the region contains a sequence which can be a signal sequence of the protein. In addition, another proteinase resistance product b (35 kDa) is C2
81, C163, N340, N340B, N340N were not detected in the processed form (FIG. 5, lane
12, 15, 21, 24, 27), a smaller proteinase-resistant product (30 kDa) was detected in the processed form of C281, indicating that this protein is HCV.
It is shown that the N-terminal residues of the ORF are located approximately at 163 to 381. The band for product c (22 kDa) is N-
Terminal deletion mutants N124, N340, N340
This protein is derived from the N-terminus of the HCV ORF, as it was lost in the processed form of B, N340N (FIG. 5, lanes 17, 20, 23, 26). Product d (19 kDa)
Was detected only in C980 and in the processed form of N340, which has the same C-terminal sequence as C980 (FIG. 5, lane 20).
It is suggested that it is encoded in the C-terminal region of the ORF. From these results, the sequence order of the processed proteins in the HCV ORF is NH 2 -c (22 kDa) -b.
It is concluded that it is (35 kDa) -a (70 kDa) -d (19 kDa) -COOH.

【0017】(4)プロテイナーゼ耐性産物のエンドグ
リコシダーゼH処理 C980の欠失変異体のプロテイナーゼ耐性翻訳産物
を、Ruiz-Linaresらの報告に従い[Ruiz-Linares et a
l., J. Virol., 63, 4199-4209 (1990)] 、エンドグリ
コシダーゼH(Boehringer Mannheim)処理を行った。当
該処理により結合されうる、N−結合高マンノース型グ
リカンを除去した後、SDS/PAGEで分析した結果
を図6に示す。図6に示すように、プロテインナーゼ耐
性産物a,bの大きさはエンドグリコシダーゼH処理後
減少し、これは両産物は糖蛋白であることを示唆してい
る。a,bの脱糖化型の分子量はそれぞれ約21 kDaおよ
び38 kDaと推定された(図6、レーン2,4,6,8,
12) 。欠失体の分析から予想されたように、C281と
N340Nの産物は脱糖化によりそれぞれ約10 kDaおよ
び22 kDaに減少した(図6、レーン10, 14) 。産物a,
bをそれぞれgp35,gp70と命名した。
(4) Endoglycosidase H Treatment of Proteinase-Resistant Product A proteinase-resistant translation product of a deletion mutant of C980 was prepared according to the report of Ruiz-Linares et al. [Ruiz-Linares et a
L., J. Virol., 63 , 4199-4209 (1990)], endoglycosidase H (Boehringer Mannheim) treatment. FIG. 6 shows the results of SDS / PAGE analysis after removing N-linked high-mannose glycans that can be bound by the treatment. As shown in FIG. 6, the size of the proteinase resistant products a and b decreased after treatment with endoglycosidase H, suggesting that both products are glycoproteins. The molecular weights of the deglycosylated forms of a and b were estimated to be about 21 kDa and 38 kDa, respectively (FIG. 6, lanes 2, 4, 6, 8,
12). As expected from the deletion analysis, the C281 and N340N products were reduced by deglycosylation to approximately 10 kDa and 22 kDa, respectively (FIG. 6, lanes 10, 14). Product a,
b was designated as gp35 and gp70, respectively.

【0018】(5)gp35およびgp70のN末端ア
ミノ酸配列の決定 HCVポリタンパク前駆体の正確な切断点を決定するた
め、C281とN340Nのプロテイナーゼ耐性in vit
ro翻訳産物を用いて、gp35およびgp70のN末端
アミノ酸配列をそれぞれ調べた。3H- 標識アミノ酸で標
識したプロテイナーゼ耐性翻訳産物をエンドグリコシダ
ーゼHで脱糖化してSDS/PAGEで泳動後、Immobi
lon 膜(Millipore) 上にエレクトロブロットした。膜上
の放射能ラベルされた産物を取り出し、手動エドマン分
解にかけた。分解の各サイクルにおける放射活性アミノ
酸放出をプロットした(図7)。エドマン分解サイクル
における3H- 標識アミノ酸のピークから決定したアミノ
酸配列をC980−ORFから解読されたアミノ酸配列
と比較した。C281とN340N由来のin vitroでプ
ロセシングされた産物の配列決定により、gp35およ
びgp70のN末端残基は、C980−ORFから解読
された配列のTyr-192 とHis-384 であるとそれぞれ同定
された。
(5) Determination of N-terminal amino acid sequences of gp35 and gp70 In order to determine the exact cleavage point of the HCV polyprotein precursor, proteinase resistance of C281 and N340N in vitro.
The ro translation product was used to examine the N-terminal amino acid sequences of gp35 and gp70, respectively. The proteinase-resistant translation product labeled with 3 H-labeled amino acid was deglycosylated with endoglycosidase H and electrophoresed on SDS / PAGE.
Electroblotted onto lon membrane (Millipore). The radiolabeled product on the membrane was removed and subjected to manual Edman degradation. The radioactive amino acid release at each cycle of degradation was plotted (Figure 7). The amino acid sequence determined from the 3 H-labeled amino acid peak in the Edman degradation cycle was compared to the amino acid sequence decoded from the C980-ORF. Sequencing of the in vitro processed products from C281 and N340N identified the N-terminal residues of gp35 and gp70 as Tyr-192 and His-384 of the sequence decoded from the C980-ORF, respectively. .

【0019】HCV 980−ORFから解読されるア
ミノ酸配列、およびHCV ORFにおけるプロセシン
グされた蛋白質に相当する領域を図8に示す。gp35
およびgp70のN末端のすぐ上流の、HCV ORF
の解読配列における残基175−191位および370
−383位にシグナル配列に相当する配列が認められた
(図8,二重線)。また、gp35およびgp70のC
末端領域に膜貫通部分として作用する2つの部分が認め
られ(図8,下線)、これはgp35,gp70両産物
はI型膜結合蛋白質であることが示唆される。
The amino acid sequence decoded from HCV 980-ORF and the region corresponding to the processed protein in HCV ORF are shown in FIG. gp35
And the HCV ORF just upstream of the N-terminus of gp70
Residues 175-191 and 370 in the coding sequence of
A sequence corresponding to the signal sequence was found at position -383 (Fig. 8, double line). In addition, C of gp35 and gp70
Two parts were observed in the terminal region that act as transmembrane parts (Fig. 8, underlined), suggesting that both products gp35 and gp70 are type I membrane-bound proteins.

【図面の簡単な説明】[Brief description of drawings]

【図1】pC980の構築図を示す。FIG. 1 shows a construction diagram of pC980.

【図2】pC980の構築図(続き)を示す。FIG. 2 shows a construction diagram (continuation) of pC980.

【図3】発現プラスミドの構築方策の一覧図とin v
itroプロセシング分析に用いた欠失構築物の地図を
示す。
FIG. 3: List of construction strategies for expression plasmids and in v
A map of the deletion construct used for in vitro processing analysis is shown.

【図4】pC980のin vitro転写翻訳物のS
DS/PAGEによるプロセシングアッセイ結果を示
す。 レーン1;RNAを加えずにミクロソーム膜非存在下翻
訳した産物(コントロール) レーン2;RNAを加えずにミクロソーム膜存在下翻訳
した産物(コントロール) レーン3;pC980のin vitro転写物をミク
ロソーム膜非存在下翻訳した産物 レーン4;pC980のin vitro転写物をミク
ロソーム膜存在下翻訳した産物の上清画分 レーン5;pC980のin vitro転写物をミク
ロソーム膜存在下翻訳した産物の沈澱画分 レーン6;pC980のin vitro転写物をミク
ロソーム膜存在下翻訳した後、界面活性剤非存在下、プ
ロテイナーゼK処理した産物の上清画分 レーン7;pC980のin vitro転写物をミク
ロソーム膜存在下翻訳した後、界面活性剤非存在下、プ
ロテイナーゼK処理した産物の沈澱画分 レーン8;pC980のin vitro転写物をミク
ロソーム膜存在下翻訳した後、界面活性剤存在下、プロ
テイナーゼK処理した産物の上清画分 レーン9;pC980のin vitro転写物をミク
ロソーム膜存在下翻訳した後、界面活性剤存在下、プロ
テイナーゼK処理した産物の沈澱画分
FIG. 4 S of the in vitro transcribed translation of pC980
The processing assay result by DS / PAGE is shown. Lane 1; product translated in the absence of microsome membrane without RNA (control) Lane 2; product translated in the presence of microsome membrane without RNA (control) Lane 3; in vitro transcript of pC980 Product translated in the presence lane 4; supernatant fraction of product translated from in vitro transcript of pC980 in the presence of microsome membrane lane 5; precipitation fraction of product translated from in vitro transcript of pC980 in the presence of microsome membrane lane 6 After translation of an in vitro transcript of pC980 in the presence of a microsomal membrane, and then supernatant fraction of a proteinase K-treated product in the absence of a surfactant, lane 7; after translation of an in vitro transcript of pC980 in the presence of a microsomal membrane. , A product treated with proteinase K in the absence of detergent Precipitated fraction Lane 8: pC980 in vitro transcript was translated in the presence of a microsomal membrane, and was then treated with proteinase K in the presence of a surfactant. Supernatant fraction of Lane 9; pC980 in vitro transcript was present in a microsomal membrane. After the translation, the precipitate fraction of the proteinase K-treated product in the presence of a surfactant

【図5】C980の種々の欠失変異体のSDS/PAG
Eによるin vitroプロセシングアッセイ結果を
示す。 レーン1, 4, 7, 10, 13, 16, 19, 22, 25 : ミクロソー
ム膜非存在下翻訳 レーン2, 5, 8, 11, 14, 17, 20, 23, 26 : ミクロソー
ム膜存在下翻訳 レーン3, 6, 9, 12, 15, 18, 21, 24, 27 : ミクロソー
ム膜存在下翻訳後、プロテイナーゼK処理
FIG. 5: SDS / PAG of various deletion mutants of C980
The in-vitro processing assay result by E is shown. Lanes 1, 4, 7, 10, 13, 16, 19, 22, 25: Translation in the absence of microsome membrane Lanes 2, 5, 8, 11, 14, 17, 20, 23, 26: Translation in the presence of microsome membrane 3, 6, 9, 12, 15, 18, 21, 24, 27: Proteinase K treatment after translation in the presence of microsome membrane

【図6】C980の欠失変異体のプロテインナーゼ耐性
翻訳産物産物(−,レーン1, 3, 5, 7, 9, 11, 13)、エ
ンドグリコシダーゼH(eH)処理後(+,レーン2,
4, 6, 8, 10, 12, 14) のSDS/PAGEによる分析
結果を示す。
FIG. 6: Proteinase-resistant translation product products of deletion mutants of C980 (-, lanes 1, 3, 5, 7, 9, 11, 13), after treatment with endoglycosidase H (eH) (+, lane 2,
4, 6, 8, 10, 12, 14) shows the analysis results by SDS / PAGE.

【図7】C281とN340N由来のin vitroでプロセ
シングされた産物のエドマン分解の各サイクルにおける
放射活性アミノ酸放出のプロットを示す。
FIG. 7 shows a plot of radioactive amino acid release during each cycle of Edman degradation of in vitro processed products from C281 and N340N.

【図8】C980−ORFから解読されるアミノ酸配
列、およびHCV ORFにおけるプロセシングされた
蛋白質を示す。
FIG. 8 shows the amino acid sequence decoded from the C980-ORF and the processed protein in the HCV ORF.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C型肝炎ウィルスゲノムの転写解読枠の
N末端192番目から383番目までのアミノ酸配列を
有する、分子量が約35000のC型肝炎ウィルスのエ
ンベロープ蛋白質。
1. An envelope protein of hepatitis C virus having a molecular weight of about 35,000, which has an amino acid sequence from the N-terminal 192nd position to the 383rd position of the open reading frame of hepatitis C virus genome.
【請求項2】 C型肝炎ウィルスゲノムの転写解読枠の
N末端384番からから始まり、約350個のアミノ酸
配列を有する、分子量が約70000のC型肝炎ウィル
スのエンベロープ蛋白質。
2. A hepatitis C virus envelope protein having a molecular weight of about 70,000, which starts from the N-terminal 384 of the open reading frame of the hepatitis C virus genome and has an about 350 amino acid sequence.
【請求項3】 C型肝炎ウィルスゲノムの転写解読枠の
N末端1番目から191番目までのアミノ酸配列を有す
る、分子量が約22000のC型肝炎ウィルスのコア蛋
白質。
3. A hepatitis C virus core protein having a molecular weight of about 22000, which has an amino acid sequence from the N-terminal 1st to 191st of the open reading frame of hepatitis C virus genome.
JP35963691A 1991-12-28 1991-12-28 Protein constituting hepatitis c virus particle and its manifestation Pending JPH0692996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35963691A JPH0692996A (en) 1991-12-28 1991-12-28 Protein constituting hepatitis c virus particle and its manifestation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35963691A JPH0692996A (en) 1991-12-28 1991-12-28 Protein constituting hepatitis c virus particle and its manifestation

Publications (1)

Publication Number Publication Date
JPH0692996A true JPH0692996A (en) 1994-04-05

Family

ID=18465517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35963691A Pending JPH0692996A (en) 1991-12-28 1991-12-28 Protein constituting hepatitis c virus particle and its manifestation

Country Status (1)

Country Link
JP (1) JPH0692996A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010997A1 (en) * 1994-10-05 1996-04-18 Apollon, Inc. Hepatitis virus vaccines
US6025341A (en) * 1995-06-06 2000-02-15 The General Hospital Corporation Chimeric hepatitis B/hepatitis C virus vaccine
US6235888B1 (en) * 1994-10-05 2001-05-22 The General Hospital Corporation Hepatitis C virus vaccine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010997A1 (en) * 1994-10-05 1996-04-18 Apollon, Inc. Hepatitis virus vaccines
US6235888B1 (en) * 1994-10-05 2001-05-22 The General Hospital Corporation Hepatitis C virus vaccine
US6831169B2 (en) 1994-10-05 2004-12-14 The General Hospital Corporation Hepatitis C virus vaccine
US6025341A (en) * 1995-06-06 2000-02-15 The General Hospital Corporation Chimeric hepatitis B/hepatitis C virus vaccine

Similar Documents

Publication Publication Date Title
US6224879B1 (en) Alphavirus expression vector
Casais et al. Reverse genetics system for the avian coronavirus infectious bronchitis virus
de Haan et al. Assembly of the coronavirus envelope: homotypic interactions between the M proteins
Harada et al. E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies
Hüssy et al. Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase
Pelletier et al. Internal binding of eucaryotic ribosomes on poliovirus RNA: translation in HeLa cell extracts
Wirth et al. How a single Sindbis virus mRNA directs the synthesis of one soluble protein and two integral membrane glycoproteins
JP4018479B2 (en) DNA expression system
Ruiz-Linares et al. Processing of yellow fever virus polyprotein: role of cellular proteases in maturation of the structural proteins
Faaberg et al. The envelope proteins of lactate dehydrogenase-elevating virus and their membrane topography
Stark et al. Genomic localization of hog cholera virus glycoproteins
Ulmanen et al. In vitro translation of Uukuniemi virus-specific RNAs: identification of a nonstructural protein and a precursor to the membrane glycoproteins
Suomalainen et al. The E2 signal sequence of rubella virus remains part of the capsid protein and confers membrane association in vitro
US7854937B2 (en) Flavivirus fusion inhibitors
Acosta-Rivero et al. Characterization of the HCV core virus-like particles produced in the methylotrophic yeast Pichia pastoris
Andersson et al. Oligomerization-dependent folding of the membrane fusion protein of Semliki Forest virus
Faaberg et al. ORF 3 of lactate dehydrogenase-elevating virus encodes a soluble, nonstructural, highly glycosylated, and antigenic protein
Baron et al. Intracellular transport of rubella virus structural proteins expressed from cloned cDNA
CN116284272B (en) Broad-spectrum mRNA vaccine for resisting bovine viral diarrhea virus and application thereof
JPH0692996A (en) Protein constituting hepatitis c virus particle and its manifestation
US20110287406A1 (en) Novel HCV core+1 protein, methods for diagnosis of HCV infections, prophylaxis, and for screening of anti-HCV agents
JP2008521384A (en) An expression vector encoding a coronavirus-like particle
US6958237B2 (en) Highly infectious rubella virus DNA constructs and methods of production
Rottier Background Paper Coronavirus M and HE: Two Peculiar Glycoproteins
KR0138597B1 (en) Stabilized recombinant animal cell line expressing envelope 2 protein of hcv