JPH0692725A - Laser crystal and its production - Google Patents

Laser crystal and its production

Info

Publication number
JPH0692725A
JPH0692725A JP4266802A JP26680292A JPH0692725A JP H0692725 A JPH0692725 A JP H0692725A JP 4266802 A JP4266802 A JP 4266802A JP 26680292 A JP26680292 A JP 26680292A JP H0692725 A JPH0692725 A JP H0692725A
Authority
JP
Japan
Prior art keywords
oxide
crystal
gas
ion
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4266802A
Other languages
Japanese (ja)
Other versions
JP3334182B2 (en
Inventor
Nobuhiro Kodama
展宏 小玉
Yuka Naitou
由香 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP26680292A priority Critical patent/JP3334182B2/en
Publication of JPH0692725A publication Critical patent/JPH0692725A/en
Application granted granted Critical
Publication of JP3334182B2 publication Critical patent/JP3334182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a CaYTiAl perovskite type laser crystal emitting intense light in a specified wide wavelength region of visible light by growing a crystal from a melt contg. CaCO3, Y2O3, Al2O3 and Ti2O3 in a prescribed ratio in a reducing atmosphere. CONSTITUTION:Carbonate (CaCO3) or oxide (CaO) of a Ca ion is mixed with oxide (Y O) of a Y ion oxide (Al2O3) of an Al ion and oxide (Ti2O3) of Ti<3+> or oxide (TiO2) of Ti<4+> in 1:1:(1-X):X atomic ratio (0.001<=X<=0.05) of Ca:Y:Al: Ti. The mixture is melted in a reducing atmosphere under 10<-8> to 10<-18> atm partial pressure of oxygen and a crystal is grown from the resulting melt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光材料として有用で
また、光計測、光情報処理、光医療、光プロセッシング
等コヒーレント光を利用する分野において、レーザー結
晶、光増幅素子として有用なペロブスカイト型レーザー
結晶及びその製造法に関する。
BACKGROUND OF THE INVENTION The present invention is useful as a light emitting material, and is also useful as a laser crystal or an optical amplifying device in the field of utilizing coherent light such as optical measurement, optical information processing, optical medical treatment, optical processing. The present invention relates to a laser crystal and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、チタンを添加した結晶で発光特性
あるいはレーザー特性を有するものとしては、Ti:A
(P.F.Moulton,J.Opt.So
c.Am.B3,125(1986))、Ti:YAl
(T.Wegner etal,Appl.Phy
s.B49,275(1989))、Ti:MgAl
(W.Strek et al,J.Appl.P
hys.68,15(1990))などが知られてい
る。
2. Description of the Related Art Conventionally, Ti: A has been used as a crystal having a light emitting property or a laser property added with titanium.
l 2 O 3 (PF Molton, J. Opt. So
c. Am. B3,125 (1986)), Ti: YAl
O 3 (T. Wegner et al, Appl. Phy
s. B49,275 (1989)), Ti: MgAl 2
O 4 (W. Strek et al, J. Appl. P
hys. 68, 15 (1990)) and the like are known.

【0003】しかし、上記の結晶のうち、Ti:Al
及びTi:MgAlは強い発光波長領域が近
赤外域の700〜1100nmであり、またTi:YA
lOでは550〜850nmの可視〜近赤外域であ
り、400〜600nmの青〜緑〜黄の可視域で強い発
光は見られない。またCaYAlOをホスト結晶に用
い、400〜600nmにわたる幅広い可視波長域で強
く発光する結晶はこれまで知られていない。
However, among the above crystals, Ti: Al 2
O 3 and Ti: MgAl 2 O 4 have strong emission wavelength regions in the near infrared region of 700 to 1100 nm, and Ti: YA
lO is a 3 visible to near infrared region of 550~850nm in, not strong emission is observed in the visible region of the blue-green-yellow of 400~600nm. Further, a crystal that uses CaYAlO 4 as a host crystal and strongly emits light in a wide visible wavelength range from 400 to 600 nm has not been known so far.

【0004】[0004]

【発明が解決しようとする課題】本発明は、特に、40
0〜600nmの青〜緑〜黄色の幅広い可視波長域で強
く発光する発光材料であり、又レーザー特性を有する材
料で従来知られていない組成のレーザー材料として有用
なチタンを添加したペロブスカイト型結晶を提供するこ
とを目的とするものである。
The present invention is particularly applicable to 40
A perovskite-type crystal containing titanium, which is a light-emitting material that strongly emits light in a wide visible wavelength range of 0 to 600 nm, which is blue to green to yellow, and which is useful as a laser material having a composition that has not been known as a material having laser characteristics. It is intended to be provided.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
の解決のため、レーザー活性イオンとしてチタンを選択
し強い結晶場を持つホスト結晶を選択することに着目
し、種々の検討を行った結果本発明を完成した。
In order to solve the above-mentioned problems, the present inventors have made various investigations, focusing on selecting titanium as a laser active ion and selecting a host crystal having a strong crystal field. As a result, the present invention has been completed.

【0006】即ち、本発明は、レーザー活性イオンとし
て、Ti3+イオン又はTi4+イオンを添加したCa
YTiAl系のペロブスカイト型結晶及びその製造法に
関するものである。
That is, according to the present invention, Ca added with Ti 3+ ions or Ti 4+ ions as laser active ions.
The present invention relates to a YTiAl-based perovskite type crystal and a method for producing the same.

【0007】次ぎに本発明を更に詳細に説明する。本発
明の好ましい態様としては、レーザー活性イオンとして
用いるTi3+又はTi4+の量が次の条件を満足する
ことである。即ち、Ti3+については、組成式CaY
TiAl1−x(x:0.001≦x≦0.0
5)で表され、Ti4+については、組成式CaYTi
3xAl1−4x(x:0.001≦x≦0.
05、V:Al欠陥)で表される組成であることであ
る。上記した組成のxで示すように0.001≦x≦
0.05であるが、この量が0.001より小であると
結晶の発光強度が弱く、0.05より大であると濃度消
光を起こすので好ましくない。
Next, the present invention will be described in more detail. In a preferred embodiment of the present invention, the amount of Ti 3+ or Ti 4+ used as the laser active ions satisfies the following conditions. That is, for Ti 3+ , the composition formula CaY
Ti x Al 1-x O 4 (x: 0.001 ≦ x ≦ 0.0
5), and for Ti 4+ , the composition formula CaYTi
3x Al 1-4x V x O 4 ( x: 0.001 ≦ x ≦ 0.
05, V: Al defects). As indicated by x in the above composition, 0.001 ≦ x ≦
If the amount is less than 0.001, the light emission intensity of the crystal is weak, and if it is more than 0.05, concentration quenching occurs, which is not preferable.

【0008】次ぎに本発明の製造法について説明する。
本発明の結晶を得るのに用いる原料は、結晶を構成する
各々の成分の酸化物又は炭酸塩を用いる。例えば、Ti
3+を含む組成式CaYTiAl系の結晶においては、
Caイオンの炭酸塩又は酸化物、Yイオンの酸化物、A
lイオンの酸化物、Tiイオンの酸化物を用い、これら
を、生成結晶が前記した組成式で表されるような量比と
なるように、即ち、育成結晶の原子比でCa:Y:A
l:Ti=1:1:1−x:x(0.001≦x≦0.
05)の量比になるように混合し、この混合物を酸素分
圧で10−8〜10−18atmになる雰囲気下で溶融
固化し結晶を育成する。
Next, the manufacturing method of the present invention will be described.
As a raw material used for obtaining the crystal of the present invention, an oxide or carbonate of each component constituting the crystal is used. For example, Ti
In the composition formula CaYTiAl system crystal containing 3+ ,
Ca ion carbonate or oxide, Y ion oxide, A
An oxide of 1 ion and an oxide of Ti ion are used so that the produced crystal has a quantitative ratio as represented by the above composition formula, that is, Ca: Y: A in the atomic ratio of the grown crystal.
1: Ti = 1: 1: 1−x: x (0.001 ≦ x ≦ 0.
The mixture is mixed in an amount ratio of 05), and the mixture is melted and solidified in an atmosphere having an oxygen partial pressure of 10 −8 to 10 −18 atm to grow crystals.

【0009】ここで用いる溶融固化の雰囲気は、例えば
水素ガス単独、水素と二酸化炭素又は一酸化炭素との混
合ガス、一酸化炭素と二酸化炭素との混合ガス、更にこ
れらのガスを不活性ガス例えばヘリウム、アルゴン、窒
素の一種以上と混合したガス、又はヘリウム、アルゴ
ン、窒素の一種以上のガスを用いた雰囲気であり、かつ
酸素分圧で10−8〜10−18atmに保った雰囲気
下で溶融固化し結晶を育成する。
The atmosphere for melting and solidification used here is, for example, hydrogen gas alone, a mixed gas of hydrogen and carbon dioxide or carbon monoxide, a mixed gas of carbon monoxide and carbon dioxide, and further these gases such as an inert gas. In an atmosphere in which a gas mixed with one or more of helium, argon, and nitrogen, or one or more gas of helium, argon, and nitrogen is used, and the oxygen partial pressure is kept at 10 −8 to 10 −18 atm Melt and solidify to grow crystals.

【0010】ここで酸素分圧は上記範囲内である事が好
ましく、酸素分圧が10−18atmより小さいとTi
3+濃度が減少してTi2+が含まれることになり、得
られた結晶の発光強度が低下したり、又カラーセンター
の濃度が増大し発光を阻害する。酸素分圧が10−8
tmより大きいとTi4+が含まれるようになりTi
3+濃度が減少し、Ti3+そのものの発光強度が低下
する原因となる。又、結晶欠陥も増え結晶の光学的品質
を低下させる。
Here, the oxygen partial pressure is preferably within the above range, and when the oxygen partial pressure is less than 10 −18 atm, Ti
The 3+ concentration is reduced to include Ti 2+ , and the emission intensity of the obtained crystal is lowered, or the concentration of the color center is increased to inhibit emission. Oxygen partial pressure is 10 −8 a
When it is larger than tm, Ti 4+ is included and Ti
The 3+ concentration decreases, which causes the emission intensity of Ti 3+ itself to decrease. In addition, crystal defects increase and the optical quality of the crystal deteriorates.

【0011】又、Ti4+を含む組成式CaYTiAl
結晶においては、Caイオンの炭酸塩又は酸化物、Yイ
オンの酸化物、Alイオンの酸化物、Tiイオンの酸化
物を用い、これらを、生成結晶が前記した組成式で表さ
れるような量比となるように、即ち、育成結晶の原子比
でCa:Y:Ti:Al=1:1:1−4x:3xの量
比になるように混合し、混合物をヘリウム、アルゴン、
窒素の一種以上の不活性ガス雰囲気下、又は酸素0.1
vol%以上含んだヘリウム、アルゴン、窒素ガスの一
種以上を用いた酸化性雰囲気下で溶融固化する。Ti
4+を含む結晶の生成の場合、還元性雰囲気下で育成を
行うと、得られる結晶にTi3+又はTi2+が含まれ
ることになり、Ti4+の濃度が減少する原因となる。
酸素を0.1vol%以上含んだ雰囲気では、結晶のカ
ラーセンターの発生が少なく、高品質の結晶が得られ
る。
The composition formula CaYTiAl containing Ti 4+ is also provided.
In the crystal, a carbonate or oxide of Ca ion, an oxide of Y ion, an oxide of Al ion, or an oxide of Ti ion is used, and these are used in an amount such that the produced crystal is represented by the above-mentioned composition formula. Ratio, that is, the atomic ratio of the grown crystal is Ca: Y: Ti: Al = 1: 1: 1-4x: 3x, and the mixture is mixed with helium, argon,
Under an atmosphere of one or more inert gases of nitrogen, or oxygen 0.1
Melt and solidify in an oxidizing atmosphere using one or more of helium, argon, and nitrogen gas containing at least vol%. Ti
In the case of producing a crystal containing 4+ , if the crystal is grown in a reducing atmosphere, the obtained crystal contains Ti 3+ or Ti 2+, which causes a decrease in the concentration of Ti 4+ .
In an atmosphere containing 0.1 vol% or more of oxygen, generation of color centers of crystals is small and high quality crystals can be obtained.

【0012】本発明の結晶製造法での溶融温度は約18
00〜1900℃、好ましくは1820〜1860℃
で、引上げ法、フローティングゾーン法、ブリッジマン
法、熱交換法等の方法で溶融固化して結晶を得る。
The melting temperature in the crystal production method of the present invention is about 18
00 to 1900 ° C, preferably 1820 to 1860 ° C
Then, a crystal is obtained by melting and solidifying by a pulling method, a floating zone method, a Bridgman method, a heat exchange method or the like.

【0013】[0013]

【実施例】次ぎに本発明を実施例により更に詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples.

【0014】実施例1 CaCO、Y、Al、Tiを、育
成結晶の原子比(Ca:Y:Al:Ti=1:1:0.
98:0.02)となるように調整、混合、成形、焼結
し、焼結体をイリジウムルツボに入れて高周波誘導加熱
によって、Ti3+イオンが含まれるように0.5vo
l%の水素を含むヘリウムガス雰囲気下で溶融し、結晶
回転速度5rpm、引上げ速度0.8mm/hでa軸方
位で引上げ、直径20mm、長さ50mmの単結晶を得
た。
Example 1 CaCO 3 , Y 2 O 3 , Al 2 O 3 and Ti 2 O 3 were added to the atomic ratio (Ca: Y: Al: Ti = 1: 1: 0.
98: 0.02), mixed, shaped, and sintered, put the sintered body in an iridium crucible, and perform high-frequency induction heating to 0.5 vo to contain Ti 3+ ions.
It was melted in a helium gas atmosphere containing 1% of hydrogen and pulled in the a-axis direction at a crystal rotation speed of 5 rpm and a pulling speed of 0.8 mm / h to obtain a single crystal having a diameter of 20 mm and a length of 50 mm.

【0015】得られた結晶のX線回折の結果を図1に示
す。X線回折の結果から、得られた結晶はペロブスカイ
ト型単結晶相で格子定数はa=6429A、c=11.
856Aであった。この結晶の390nmの光で励起し
たときの発光スペクトルを図2に示す。510nmにピ
ークを持ち、420〜620nmの可視波長領域で発光
がみられた。又、発光はc面内に強く偏光していた。パ
ルスレーザー発振はCr:BeAlレーザーの第
2高調波(390nm)をポンピング光源として用い5
15nm付近で得られた。
The result of X-ray diffraction of the obtained crystal is shown in FIG. From the results of X-ray diffraction, the obtained crystal was a perovskite type single crystal phase and had a lattice constant of a = 6429A and c = 11.
It was 856A. The emission spectrum of this crystal when excited with light of 390 nm is shown in FIG. It had a peak at 510 nm and emitted light in the visible wavelength region of 420 to 620 nm. The emitted light was strongly polarized in the c-plane. The pulsed laser oscillation uses the second harmonic wave (390 nm) of the Cr: BeAl 2 O 4 laser as the pumping light source.
It was obtained around 15 nm.

【0016】実施例2 CaCO、Y、Al、TiOを育成結
晶の原子比(Ca:Y:Al:Ti=1:1:0.9
9:0.01)となるように調整し、この混合物の焼結
体をイリジウムルツボに入れて加熱融解した。育成雰囲
気は、水素と二酸化炭素ガスを体積比で500:1に調
製したガスをヘリウムガスに混合し、酸素分圧10−8
atmとした。引き上げ速度、回転速度、引き上げ方位
は実施例1と同様に行った。育成結晶はX線回折の結
果、単相である事を確認した。
Example 2 CaCO 3 , Y 2 O 3 , Al 2 O 3 and TiO 2 were grown at an atomic ratio of crystals (Ca: Y: Al: Ti = 1: 1: 0.9).
9: 0.01), and the sintered body of this mixture was put into an iridium crucible and heated and melted. The growth atmosphere is a mixture of helium gas and hydrogen prepared by mixing hydrogen and carbon dioxide gas at a volume ratio of 500: 1, and an oxygen partial pressure of 10 −8.
Atm. The pulling speed, the rotation speed, and the pulling direction were the same as in Example 1. As a result of X-ray diffraction, it was confirmed that the grown crystal had a single phase.

【0017】この結晶の発光スペクトルは391nmの
励起光で励起したところ実施例1で得た結晶と同様に5
07nmでピークを持つc面内で強く偏光した420〜
620nmでの発光を確認した。
When the emission spectrum of this crystal was excited with excitation light of 391 nm, it was found to be 5 as with the crystal obtained in Example 1.
Strongly polarized in the c-plane with a peak at 07 nm 420 ~
Emission at 620 nm was confirmed.

【0018】実施例3 CaCO、Y、Al、Tiを育成
結晶の原子比(Ca:Y:Al:Ti=1:1:0.9
6:0.04)になるように調整し、混合した混合物の
焼結体を原料とし、1vol%の水素を含むアルゴンガ
ス雰囲気下、成長速度2mm/hでフローティングゾー
ン法により結晶を育成した。得られた結晶はX線回折の
結果、単相であることを確認した。また発光スペクトル
を測定した結果、実施例1と同様に420〜620nm
で発光がみられた。
Example 3 CaCO 3 , Y 2 O 3 , Al 2 O 3 and Ti 2 O 3 were grown at an atomic ratio of crystals (Ca: Y: Al: Ti = 1: 1: 0.9).
The crystal was grown by a floating zone method at a growth rate of 2 mm / h in an argon gas atmosphere containing 1 vol% hydrogen, using a sintered body of the mixed material as a raw material. As a result of X-ray diffraction, the obtained crystal was confirmed to be a single phase. In addition, as a result of measuring the emission spectrum, the result was 420 to 620 nm as in Example 1.
The luminescence was seen at.

【0019】実施例4 CaCO、Y、Al、TiOを育成結
晶の原子比(Ca:Y:Al:Ti=1:1:0.9
6:0.03)になるように調製、混合、成形、焼結
し、焼結体をイリジウムルツボに入れて高周波誘導加熱
によって、Ti4+イオンが含まれるように0.1vo
l%の酸素を含むヘリウムガス雰囲気下で溶融し、結晶
回転速度10rpm、引き上げ速度0.8mm/hでa
軸方位で引き上げ、直径20mm、長さ38mmの単結
晶を育成した。得られた結晶はX線回折の結果から単相
であることを確認した。この結晶を、280nmの光で
励起したときの発光スペクトルを図3に示す。450n
m付近にピークを持ち400〜630nmの領域で発光
がみられた。また、実施例1、2、3と異なり、無偏光
であることを観測した。レーザー発振はXeClレーザ
ーをポンピング光源として用い、455nm付近で得ら
れた。
Example 4 CaCO 3 , Y 2 O 3 , Al 2 O 3 , and TiO 2 were grown at an atomic ratio (Ca: Y: Al: Ti = 1: 1: 0.9) of the grown crystal.
6: 0.03), mixed, molded, and sintered, and put the sintered body in an iridium crucible and high-frequency induction heating so as to contain Ti 4+ ions at 0.1 vo.
Melted in a helium gas atmosphere containing 1% oxygen, a crystal rotation speed was 10 rpm, and a pulling speed was 0.8 mm / h.
The single crystal having a diameter of 20 mm and a length of 38 mm was grown by pulling in the axial direction. It was confirmed from the result of X-ray diffraction that the obtained crystal was a single phase. The emission spectrum of this crystal when excited with light of 280 nm is shown in FIG. 450n
It had a peak near m and emitted light in the region of 400 to 630 nm. Further, it was observed that, unlike Examples 1, 2, and 3, it was non-polarized. The laser oscillation was obtained at around 455 nm using a XeCl laser as a pumping light source.

【0020】実施例5 CaCO、Y、Al、TiOを結晶の
原子比(Ca:Y:Al:Ti=1:1:0.94:
0.045)となるように調整しこの混合物の焼結体を
原料とし、0.2vol%の酸素を含むアルゴンガス雰
囲気下、成長速度1mm/h、a軸方位でフローティン
グゾーン法により、直径5mm、長さ15mmの単結晶
を得た。得られた結晶は実施例4と同様に280nmの
光で励起したところ400〜620nmの幅広い発光が
見られた。
EXAMPLE 5 CaCO 3 , Y 2 O 3 , Al 2 O 3 and TiO 2 were added to the crystal atomic ratio (Ca: Y: Al: Ti = 1: 1: 0.94:
0.045) and using a sintered body of this mixture as a raw material, in an argon gas atmosphere containing 0.2 vol% oxygen, a growth rate of 1 mm / h, a-axis orientation, and a diameter of 5 mm by a floating zone method. A single crystal having a length of 15 mm was obtained. When the obtained crystal was excited with light of 280 nm in the same manner as in Example 4, broad emission of 400 to 620 nm was observed.

【0021】[0021]

【発明の効果】本発明の結晶は広い範囲の可視波長域で
強い発光を示し、レーザー特性を持つのでレーザー媒体
としても有用である。
EFFECT OF THE INVENTION The crystal of the present invention exhibits strong emission in a wide visible wavelength range and has laser characteristics, and is therefore useful as a laser medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で得られた結晶のX線回折
図。
FIG. 1 is an X-ray diffraction diagram of the crystal obtained in Example 1 of the present invention.

【図2】本発明の実施例1で得られた結晶の発光スペク
トルを示す図。
FIG. 2 is a diagram showing an emission spectrum of the crystal obtained in Example 1 of the present invention.

【図3】本発明の実施例4で得られた結晶の発光スペク
トルを示す図。
FIG. 3 is a diagram showing an emission spectrum of the crystal obtained in Example 4 of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】レーザー活性イオンとして、Ti3+又は
Ti4+を含むCaYTiAl系ペロブスカイト型レー
ザー結晶。
1. A CaYTiAl-based perovskite laser crystal containing Ti 3+ or Ti 4+ as laser active ions.
【請求項2】レーザー活性イオンとしてTi3+を含
み、組成式CaYTiAl1−x(x:0.00
1≦x≦0.05)で表される請求項1記載のレーザー
結晶。
2. A composition formula CaYTi x Al 1-x O 4 (x: 0.00) containing Ti 3+ as laser active ions.
The laser crystal according to claim 1, represented by 1 ≦ x ≦ 0.05).
【請求項3】レーザー活性イオンとしてTi4+を含
み、組成式CaYTi Al1−4x(x:
0.001≦x≦0.05、V:Al欠陥)で表される
請求項1記載のレーザー結晶。
3. A composition formula CaYTi 3 x Al 1-4x V x O 4 (x: containing Ti 4+ as laser-active ions).
The laser crystal according to claim 1, represented by 0.001 ≦ x ≦ 0.05, V: Al defect).
【請求項4】Caイオンの炭酸塩又は酸化物、Yイオン
の酸化物、Alイオンの酸化物及びTi3+又はTi
4+の酸化物を、結晶がCa:Y:Al:Ti(原子
比)=1:1:1−x:x(x:0.001≦x≦0.
05)の量比になるように混合し、酸素分圧で10−8
〜10−18atmの雰囲気下で溶融固化し結晶を育成
することを特徴とする組成式CaYTiAl1−x
(x:0.001≦x≦0.05)で表されるCaY
TiAl系ペロブスカイト型レーザー結晶の製造法。
4. A carbonate or oxide of Ca ions, an oxide of Y ions, an oxide of Al ions and Ti 3+ or Ti.
4+ oxide has a crystal of Ca: Y: Al: Ti (atomic ratio) = 1: 1: 1-x: x (x: 0.001 ≦ x ≦ 0.
05), and mixed so that the partial ratio of oxygen is 10 −8.
Composition formula CaYTi x Al 1-x O characterized by melting and solidifying under an atmosphere of -10 -18 atm to grow crystals.
CaY represented by 4 (x: 0.001 ≦ x ≦ 0.05)
A method for manufacturing a TiAl-based perovskite laser crystal.
【請求項5】水素ガス単独、水素と、二酸化炭素又は一
酸化炭素との混合ガス、一酸化炭素と二酸化炭素との混
合ガス、又はこれらのガスをヘリウム、アルゴン、窒素
の一種以上と混合したガス、ヘリウム又はアルゴンガス
単独のいずれかを用い、酸素分圧を10−8〜10
−18atmに保った雰囲気で溶融固化する請求項4記
載の製造法。
5. A hydrogen gas alone, a mixed gas of hydrogen and carbon dioxide or carbon monoxide, a mixed gas of carbon monoxide and carbon dioxide, or these gases mixed with one or more of helium, argon and nitrogen. Gas, helium, or argon gas alone is used, and the oxygen partial pressure is 10 −8 to 10
The production method according to claim 4, wherein the solidification is performed in an atmosphere kept at -18 atm.
【請求項6】Caイオンの炭酸塩又は酸化物、Yイオン
の酸化物、Alイオンの酸化物及びTi3+又はTi
4+Tiイオンの酸化物を、結晶がCa:Y:Al:T
i(原子比)=1:1:1−4x:3x(x:0.00
1≦x≦0.05)の量比になるように混合し、不活性
又は酸化性ガス雰囲気下で溶融固化し結晶を育成するこ
とを特徴とする組成式CaYTi3xAl1−4x
(x:0.001≦x≦0.05、V:Al欠陥)
で表されるCaYTiAl系ペロブスカイト型レーザー
結晶の製造法。
6. A carbonate or oxide of Ca ion, an oxide of Y ion, an oxide of Al ion and Ti 3+ or Ti.
An oxide of 4+ Ti ions, the crystal of which is Ca: Y: Al: T
i (atomic ratio) = 1: 1: 1-4x: 3x (x: 0.00
1 ≦ x ≦ 0.05), and mixed and melted and solidified under an inert or oxidizing gas atmosphere to grow crystals. CaYTi 3x Al 1-4x V x
O 4 (x: 0.001 ≦ x ≦ 0.05, V: Al defect)
A method for producing a CaYTiAl-based perovskite-type laser crystal represented by:
【請求項7】不活性ガスとして、ヘリウム、アルゴン、
窒素の一種以上を用いる請求項6記載の製造法。
7. As the inert gas, helium, argon,
The method according to claim 6, wherein one or more kinds of nitrogen are used.
【請求項8】酸化性ガスとして、0.1vol%以上の
酸素を含んだガスを用いる請求項6記載の製造法。
8. The method according to claim 6, wherein a gas containing 0.1 vol% or more oxygen is used as the oxidizing gas.
JP26680292A 1992-09-10 1992-09-10 Laser crystal and manufacturing method thereof Expired - Fee Related JP3334182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26680292A JP3334182B2 (en) 1992-09-10 1992-09-10 Laser crystal and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26680292A JP3334182B2 (en) 1992-09-10 1992-09-10 Laser crystal and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0692725A true JPH0692725A (en) 1994-04-05
JP3334182B2 JP3334182B2 (en) 2002-10-15

Family

ID=17435886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26680292A Expired - Fee Related JP3334182B2 (en) 1992-09-10 1992-09-10 Laser crystal and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3334182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308915B1 (en) * 1998-06-22 2002-07-27 주식회사 서광전자 High Frequency Dielectric Magnetic Composition
WO2004101711A1 (en) * 2003-05-14 2004-11-25 Japan Science And Technology Agency TRANSITION METAL DOPED SPINEL TYPE MgAl2O4 PHOSPHOR, LASER APPARATUS INCLUDING THE SAME AND PROCESS FOR PRODUCING THE PHOSPHOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308915B1 (en) * 1998-06-22 2002-07-27 주식회사 서광전자 High Frequency Dielectric Magnetic Composition
WO2004101711A1 (en) * 2003-05-14 2004-11-25 Japan Science And Technology Agency TRANSITION METAL DOPED SPINEL TYPE MgAl2O4 PHOSPHOR, LASER APPARATUS INCLUDING THE SAME AND PROCESS FOR PRODUCING THE PHOSPHOR

Also Published As

Publication number Publication date
JP3334182B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
US4935934A (en) Mixed lanthanide-magnesium gallates and laser using monocrystals of these gallates
JP3334182B2 (en) Laser crystal and manufacturing method thereof
JP3286680B2 (en) Laser crystal and manufacturing method thereof
EP0274298B1 (en) Mixed aluminates of lanthanium-magnesium, and lasers using single crystals of these aluminates
Ehrentraut et al. Epitaxial growth and spectroscopic investigation of BaSO4: Mn6+ layers
JP7228793B2 (en) Wavelength conversion device
US5493984A (en) Terbium aluminate and method for its production
JPH06350181A (en) Laser crystal and its manufacture
JPH0744304B2 (en) Solid laser host
JP2832267B2 (en) FORSTERITE SINGLE CRYSTAL AND PROCESS FOR PRODUCING THE SAME
KR960000065B1 (en) Process for preparing barium titanate single crystals
JPH101396A (en) Light emitting material and its production
JPH06350180A (en) Laser crystal and its manufacture
JPH06314838A (en) Laser crystal and manufacture thereof
JPH0920599A (en) Terbium-containing luminescent material and its production
JPH0692721A (en) Laser crystal and its production
JPH07149599A (en) Al oxide single crystal containing tb
EP4083276A1 (en) Absorbing material based on samarium-doped garnet for suppression of amplified spontaneous emission of the active medium of solid-state laser, use of this material, method of its production and monolithic element containing this absorbing material
JPH042558B2 (en)
JPH06350182A (en) Perovskite laser crystal and its manufacture
JPH09278591A (en) Crystal for solid laser, production of the same and laser device
JPH0586365A (en) Perovskite-type luminescent crystal and its production
JPH09208947A (en) Up-conversion phosphor and its production
JPH0253371B2 (en)
JPH0586367A (en) Erbium-containing perovskite-type luminescent crystal and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees