JPH0692707A - Inorganic hard material - Google Patents

Inorganic hard material

Info

Publication number
JPH0692707A
JPH0692707A JP36000191A JP36000191A JPH0692707A JP H0692707 A JPH0692707 A JP H0692707A JP 36000191 A JP36000191 A JP 36000191A JP 36000191 A JP36000191 A JP 36000191A JP H0692707 A JPH0692707 A JP H0692707A
Authority
JP
Japan
Prior art keywords
weight
parts
hard material
inorganic hard
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36000191A
Other languages
Japanese (ja)
Other versions
JP2934347B2 (en
Inventor
Kazuya Sano
和也 佐野
Yoji Nomura
洋司 野村
Kanji Miyashita
莞爾 宮下
Haruyasu Ishitsuki
治康 石突
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aichi Steel Corp
Original Assignee
Toyota Central R&D Labs Inc
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Aichi Steel Corp filed Critical Toyota Central R&D Labs Inc
Priority to JP36000191A priority Critical patent/JP2934347B2/en
Publication of JPH0692707A publication Critical patent/JPH0692707A/en
Application granted granted Critical
Publication of JP2934347B2 publication Critical patent/JP2934347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • C04B28/082Steelmaking slags; Converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0053Water-soluble polymers

Abstract

PURPOSE:To provide a low-cost inorg. hard material having excellent strength. CONSTITUTION:This inorg. hard material contains a base material consisting essentially of base powder contg. 12CaO.7Al2O3 and/or a solid soln. thereof and gamma-2CaO.SiO2 and 10-35 pts.wt. gypsum basing on 100 pts.wt. of the base powder, 1.0-10.0 pts.wt. glass fibers basing on 100 pts.wt. of the base material and 0.1-5.0 pts.wt. water-soluble paste basing on 100 pts.wt. of the base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無機系の硬質材料に関
し、さらに詳しくは、該基材として製鋼所等で大量に発
生する12CaO・7Al2 3 又は/及びその固溶体
とγ−2CaO・SiO2 と石膏とを主要成分とする無
機材料を原料としてなる安価で優れた強度を有する無機
硬質材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic hard material, more specifically, 12CaO.7Al 2 O 3 or / and its solid solution and γ-2CaO. The present invention relates to an inexpensive inorganic hard material having excellent strength, which is made of an inorganic material containing SiO 2 and gypsum as main components.

【0002】[0002]

【従来の技術】製鋼所において、製鋼還元期スラグが大
量に発生し、該材料のセメント原料としての利用が図ら
れている。
2. Description of the Related Art A large amount of slag during the steelmaking reduction period is produced in a steelworks, and the material is used as a cement raw material.

【0003】この製鋼還元期スラグを利用したセメント
としては、該製鋼還元期スラグと硫黄酸化物の公害防止
処理のための副産物として発生する石膏とを用いた「セ
メント」(特公昭62-47827号公報、特公昭62-50428号公
報)が開発されている。このセメントは、製鋼還元期ス
ラグと石膏という材料を用いているにも係わらず、その
硬化体が通常のセメント並の物性(強度等)を有すると
ともに、さらに早強性に優れ無収縮であるという特長を
有しており、有用なセメントとして実用に供されてい
る。
As a cement using the steelmaking reduction period slag, "cement" using the steelmaking reduction period slag and gypsum generated as a by-product for sulfur oxide pollution control treatment (Japanese Patent Publication No. 62-47827). Gazette, Japanese Examined Patent Publication No. 62-50428) has been developed. Despite the fact that this cement uses the materials of steelmaking reduction slag and gypsum, its hardened material has physical properties (strength, etc.) similar to ordinary cement, and it has excellent early strength and is non-shrinkable. It has features and is put to practical use as a useful cement.

【0004】なお、特公昭62-47827号公報に記載のセメ
ントは、γ−2CaO・SiO2 10〜80重量部と1
2CaO・7Al2 3 90〜20重量部とを含有する
基質粉末100重量部と石膏2〜1000重量部とを主
要成分としてなり、早強性で白色かつ安価なセメントで
ある。
The cement described in Japanese Examined Patent Publication No. 62-47827 is 1 to 80 parts by weight of γ-2CaO.SiO 2 and 1 to 2.
This is a fast-strength, white and inexpensive cement, which contains 100 parts by weight of a substrate powder containing 90 to 20 parts by weight of 2CaO · 7Al 2 O 3 and 2 to 1000 parts by weight of gypsum as main components.

【0005】また、特公昭62-50428号公報に記載のセメ
ントは、γ−2CaO・SiO2 および3CaO・2S
iO2 ・CaF2 の1種または2種10〜80重量部と
12CaO・7Al2 3 とCaF2 の固溶体90〜2
0重量部とを含有する基質粉末100重量部と、該基質
粉末100重量部に対して石膏1.0〜1000重量部
とを主要成分としてなり、硬化体が通常のセメント並の
物性(強度等)を有するとともに、早強性に優れ無収縮
である安価なセメントである。
The cement described in JP-B-62-50428 is γ-2CaO · SiO 2 and 3CaO · 2S.
10 to 80 parts by weight of one or two kinds of iO 2 · CaF 2 and solid solution 90 to 2 of 12CaO · 7Al 2 O 3 and CaF 2 .
100 parts by weight of the substrate powder containing 0 parts by weight, and 1.0 to 1000 parts by weight of gypsum per 100 parts by weight of the substrate powder as main components, and the hardened material has physical properties (strength and the like) similar to those of ordinary cement. In addition, it is an inexpensive cement with excellent fastness and no shrinkage.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、製鋼還
元期スラグと石膏とからなる前記セメントは、早強性に
優れ無収縮であり硬化体も適度な強度を有する安価なセ
メントとして有用であるものの、該材料自身の特性とし
ては密度が1.0〜1.2の範囲で曲げ強度が30〜40kg
f/cm2 と、強度特性が必ずしも十分ではない。従って、
高い強度が要求される内装パネルやタイルパネルなど、
さらに直張りしそのまま建物に組み込まれて使用される
矢板などに用いる場合には、適用ができないという問題
を有していた。
However, although the above-mentioned cement consisting of steelmaking reduction slag and gypsum is useful as an inexpensive cement having excellent early strength, no shrinkage, and a hardened body having an appropriate strength, The characteristics of the material itself are that the density is in the range of 1.0 to 1.2 and the bending strength is 30 to 40 kg.
f / cm 2 and strength characteristics are not always sufficient. Therefore,
Interior panels and tile panels that require high strength,
Furthermore, there is a problem that it cannot be applied when it is directly stretched and used as a sheet pile or the like that is directly incorporated into a building.

【0007】そこで、本発明者らは、上述の如き従来技
術の問題点を解決すべく鋭意研究し、各種の系統的実験
を重ねた結果、本発明を成すに至ったものである。
[0007] Therefore, the inventors of the present invention have earnestly studied to solve the problems of the prior art as described above, and as a result of various systematic experiments, the present invention has been accomplished.

【0008】(発明の目的)本発明の目的は、優れた強
度を有する安価な無機硬質材を提供するにある。
(Object of the Invention) An object of the present invention is to provide an inexpensive inorganic hard material having excellent strength.

【0009】本発明者らは、上述の従来技術の問題に対
して、以下のことに着眼した。すなわち、製鋼還元期ス
ラグと石膏とからなる前記セメントの硬化体において、
該硬化体の構成材の一つであるエトリンガイト、あるい
は高アルミナのカルシウム水和物は何れも針状結晶とし
てはミクロンオーダーの結晶である。このため、素材の
みでは、必要な強度が得られない。
The present inventors have focused on the following points with respect to the above-mentioned problems of the prior art. That is, in the hardened body of the cement consisting of steelmaking reduction period slag and gypsum,
Ettringite, which is one of the constituents of the cured product, or calcium hydrate with high alumina is micron-order crystals as needle-like crystals. Therefore, the required strength cannot be obtained only with the material.

【0010】そこで、前記特殊セメントを用いた無機硬
化体の強度を向上させるため、強度向上のためガラス繊
維を混在させ水溶性糊剤を混合するとともに、前記特殊
セメントからなる基材を特定組成のものとすることに着
目し、本発明を成すに至った。
Therefore, in order to improve the strength of the inorganic hardened body using the special cement, glass fibers are mixed to improve the strength, a water-soluble sizing agent is mixed, and a base material made of the special cement is mixed with a specific composition. The present invention has been accomplished by paying attention to what is intended.

【0011】なお、通常のポルトランドセメントを用い
た場合、ガラス繊維を混在させても前記セメントが強ア
ルカリ性でガラス繊維を侵すため強度を向上することが
できず、また、曲げ強度の向上のためにはオートクレー
ブ処理が必要であるという問題を有していた。また、ア
ルミナセメントを用いた場合には、ガラス繊維を混在さ
せてもセメント自身の結晶転移により強度劣化がおこる
という問題を有していた。
When ordinary Portland cement is used, even if glass fibers are mixed, the cement cannot be improved in strength because it is highly alkaline and corrodes the glass fibers. In addition, in order to improve bending strength. Had the problem of requiring autoclaving. Further, when alumina cement is used, there is a problem that strength deterioration occurs due to crystal transition of the cement itself even if glass fibers are mixed.

【0012】[0012]

【課題を解決するための手段】本発明の無機硬質材は、
12CaO・7Al2 3 又は/及びその固溶体とγ−
2CaO・SiO2 とを含んでなる基質粉末と,該基質
粉末100重量部に対して10〜35重量部の石膏とを
主要成分とした無機硬質材基材と、該無機硬質材基材1
00重量部に対して1.0〜10.0重量部のガラス繊維
と、0.1〜5.0重量部の水溶性糊剤を含んでなることを
特徴とする。
The inorganic hard material of the present invention comprises:
12CaO · 7Al 2 O 3 or / and its solid solution and γ-
A substrate powder containing 2CaO.SiO 2 and an inorganic hard material substrate containing, as main components, 10 to 35 parts by weight of gypsum per 100 parts by weight of the substrate powder, and the inorganic hard material substrate 1
It is characterized in that it comprises 1.0 to 10.0 parts by weight of glass fiber and 0.1 to 5.0 parts by weight of water-soluble sizing agent with respect to 00 parts by weight.

【0013】[0013]

【作用】本発明の無機硬質材が優れた効果を発揮するメ
カニズムについては、未だ必ずしも明らかではないが、
次のように考えられる。
The mechanism by which the inorganic hard material of the present invention exerts excellent effects is not always clear, but
It can be considered as follows.

【0014】本発明の無機硬質材は、γ−2CaO・S
iO2 と12CaO・7Al2 3又は/及びその固溶
体と石膏とを主成分とする無機硬質材基材と、ガラス繊
維とを主要成分としてなる。
The inorganic hard material of the present invention is γ-2CaO · S.
An inorganic hard material base material containing iO 2 and 12CaO · 7Al 2 O 3 or / and its solid solution and gypsum as main components, and glass fiber are main components.

【0015】このγ−2CaO・SiO2 と12CaO
・7Al2 3 又は/及びその固溶体と石膏とを主成分
とする無機硬質材にガラス繊維および水溶性糊剤を混在
させると、無機硬質水和化合物の間隙にガラス繊維がラ
ンダムに分散配置された構造となり、前記化合物とガラ
ス繊維の接点で前記水溶性糊剤が両者を結びつけ、該ガ
ラス繊維の分散・強化により、強度が向上しているもの
と考えられる。これより、優れた強度を有する無機硬質
材が得られるものと考えられる。
This γ-2CaO.SiO 2 and 12CaO
When glass fibers and a water-soluble sizing agent are mixed in an inorganic hard material mainly composed of 7Al 2 O 3 or / and its solid solution and gypsum, the glass fibers are randomly dispersed and arranged in the gaps of the inorganic hard hydrate compound. It is considered that the water-soluble sizing agent binds both at the contact point of the compound and the glass fiber, and the strength is improved by dispersing and strengthening the glass fiber. From this, it is considered that an inorganic hard material having excellent strength can be obtained.

【0016】石膏の混合量は、基質粉末100重量部に
対して10〜35重量部である。この石膏の混合量が1
0重量部未満の場合、無機硬質材基材中に含まれる12
CaO・7Al2 3 が未反応のままで残り、アルミナ
セメント水和物が形成されるため十分な強度が得られ
ず、また、該混合量が35重量部を越えると、未反応の
石膏が増加するばかりで耐水性を低下させるなどの問題
が生ずる。
The amount of gypsum mixed is 10 to 35 parts by weight with respect to 100 parts by weight of the substrate powder. The mixing amount of this plaster is 1
When the amount is less than 0 parts by weight, 12 contained in the inorganic hard material substrate
CaO.7Al 2 O 3 remains unreacted, and alumina cement hydrate is formed, so that sufficient strength cannot be obtained. Further, when the amount of the mixture exceeds 35 parts by weight, unreacted gypsum is generated. However, there is a problem in that the water resistance is reduced as the amount increases.

【0017】また、ガラス繊維の混合量は、前記無機硬
質材基材100重量部に対して1.0〜10.0重量部であ
る。このガラス繊維の混合量が1.0重量部未満の場合、
十分な補強効果が得られず、強度が十分に向上しない。
また、該混合量が10.0重量部を越えると、成形体の成
形性が悪くなる。
The amount of the glass fiber mixed is 1.0 to 10.0 parts by weight with respect to 100 parts by weight of the inorganic hard material substrate. When the amount of this glass fiber mixed is less than 1.0 part by weight,
A sufficient reinforcing effect cannot be obtained and the strength is not sufficiently improved.
On the other hand, if the mixing amount exceeds 10.0 parts by weight, the moldability of the molded product deteriorates.

【0018】また、水溶性糊剤の混合量は、前記無機硬
質材基材100重量部に対して0.1〜5.0重量部であ
る。該混合量が0.1重量部未満の場合、十分な接着効果
が得られず、また、該混合量が5.0重量部を越えると、
それ以上の接着効果が得られずコスト高になるばかり
か、防菌効果が低下するなどの不具合を生ずる。
The amount of the water-soluble sizing agent mixed is 0.1 to 5.0 parts by weight based on 100 parts by weight of the inorganic hard material substrate. When the mixing amount is less than 0.1 part by weight, a sufficient adhesive effect cannot be obtained, and when the mixing amount exceeds 5.0 parts by weight,
Further adhesion effects cannot be obtained, resulting in high cost and inconvenience such as reduction in antibacterial effect.

【0019】なお、本発明の無機硬質材基材は製鋼還元
期スラグと石膏という廃材として、また、ガラス繊維は
FRP用ガラス繊維などとして、それぞれ安価に入手す
ることができるので、安価な無機硬質材とすることがで
きる。
Since the inorganic hard material base material of the present invention can be obtained at a low cost as a waste material such as steelmaking reduction slag and gypsum, and the glass fiber can be obtained at a low cost as glass fiber for FRP or the like, it is an inexpensive inorganic hard material. It can be a material.

【0020】[0020]

【発明の効果】本発明の無機硬質材は、強度に優れ安価
である。
The inorganic hard material of the present invention has excellent strength and is inexpensive.

【0021】[0021]

【実施例】以下に、前記発明をさらに具体的にした発明
(具体例)について説明する。
The invention (concrete example) which is more specific than the above invention will be described below.

【0022】無機硬質材基材は、12CaO・7Al2
3 又は/及びその固溶体とγ−2CaO・SiO2
を含んでなる基質粉末と,該基質粉末100重量部に対
して10〜35重量部の石膏とを主要成分としてなる。
なお、さらに、CaF2 や本発明の効果の発現を阻害し
ない範囲で、その他の成分や不純物を含んでいてもよ
い。
The inorganic hard material base material is 12CaO.7Al 2
The main components are a substrate powder containing O 3 or / and its solid solution and γ-2CaO · SiO 2, and 10 to 35 parts by weight of gypsum per 100 parts by weight of the substrate powder.
In addition, CaF 2 and other components and impurities may be contained as long as the effects of the present invention are not impaired.

【0023】石膏以外の無機硬質材基材、すなわち基質
粉末は、製鋼還元期スラグの主要成分であり、自然に風
壊したスラグ粉末や塊状物を任意に粉砕したスラグ粉末
として安価に入手することができる。
The inorganic hard material base material other than gypsum, that is, the substrate powder, is a main component of the steelmaking reduction slag, and should be obtained at low cost as slag powder which is naturally wind-broken or slag powder which is arbitrarily crushed. You can

【0024】12CaO・7Al2 3 又は/及びその
固溶体と,γ−2CaO・SiO2の原料としては、C
aO、SiO2 、およびAl2 3 が一定範囲内の製鋼
還元期スラグが最も容易に入手できるものとして推賞さ
れる。特に、冷却時、ダスティングを生ずるスラグは原
料に適当である。理想的な製鋼還元期スラグを空気中で
徐冷すると、γ−2CaO・SiO2 と12CaO・7
Al2 3 とを主要成分とする基質粉末が得られる。な
お、その他の成分としては、数%以下のガラス成分、M
gO、鉄粉等が含まれる。その他、当該成分をなすよう
に鉱物やスラグを配合して原料とすることもでき、また
溶融処理によって合成することも可能である。
The raw material for 12CaO.7Al 2 O 3 and / or its solid solution and γ-2CaO · SiO 2 is C.
It is recommended that steelmaking reduction slag within a certain range of aO, SiO 2 , and Al 2 O 3 be the most readily available. In particular, slag that causes dusting during cooling is suitable as a raw material. When ideal steelmaking slag is gradually cooled in air, γ-2CaO ・ SiO 2 and 12CaO ・ 7
A matrix powder containing Al 2 O 3 as a main component is obtained. In addition, as other components, several% or less of glass component, M
gO, iron powder, etc. are included. In addition, minerals and slag may be blended so as to form the component to be used as a raw material, or may be synthesized by a melting process.

【0025】石膏は、2水石膏、または半水石膏を用い
ることが好ましい。なお、2水石膏のうちでも、脱硫石
膏は、火力発電所などで発生する副産物であり、粉末形
態で使用できるので好適である。2水石膏は、素早く基
質粉末中の12CaO・7Al2 3 又は/およびその
固溶体と反応し、転移時に体積変化する水和化合物を存
在させないので、好適である。この2水石膏は、脱硫石
膏および燐酸石膏のような副産物または天然石膏の何れ
でもよい。また、半水石膏は、水和時にすぐに2水石膏
に変化するので、前記と同様、転移時に体積変化する水
和化合物が存在しないので、好適である。なお、無水石
膏は、転移時に体積変化の大きなCaO・Al2 3
10H2 Oができ易い上に、水和したセメント成分の乾
燥あるいは吸水時の寸法変化が10-3オーダーと大きい
ため、用途を考慮して使用する必要がある。
As gypsum, dihydrate gypsum or hemihydrate gypsum is preferably used. Of the dihydrate gypsum, desulfurized gypsum is a by-product generated in a thermal power plant or the like, and is suitable because it can be used in a powder form. Gypsum dihydrate is preferred because it rapidly reacts with 12CaO.7Al 2 O 3 or / and its solid solution in the substrate powder and does not allow the presence of hydrated compounds that change volume during transition. The gypsum dihydrate may be either a by-product such as desulfurized gypsum and phosphate gypsum or natural gypsum. Further, hemihydrate gypsum is suitable because it immediately changes to dihydrate gypsum upon hydration, and therefore, as with the above, there is no hydrated compound that changes in volume upon transition. In addition, anhydrous gypsum is CaO ・ Al 2 O 3
Since 10H 2 O is easily formed, and the dimensional change of the hydrated cement component upon drying or water absorption is large on the order of 10 −3, it is necessary to use it considering the application.

【0026】石膏の混合量は、基質粉末100重量部に
対して10〜35重量部であるが、さらに、本具体例の
場合、該石膏の混合量が12〜25重量部であることが
好ましい。これにより、本発明の効果をよりよく奏する
ことができる。また、粒度は、0.1 mm 以下であること
が好ましい。
The amount of gypsum mixed is 10 to 35 parts by weight with respect to 100 parts by weight of the substrate powder. Further, in the case of this example, the amount of gypsum mixed is preferably 12 to 25 parts by weight. . As a result, the effects of the present invention can be better exhibited. Further, the particle size is preferably 0.1 mm or less.

【0027】ガラス繊維は、無機硬質材基材の補強材で
ある。具体的には、市販のFRP用ガラス繊維などを用
いる。なお、PVA(ポリビニルアルコール)をガラス
繊維表面にコートした場合には、より接着性が向上する
ので、好ましい。なお、該ガラス繊維の混合量は、前記
無機硬質材基材100重量部に対して1.0〜10.0重量
部であるが、さらに、該ガラス繊維の混合量が2.5〜
5.0重量部であることが好ましい。これにより、曲げ比
強度が100以上となり、強度により優れたものとする
ことができるという特有の効果を奏することができる。
Glass fiber is a reinforcing material for an inorganic hard material base material. Specifically, commercially available glass fiber for FRP or the like is used. In addition, when PVA (polyvinyl alcohol) is coated on the surface of the glass fiber, the adhesiveness is further improved, which is preferable. The mixing amount of the glass fiber is 1.0 to 10.0 parts by weight with respect to 100 parts by weight of the inorganic hard material substrate, and the mixing amount of the glass fiber is 2.5 to
It is preferably 5.0 parts by weight. As a result, the bending ratio strength becomes 100 or more, and it is possible to obtain a unique effect that the strength can be made more excellent.

【0028】また、該ガラス繊維は、長さが長い程破壊
時の引抜抵抗が大きくなり強度が高くなるので好ましい
が、該長さが12〜35mmであることがより好まし
い。これは、該長さのものを用いることにより、モルタ
ルの作業性を向上させることができるからである。ま
た、太さは特に制限はないが、用途に応じて所望の強度
が発現できる適当な太さがあればよいが、表面の欠陥が
ないガラス繊維を用いることが好ましい。
Further, the longer the glass fiber is, the more the pullout resistance at the time of breaking becomes large and the higher the strength is, but it is more preferable that the length is 12 to 35 mm. This is because the workability of the mortar can be improved by using the one having the length. Further, the thickness is not particularly limited, but it may be an appropriate thickness capable of expressing a desired strength depending on the use, but it is preferable to use glass fiber having no surface defects.

【0029】水溶性糊剤は、無機硬質材基材とガラス繊
維の界面の結合状態をより強固にするための添加剤であ
り、具体的には、可溶性酢酸ビニル粉末、可溶性ポリビ
ニルアルコール、樹脂エマルジョン等が挙げられる。な
お、該水溶性糊剤の混合量は、該無機硬質材基材100
重量部に対して0.1〜5.0重量部であるが、さらに、該
水溶性糊剤の混合量が1.0〜2.5重量部であることが好
ましい。これにより、例えば密度が1.0g/cm3 程度の
材料で曲げ比強度が100程度以上と優れた硬度向上効
果が得られるという特有の効果を奏することができる。
The water-soluble sizing agent is an additive for further strengthening the bonding state at the interface between the inorganic hard material substrate and the glass fiber, and specifically, soluble vinyl acetate powder, soluble polyvinyl alcohol, resin emulsion. Etc. The amount of the water-soluble sizing agent mixed is 100
The amount is 0.1 to 5.0 parts by weight with respect to parts by weight, and it is preferable that the amount of the water-soluble sizing agent is 1.0 to 2.5 parts by weight. As a result, for example, a material having a density of about 1.0 g / cm 3 and a bending ratio strength of about 100 or more can exhibit an excellent effect of improving hardness.

【0030】さらに、本具体例の無機硬質材には、適
宜、保水剤、軽量化増量剤、硬化調整剤、などの添加剤
を添加することができる。
Further, additives such as a water retention agent, a weight-reducing extender, and a curing modifier can be added to the inorganic hard material of this example.

【0031】また、保水剤は、モルタル中で反応する水
分の蒸発を抑制するするための添加剤であり、具体的に
は、メチルセルロース、エチルセルロース、カルボキシ
ルメチルセルロース等のセルロース化合物が挙げられ
る。この保水剤の混合量は、該無機硬質材基材100重
量部に対して0.1〜5.0重量部であることが好ましい。
該混合量が0.1重量部未満の場合、前記水分の蒸発抑制
効果が十分に得られない虞れがあり、また、該混合量が
5.0重量部を越えると、無機硬質材基材の硬化を遅くす
る虞れがある。
The water retention agent is an additive for suppressing the evaporation of water that reacts in the mortar, and specific examples thereof include cellulose compounds such as methyl cellulose, ethyl cellulose and carboxymethyl cellulose. The amount of the water retention agent mixed is preferably 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the inorganic hard material substrate.
If the mixing amount is less than 0.1 part by weight, the effect of suppressing the evaporation of water may not be sufficiently obtained, and if the mixing amount exceeds 5.0 parts by weight, the inorganic hard material substrate may be used. There is a risk of slowing the curing of the.

【0032】また、軽量化増量剤は、無機硬質材を軽量
化し、セメント二次製品の施工作業性を向上させるため
の添加剤であり、具体的には、パーライト、ヒル石、セ
ピオライト等の針状晶鉱物、珪藻土、発泡ガラス粒、発
泡スチレン、発泡ウレタン等の樹脂が挙げられる。
The weight-reducing extender is an additive for reducing the weight of the inorganic hard material and improving the workability of the cement secondary product, and specifically, it is a needle such as perlite, leeche stone, or sepiolite. Resins such as crystallites, diatomaceous earth, foamed glass particles, foamed styrene and foamed urethane can be mentioned.

【0033】また、硬化調整剤は、作業時間を調整する
ための添加剤であり、具体的には、グルコン酸等のオキ
シカルボン酸とその塩、カゼイン、ペプトン等の蛋白質
アミノ酸が挙げられる。該硬化調整剤の混合量は、添加
剤の種類により異なるが、グルコン酸の場合、無機硬質
材基材100重量部に対して0.1〜1.0重量部であるこ
とが好ましい。該混合量が0.1重量部未満の場合、硬化
遅延は十分に起こらない虞れがあり、また、該混合量が
1.0重量部を越えると、長期にわたり硬化しない虞れが
ある。
The curing modifier is an additive for adjusting the working time, and specific examples thereof include oxycarboxylic acids such as gluconic acid and salts thereof, and protein amino acids such as casein and peptone. The mixing amount of the curing modifier varies depending on the type of the additive, but in the case of gluconic acid, it is preferably 0.1 to 1.0 parts by weight with respect to 100 parts by weight of the inorganic hard material substrate. If the mixing amount is less than 0.1 parts by weight, the curing delay may not be sufficiently caused, and if the mixing amount exceeds 1.0 parts by weight, the curing may not be performed for a long time.

【0034】本具体例の無機硬質材の製造方法につい
て、その一例を具体的に説明する。すなわち、オムニミ
キサー等の通常の混練機に、脱硫石膏などの石膏、PV
Aなどの水溶性糊剤を含むモルタル混練水、製鋼還元期
スラグ、ガラス繊維を順に入れ、混合する。この間1分
程度であるが、さらに30秒程度することにより微細な
気泡の入った軽量モルタルが得られる。これを、任意の
形状の型に流し込み、常温放置、あるいは40℃程度の
蒸気で養生するなどして、板材等の所定の形状の無機硬
質材とする。なお、この場合、脱硫石膏と同時にパーラ
イトなどの軽量化増量剤を混入させると、気泡の混入が
し易くなる。形状を板状とする場合は、ローラなどによ
り、転圧することが好ましい。
An example of the method for producing the inorganic hard material of this example will be specifically described. That is, a plaster such as desulfurized gypsum, PV
Mortar kneading water containing a water-soluble sizing agent such as A, slag for steelmaking reduction period, and glass fiber are sequentially added and mixed. During this time, it takes about 1 minute, but by further increasing the time for about 30 seconds, a lightweight mortar containing fine bubbles can be obtained. This is poured into a mold of an arbitrary shape, left at room temperature, or cured with steam at about 40 ° C. to obtain an inorganic hard material having a predetermined shape such as a plate material. In this case, if a weight-reducing bulking agent such as perlite is mixed with the desulfurized gypsum, air bubbles are easily mixed. When the shape is plate-like, it is preferable to roll with a roller or the like.

【0035】本具体例の無機硬質材は、従来のものに比
べて強度が高く、破壊エネルギーの吸収も大きいという
利点を有する。また、この無機硬質材は、早強性を有
し、低収縮性で白色であるという利点を有する。さら
に、この無機硬質材は、耐火性能を有するという利点を
有する。従って、本具体例の無機硬質材は、内外装パネ
ル下地材、タイルパネル下地材、あるいは、敷石下地
材、矢板などに用いることができる。
The inorganic hard material of this example has the advantages of higher strength and higher absorption of breaking energy than conventional ones. In addition, this inorganic hard material has the advantages of having early strength, low shrinkage, and white. Furthermore, this inorganic hard material has the advantage of having fire resistance. Therefore, the inorganic hard material of this example can be used as an interior / exterior panel base material, a tile panel base material, or a paving stone base material, a sheet pile, or the like.

【0036】以下に、本発明の実施例を説明する。Examples of the present invention will be described below.

【0037】第1実施例 First embodiment

【0038】製鋼還元期スラグと脱硫石膏とガラス繊維
と水溶性糊剤とを用いて無機硬質材を作製し、該材の性
能評価試験を行った。
An inorganic hard material was prepared using slag for reducing steelmaking, desulfurized gypsum, glass fiber and a water-soluble sizing agent, and a performance evaluation test of the material was conducted.

【0039】先ず、無機硬質材基材100重量部に対し
て40重量部となるように5%ポリビニルアルコール
(PVA:重合度500)をオムニミキサーに投入し、
次いで、表1に示す量の脱硫石膏および還元期スラグを
この順番に投入し、さらに、25mmガラスチョップト
ストランドを無機硬質材基材100重量部に対して5重
量部の割合で添加し、2分間混合し、20×50×1c
mの板枠に流し込み、常温で10日固化・硬化させて、
本実施例の無機硬質材を作成した(試料番号:1〜
3)。
First, 5% polyvinyl alcohol (PVA: degree of polymerization: 500) was added to an omni mixer so that 40 parts by weight was added to 100 parts by weight of the inorganic hard material substrate,
Then, desulfurization gypsum and reducing slag in the amounts shown in Table 1 were added in this order, and further 25 mm glass chopped strands were added at a ratio of 5 parts by weight with respect to 100 parts by weight of the inorganic hard material substrate, and 2 Mix for 20 minutes, 20x50x1c
It is poured into a plate frame of m, solidified and cured at room temperature for 10 days,
An inorganic hard material of this example was prepared (sample number: 1 to 1
3).

【0040】[0040]

【表1】 [Table 1]

【0041】次に、得られた無機硬質材の性能評価試験
を、嵩密度測定試験、曲げ強度測定試験により行った。
なお、該試験は、前記流し込みから10日後の無機硬質
材を用いて行った。得られた結果を、それぞれ表1に示
す。
Next, a performance evaluation test of the obtained inorganic hard material was conducted by a bulk density measurement test and a bending strength measurement test.
The test was conducted using the inorganic hard material 10 days after the casting. The obtained results are shown in Table 1.

【0042】先ず、嵩密度測定試験は、得られた無機硬
質材を所定量切り出し、JIS5201に準拠して嵩密
度(g/cm3 )を測定した。
First, in the bulk density measurement test, a predetermined amount of the obtained inorganic hard material was cut out and the bulk density (g / cm 3 ) was measured according to JIS5201.

【0043】曲げ強度測定試験は、10ton アムスラー
油圧試験機により、スパン間隔が140mm、荷重速度が
1mm/分の条件で行った。
The bending strength measurement test was carried out using a 10 ton Amsler hydraulic tester under the conditions of a span interval of 140 mm and a load speed of 1 mm / min.

【0044】比較のために、無機硬質材基材の組成が表
1に示したものである以外は、前記第1実施例と同様に
して比較用硬質材を作製し(試料番号:C1〜C3)、
前記と同様に嵩密度測定試験および曲げ強度測定試験を
行った。その結果を、表1に併せて示す。
For comparison, a hard material for comparison was prepared in the same manner as in the first embodiment except that the composition of the inorganic hard material substrate was as shown in Table 1 (Sample Nos .: C1 to C3). ),
The bulk density measurement test and the bending strength measurement test were performed as described above. The results are also shown in Table 1.

【0045】表1および表2より明らかのごとく、本実
施例にかかる本発明の無機硬質材は、気乾状態で85kg
f/cm2 以上、飽水状態においても曲げ強度が45kgf/cm
2 以上と極めて高い強度が得られていることが分かる。
それに対して、比較用硬質材の場合は、曲げ強度が飽水
時で何れも30kgf/cm2 以下と低かった。
As is clear from Tables 1 and 2, the inorganic hard material of the present invention according to the present embodiment is 85 kg in the air-dried state.
f / cm 2 or more, bending strength is 45 kgf / cm even in a saturated state
It can be seen that extremely high strength of 2 or more is obtained.
On the other hand, in the case of the comparative hard material, the flexural strength was low at 30 kgf / cm 2 or less when the water was saturated.

【0046】第2実施例 Second embodiment

【0047】製鋼還元期スラグと脱硫石膏とガラス繊維
と水溶性糊剤とを用い、さらに、添加剤として保水剤を
添加して無機硬質材を作製し、該材の性能評価試験を行
った。
An inorganic hard material was prepared by using a steelmaking reduction slag, desulfurized gypsum, glass fiber, and a water-soluble sizing agent, and a water retention agent was further added as an additive to perform a performance evaluation test of the material.

【0048】先ず、還元期スラグ75重量部と脱硫石膏
25重量部とを含む基質粉末100重量部に対し、25
mmチョップトストランドを表2に示す量、保水剤とし
てCMC0.3重量部、および水溶性糊剤として5%ポリ
ビニルアルコール(PVA:重合度500)を用い〔w
/c=0.4〕、第1実施例と同様にして本実施例の無機
硬質材を作成した(試料番号:4〜6)。
First, 25 parts by weight of a substrate powder containing 75 parts by weight of reducing slag and 25 parts by weight of desulfurized gypsum were used.
The amount of mm chopped strand shown in Table 2, CMC 0.3 part by weight as a water retention agent, and 5% polyvinyl alcohol (PVA: degree of polymerization 500) as a water-soluble sizing agent were used [w
/C=0.4], an inorganic hard material of this example was prepared in the same manner as in the first example (Sample Nos. 4 to 6).

【0049】[0049]

【表2】 [Table 2]

【0050】次に、得られた無機硬質材の性能評価試験
を、嵩密度測定試験および気乾曲げ強度測定試験によ
り、それぞれ第1実施例と同様にして行った。得られた
結果を、それぞれ表2に示す。
Next, a performance evaluation test of the obtained inorganic hard material was carried out by a bulk density measurement test and an air dry bending strength measurement test in the same manner as in the first embodiment. The obtained results are shown in Table 2.

【0051】比較のために、ガラス繊維を添加しなかっ
た以外は、前記第2実施例と同様にして比較用硬質材を
作製し(試料番号:C4)、前記と同様に嵩密度測定試
験および曲げ強度測定試験を行った。その結果を、表2
に併せて示す。
For comparison, a hard material for comparison was prepared in the same manner as in the second embodiment except that glass fiber was not added (Sample No. C4). A bending strength measurement test was performed. The results are shown in Table 2.
Are also shown.

【0052】表2より明らかの如く、本実施例の無機硬
質材は、曲げ強度が80kgf/cm2 以上と極めて高い強度
が得られていることが分かる。
As is clear from Table 2, it is understood that the inorganic hard material of this example has an extremely high bending strength of 80 kgf / cm 2 or more.

【0053】第3実施例 Third embodiment

【0054】製鋼還元期スラグと脱硫石膏とガラス繊維
と水溶性糊剤とを用い、該水溶性糊剤の濃度を変えて4
種の無機硬質材を作製し、該材の性能評価試験を行っ
た。
Steelmaking reduction period slag, desulfurization gypsum, glass fiber and water-soluble sizing agent are used, and the concentration of the water-soluble sizing agent is changed to 4
A kind of inorganic hard material was produced and a performance evaluation test of the material was conducted.

【0055】先ず、還元期スラグ75重量部と脱硫石膏
25重量部とを含む基質粉末100重量部に、水溶性糊
剤としてポリビニルアルコール(PVA:重合度50
0)を混練水として表3に示す濃度となるように溶かし
たPVA水溶液40重量部をオムニミキサーに投入し、
2分間混合した。次いで、25mmチョップトストラン
ドを3重量部または5重量部混合し、前記第1実施例と
同様にして本実施例の無機硬質材を作成した(試料番
号:7〜10)。
First, 100 parts by weight of a substrate powder containing 75 parts by weight of reducing slag and 25 parts by weight of desulfurized gypsum was added to a polyvinyl alcohol (PVA: polymerization degree 50) as a water-soluble sizing agent.
40 parts by weight of a PVA aqueous solution obtained by dissolving 0) as kneading water to a concentration shown in Table 3 was charged into an omni mixer,
Mix for 2 minutes. Next, 3 parts by weight or 5 parts by weight of 25 mm chopped strands were mixed to prepare an inorganic hard material of this example in the same manner as in the first example (sample number: 7 to 10).

【0056】[0056]

【表3】 [Table 3]

【0057】次に、得られた無機硬質材の性能評価試験
を、嵩密度測定試験および気乾曲げ強度測定試験によ
り、それぞれ第1実施例と同様にして行った。得られた
結果を、それぞれ表3に示す。
Next, a performance evaluation test of the obtained inorganic hard material was carried out by a bulk density measurement test and an air dry bending strength measurement test in the same manner as in the first embodiment. The obtained results are shown in Table 3, respectively.

【0058】比較のために、水溶性糊剤を添加しなかっ
た以外は、前記第3実施例と同様にして比較用硬質材を
作製し(試料番号:C5、C6)、前記と同様に嵩密度
測定試験および曲げ強度測定試験を行った。その結果
を、表3に併せて示す。
For comparison, a hard material for comparison was prepared in the same manner as in the third embodiment except that the water-soluble sizing agent was not added (Sample Nos. C5 and C6), and the same bulk material was used as described above. A density measurement test and a bending strength measurement test were performed. The results are also shown in Table 3.

【0059】表3より明らかの如く、本実施例の無機硬
質材は、曲げ強度が80kgf/cm2 以上と極めて高い強度
が得られていることが分かる。
As is clear from Table 3, the inorganic hard material of this example has a very high flexural strength of 80 kgf / cm 2 or more.

【0060】第4実施例 Fourth Embodiment

【0061】製鋼還元期スラグと脱硫石膏とガラス繊維
と水溶性糊剤とを用い、前記ガラス繊維の長さを変えて
3種の無機硬質材を作製し、該材の性能評価試験を行っ
た。
Three kinds of inorganic hard materials were produced by changing the length of the glass fibers using slag for reducing steelmaking, desulfurization gypsum, glass fibers and water-soluble sizing agent, and the performance evaluation test of the materials was conducted. .

【0062】先ず、還元期スラグ75重量部と脱硫石膏
25重量部とを含む基質粉末100重量部に、水溶性糊
剤としてポリビニルアルコール(PVA:重合度50
0)を混練水として2.5%濃度となるように溶かしたP
VA水溶液40重量部をオムニミキサーに投入し、1分
間混合した。次いで、表4に示した長さのチョップトス
トランドを5重量部混合し、前記第1実施例と同様にし
て本実施例の無機硬質材を作成した(試料番号:11〜
13)。
First, 100 parts by weight of a substrate powder containing 75 parts by weight of reducing slag and 25 parts by weight of desulfurized gypsum was added to polyvinyl alcohol (PVA: polymerization degree 50) as a water-soluble sizing agent.
0) as the kneading water and dissolved in P to a concentration of 2.5%
40 parts by weight of the VA aqueous solution was put into an omni mixer and mixed for 1 minute. Then, 5 parts by weight of chopped strands having the lengths shown in Table 4 were mixed to prepare an inorganic hard material of this example in the same manner as in the first example (Sample Nos. 11 to 11).
13).

【0063】[0063]

【表4】 [Table 4]

【0064】次に、得られた無機硬質材の性能評価試験
を、嵩密度測定試験および気乾曲げ強度測定試験によ
り、それぞれ第1実施例と同様にして行った。得られた
結果を、それぞれ表4に示す。
Next, a performance evaluation test of the obtained inorganic hard material was carried out by a bulk density measurement test and an air-dry bending strength measurement test in the same manner as in the first embodiment. The obtained results are shown in Table 4, respectively.

【0065】表4より明らかの如く、本実施例の無機硬
質材は、繊維長の長い程高い強度が得られていることが
分かる。
As is clear from Table 4, the inorganic hard material of this example has higher strength as the fiber length is longer.

【0066】第5実施例 Fifth embodiment

【0067】製鋼還元期スラグと脱硫石膏とガラス繊維
と水溶性糊剤とを用い、水セメント比を変えて4種の無
機硬質材を作製し、該材の性能評価試験を行った。
Four kinds of inorganic hard materials were prepared by changing the water-cement ratio using the steelmaking reduction slag, the desulfurized gypsum, the glass fiber and the water-soluble sizing agent, and the performance evaluation test of the materials was conducted.

【0068】先ず、還元期スラグ75重量部と脱硫石膏
25重量部とを含む基質粉末100重量部に、水溶性糊
剤としてポリビニルアルコール(PVA:重合度50
0)を混練水に5%濃度となるように溶かし、水セメン
ト比が表5となるようにオムニミキサーに投入し、1分
間混合した。次いで、25mm長さのチョップトストラ
ンドを5重量部混合し、前記第1実施例と同様にして本
実施例の無機硬質材を作成した(試料番号:14〜1
7)。
First, 100 parts by weight of a substrate powder containing 75 parts by weight of reducing slag and 25 parts by weight of desulfurized gypsum was added to a polyvinyl alcohol (PVA: polymerization degree 50) as a water-soluble sizing agent.
0) was dissolved in kneading water so as to have a concentration of 5%, put into an omni mixer so that the water-cement ratio was as shown in Table 5, and mixed for 1 minute. Then, 5 parts by weight of 25 mm long chopped strands were mixed to prepare an inorganic hard material of this example in the same manner as in the first example (Sample Nos. 14 to 1).
7).

【0069】[0069]

【表5】 [Table 5]

【0070】次に、得られた無機硬質材の性能評価試験
を、嵩密度測定試験および気乾曲げ強度測定試験によ
り、それぞれ第1実施例と同様にして行った。なお、該
試験は、前記流し込みから4週間後の無機硬質材を用い
て行った。得られた結果を、それぞれ表5に示す。
Next, a performance evaluation test of the obtained inorganic hard material was conducted by a bulk density measurement test and an air-dry bending strength measurement test in the same manner as in the first embodiment. The test was conducted using an inorganic hard material 4 weeks after the pouring. The obtained results are shown in Table 5, respectively.

【0071】表5より明らかの如く、本実施例の無機硬
質材は、何れも高い比強度を示していることが分かる。
なお、水セメント比が小さい場合には、繊維の分散が比
較的十分でないためか比強度はそんなに高くなく、該水
セメント比を大きくするに従って、比強度も高くするこ
とができることが分かる。従って、繊維の補強効果を最
大に発揮させるためには、水セメント比が0.4前後がよ
いことが分かる。
As is clear from Table 5, it is understood that the inorganic hard materials of this example all exhibit high specific strength.
It should be noted that when the water-cement ratio is small, the specific strength is not so high, probably because the dispersion of the fibers is relatively insufficient, and it can be seen that the specific strength can be increased as the water-cement ratio is increased. Therefore, it is understood that the water-cement ratio of about 0.4 is preferable in order to maximize the fiber reinforcing effect.

【0072】第6実施例 Sixth Embodiment

【0073】製鋼還元期スラグと脱硫石膏とガラス繊維
と水溶性糊剤とを用いて無機硬質材を作製し、該材の性
能評価試験を行った。
An inorganic hard material was prepared using slag for reducing steelmaking, desulfurization gypsum, glass fiber and a water-soluble sizing agent, and a performance evaluation test of the material was conducted.

【0074】先ず、還元期スラグ75重量部と脱硫石膏
25重量部とを含む基質粉末100重量部に、水溶性糊
剤としてポリビニルアルコール(PVA:重合度50
0)を混練水に2.5%濃度となるように溶かし、水セメ
ント比が0.35となるようにオムニミキサーに投入し、
1分間混合した。次いで、25mm長さのチョップトス
トランドを5重量部混合し、前記第1実施例と同様にし
て本実施例の無機硬質材を作成した(試料番号:1
8)。
First, 100 parts by weight of a substrate powder containing 75 parts by weight of reducing slag and 25 parts by weight of desulfurized gypsum was used as a water-soluble sizing agent with polyvinyl alcohol (PVA: polymerization degree 50).
0) is dissolved in kneading water to a concentration of 2.5%, and the mixture is added to an omni mixer so that the water-cement ratio becomes 0.35.
Mix for 1 minute. Then, 5 parts by weight of 25 mm long chopped strands were mixed to prepare an inorganic hard material of this example in the same manner as in the first example (Sample No. 1).
8).

【0075】次に、得られた無機硬質材の性能評価試験
を、気乾曲げ強度測定試験により、前記流し込みからの
期間を表6に示すように変えて第1実施例と同様にして
行った。得られた結果を、それぞれ表6に示す。
Next, a performance evaluation test of the obtained inorganic hard material was carried out by the air dry bending strength measurement test in the same manner as in Example 1 except that the period from the pouring was changed as shown in Table 6. . The obtained results are shown in Table 6, respectively.

【0076】[0076]

【表6】 [Table 6]

【0077】表6より明らかの如く、本実施例の無機硬
質材は、早強性に優れていることが分かる。
As is clear from Table 6, the inorganic hard material of this example is excellent in early strength.

【0078】第7実施例 Seventh Embodiment

【0079】二種の無機硬質材基材を用い、ガラス繊維
と水溶性糊剤を混合して無機硬質材を作製し、該材の性
能評価試験を行った。
Using two kinds of inorganic hard material substrates, glass fibers and a water-soluble sizing agent were mixed to prepare an inorganic hard material, and a performance evaluation test of the material was conducted.

【0080】先ず、還元期スラグ75重量部と脱硫石膏
25重量部とを含む基質粉末〔基質粉末:A〕と、該基
質粉末Aに高炉水砕砂100重量部加えた基質粉末〔基
質粉末:B〕の二種類の基質粉末を用意した。
First, a substrate powder [substrate powder: A] containing 75 parts by weight of reducing slag and 25 parts by weight of desulfurization gypsum, and a substrate powder [substrate powder: B] in which 100 parts by weight of granulated blast furnace granulated sand was added to the substrate powder A. ] Two types of substrate powders were prepared.

【0081】次いで、該基質粉末100重量部に、水溶
性糊剤としてポリビニルアルコール(PVA:重合度5
00)を混練水に5%濃度となるように溶かし、水セメ
ント比が0.4となるようにオムニミキサーに投入し、1
分間混合した。次いで、25mm長さのチョップトスト
ランドを5重量部混合し、前記第1実施例と同様にして
本実施例の無機硬質材を作成した(試料番号:19、2
0)。
Next, 100 parts by weight of the substrate powder was mixed with polyvinyl alcohol (PVA: polymerization degree 5) as a water-soluble sizing agent.
(00) is dissolved in kneading water so as to have a concentration of 5%, and the mixture is put into an omni mixer so that the water-cement ratio becomes 0.4.
Mix for minutes. Next, 5 parts by weight of 25 mm long chopped strands were mixed to prepare an inorganic hard material of this example in the same manner as in the first example (Sample Nos. 19 and 2).
0).

【0082】次に、得られた無機硬質材の性能評価試験
を、嵩密度測定試験および気乾曲げ強度測定試験によ
り、それぞれ第1実施例と同様にして行った。なお、該
試験は、表7に示す条件、すなわち、前記流し込みから
の経過時間および雰囲気により行った。得られた結果
を、それぞれ表7に示す。
Next, a performance evaluation test of the obtained inorganic hard material was carried out by a bulk density measurement test and an air dry bending strength measurement test in the same manner as in the first embodiment. The test was conducted under the conditions shown in Table 7, that is, the elapsed time from the pouring and the atmosphere. The obtained results are shown in Table 7.

【0083】[0083]

【表7】 [Table 7]

【0084】表7より明らかの如く、本実施例の無機硬
質材は、耐候性に優れ、特に気乾状態では建材として十
分に使用可能であることが分かる。
As is clear from Table 7, the inorganic hard material of this example is excellent in weather resistance and can be sufficiently used as a building material especially in the air-dried state.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 //(C04B 28/00 14:42 C 2102−4G 24:26) B 2102−4G (72)発明者 宮下 莞爾 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 石突 治康 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // (C04B 28/00 14:42 C 2102-4G 24:26) B 2102-4G (72) Inventor Miyashita Kanji Wano Wari, No. 1 Arano-machi, Tokai City, Aichi Prefecture, Aichi Steel Co., Ltd. (72) Inventor Haruyasu Ishizama No. 1, Wano Wari, Arao-machi, Tokai City, Aichi Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 12CaO・7Al2 3 又は/及びそ
の固溶体とγ−2CaO・SiO2 とを含んでなる基質
粉末と,該基質粉末100重量部に対して10〜35重
量部の石膏とを主要成分とした無機硬質材基材と、 該無機硬質材基材100重量部に対して1.0〜10.0重
量部のガラス繊維と、0.1〜5.0重量部の水溶性糊剤を
含んでなることを特徴とする無機硬質材。
1. A substrate powder comprising 12CaO.7Al 2 O 3 or / and its solid solution and γ-2CaO.SiO 2 and 10 to 35 parts by weight of gypsum per 100 parts by weight of the substrate powder. Inorganic hard material base material as the main component, 1.0 to 10.0 parts by weight of glass fiber, and 0.1 to 5.0 parts by weight of water-soluble glue with respect to 100 parts by weight of the inorganic hard material base material. An inorganic hard material comprising an agent.
JP36000191A 1991-12-26 1991-12-26 Inorganic hard material Expired - Fee Related JP2934347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36000191A JP2934347B2 (en) 1991-12-26 1991-12-26 Inorganic hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36000191A JP2934347B2 (en) 1991-12-26 1991-12-26 Inorganic hard material

Publications (2)

Publication Number Publication Date
JPH0692707A true JPH0692707A (en) 1994-04-05
JP2934347B2 JP2934347B2 (en) 1999-08-16

Family

ID=18467386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36000191A Expired - Fee Related JP2934347B2 (en) 1991-12-26 1991-12-26 Inorganic hard material

Country Status (1)

Country Link
JP (1) JP2934347B2 (en)

Also Published As

Publication number Publication date
JP2934347B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
US4997484A (en) Hydraulic cement and composition employing the same
EP1274664B1 (en) Non-efflorescing cementitious bodies
EP0346350A1 (en) Cement composition curable at low temperatures
KR20010034109A (en) Process for producing dispersant for powdery hydraulic composition
US5509962A (en) Cement containing activated belite
JPH08268738A (en) Crystalline high hydration active material and cement admixture using the same and method for accelerating hardening of concrete
US6197107B1 (en) Gypsum-rich Portland cement
JP4570829B2 (en) White flower control in cementitious compositions and masonry units
JPH10231165A (en) Hydraulic composition having self-fluidity
EP0332388B1 (en) Cementitious product
JP2000302519A (en) Self-fluidity hydraulic composition
JP3478108B2 (en) Hydraulic coloring finishing material composition
JPH0891896A (en) High hydration active substance, cement curing accelerator and method for accelerating setting and hardening of concrete or mortar
JPH0375254A (en) Cement composition
JP2003055018A (en) Polymer cement composition
JP2934347B2 (en) Inorganic hard material
JP2857511B2 (en) Concrete composition
US20220204405A1 (en) Hydraulic binder composition
EP0170495A2 (en) Cementitious compositions
AU766242B2 (en) Gypsum-rich portland cement
JP2000072519A (en) Low-alkalinity and high-strength cement composition
JPH01208354A (en) Low-alkali cement composition
JP3214752B2 (en) cement
JPH08253354A (en) Crystalline substance having high hydration activity, set accelerating agent for cement and method for accelerating setting and hardening of concrete or mortar
JPH03183650A (en) Flexible cement composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees